当前位置:文档之家› 材料科学基础 材料的凝固

材料科学基础 材料的凝固

材料科学基础 材料的凝固
材料科学基础 材料的凝固

材料科学基础作业

Fundamentals of Materials Science 1. Determine the Miller indices for the planes shown in the following unit cell: A:(2 1 -1) B:(0 2 -1) 2. Show that the atomic packing factor for HCP is 0.74. Solution: This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total sphere-unit cell volume ratio. For HCP, there are the equivalent of six spheres per unit cell, and thus Now, the unit cell volume is just the product of the base area times the cell height, c. This base area is just three times the area of the parallelepiped ACDE shown below.

The area of ACDE is just the length of CD times the height BC. But CD is just a or 2R, and 3. For both FCC and BCC crystal structures, the Burgers vector b may be expressed as

材料科学基础

?晶粒度:用于表示晶粒大小的一个概念。用晶粒的平均面积或平均直径表示。?钢的标准晶粒度:分为8级。一级最粗,八级最细。 第 六 节 凝 固 理 论 的 应 用

?晶粒大小对性能的影响:晶粒越细,强度、硬度塑性、韧性越高。?晶粒度控制方法:控制形核率N 、长大速度Vg 单位体积中晶粒数:单位面积中晶粒数: 增加过冷度,提高N/Vg ,细化晶粒。 添加形核剂,提高形核率N ,细化晶粒。 振动、搅拌,细化晶粒。 第 六 节 凝 固 理 论 的 应 用4/39.0???? ??=g v V N Z 2 /11.1???? ??=g s V N Z

(3)3§3.6.2 单晶体的制备 ?单晶体:只有一个晶 粒构成的晶体。 ?制备原理:提高纯度、 减慢结晶速度,保证 一个晶核形成并长大。 ?制备方法:尖端成核 法、垂直提拉法。第六节凝固理论的 应 用

(4)3§3.6.3 定向凝固技术 ?定向凝固:铸件按一定方向由一端开始,逐步向另 一端结晶。 ?制备方法:快速逐步凝固法第六节凝 固 理 论 的 应 用关键是创造单向散热的冷却条件。

(5)3§3.6.4 非晶态金属?非晶态金属(金属玻璃):快速冷却使金属保留液态时的原子排列。强度高,韧性大,耐腐蚀,导磁性强第六 节凝 固 理 论 的 应 用?形成条件:快冷至Tg 温度(玻璃化温度)以下。△Tg=Tm-Tg 越小,越易获得非晶态。在熔点到结晶温度区间加快冷却速度(超过106K/S)。?制备方法:离心急冷法、轧制急冷法

(6)3§3.6.5 微晶合金?微晶合金(纳晶合金):晶粒尺寸达微米(μm)或纳 米(nm)级的超细晶粒合金。?制备方法:急冷凝固技术 ?特点:高强度、高硬度、良好韧性,高耐磨性、耐蚀性,抗辐射稳定性。第 六 节凝 固理论的 应 用

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础习题

查看文本 习题 一、名词解释 金属键; 结构起伏; 固溶体; 枝晶偏析; 奥氏体; 加工硬化; 离异共晶; 成分过冷; 热加工; 反应扩散 二、画图 1在简单立方晶胞中绘出()、(210)晶面及[、[210]晶向。 2结合Fe-Fe3C相图,分别画出纯铁经930℃和800℃渗碳后,试棒的成分-距离曲线示意图。 3如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。 4画出简单立方晶体中(100)面上柏氏矢量为[010]的刃型位错与(001)面上柏氏矢量为[010]的刃型位错交割前后的示意图。 5画图说明成分过冷的形成。 三、Fe-Fe3C相图分析 1用组织组成物填写相图。 2指出在ECF和PSK水平线上发生何种反应并写出反应式。 3计算相图中二次渗碳体和三次渗碳体可能的最大含量。 四、简答题 1已知某铁碳合金,其组成相为铁素体和渗碳体,铁素体占82%,试求该合金的含碳量和组织组成物的相对量。 2什么是单滑移、多滑移、交滑移?三者的滑移线各有什么特征,如何解释?。 3设原子为刚球,在原子直径不变的情况下,试计算g-Fe转变为a-Fe时的体积膨胀率;如果测得910℃时g-Fe和a-Fe的点阵常数分别为0.3633nm和0.2892nm,试计算g-Fe转变为a-Fe的真实膨胀率。 4间隙固溶体与间隙化合物有何异同? 5可否说扩散定律实际上只有一个?为什么? 五、论述题 τC 结合右图所示的τC(晶体强度)—ρ位错密度 关系曲线,分析强化金属材料的方法及其机制。 晶须 冷塑变 六、拓展题 1 画出一个刃型位错环及其与柏士矢量的关系。 2用金相方法如何鉴别滑移和孪生变形? 3 固态相变为何易于在晶体缺陷处形核? 4 画出面心立方晶体中(225)晶面上的原子排列图。 综合题一:材料的结构 1 谈谈你对材料学科和材料科学的认识。 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 碳原子易进入a-铁,还是b-铁,如何解释? 7 研究晶体缺陷有何意义? 8 点缺陷主要有几种?为何说点缺陷是热力学平衡的缺陷?

材料科学基础 铁碳相图补充作业题答案

铁碳相图补充作业题答案 1. 铁碳合金按Fe —Fe 3C 相图成分区域分成七类,分别是什么? 2. 分析以上七种成分合金平衡结晶过程与最终组织,并计算: (1) 工业纯铁中三次渗碳体的最大含量。 分析:在工业纯铁中,随C 含量的增加,三次渗碳体的含量也越多,当C%=0.0218% (即P 点成分的工业纯铁中)时,Fe 3C Ⅲ量达到最大值。 W Fe3C Ⅲ=008 .069.6008,00218. 0--×100%=0.33% (2) 共析钢中,α和Fe 3C 的相对含量。(Fe 3C Ⅲ量很少,一般忽略不计) W α=%100218 .069.677.069.6?--=%10069.677.069.6?-=88% W Fe3C =1-88%=12% (3)45钢(含C :0.45%)中,组织组成物和相组成物的相对含量。 分析:45钢组织组成物为:铁素体(先共析)+ 珠光体 相组成物为:铁素体(α)+ 渗碳体(Fe 3C ) 由于Fe 3C Ⅲ量很少,可以忽略不计,只考虑727℃共析转变完成之后即可。 组织组成物:?? ???=-==?==?=----%57%431Wp %57%100%43%1000218.077.00218.045.00218.077.045.077.0或αWp W 相组成物: ?????=-==?==?=----% 7%931W %7%100%93%100C 3Fe 0218.69.60218.045.030218.069.645.069.6或αo C Fe W W 注:共析钢中,室温组织为α+ P W C %↑, W P ↑,可近似根据亚共析钢的平衡组织来估算钢的含C 量。 W P =%100%1008.077.0218.077.0028.0?==?--C C C ∴ 钢的含C 量 C=0.8W P (忽略α、P 密度的差别)W P :珠光体所占的面积百分比。 (4)T10钢(1%C )中,Fe3C Ⅱ和珠光体的相对量 W Fe3C Ⅱ=%100 77.069.677.00.1?--=4% W P =1—4%=96% 注:在过共析钢中,W C ↑, Fe3C Ⅱ↑ 当 W C =2.11% Fe 3C Ⅱ达到最大值 W Fe3C Ⅱ最大=%6.22%100 77.069,677.011.2=?-- (5)共晶白口铸铁中,Fe 3C 共晶与γ共在共晶温度下的相对量。共析温度下P 与Fe 3C 的相对量。 ?????=-==?=--%48%521W %52%100C 3Fe 11.269.63.469.6共共γW

材料科学基础课后习题

1.作图表示立方晶体的晶面及晶向。 2.在六方晶体中,绘出以下常见晶向 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的 等价晶面。 4.镁的原子堆积密度和所有hcp金属一样,为。试求镁单位晶胞的 体积。已知Mg的密度,相对原子质量为,原子半径r=。 5.当CN=6时离子半径为,试问: 1)当CN=4时,其半径为多少? 2)当CN=8时,其半径为多少? 6.试问:在铜(fcc,a=)的<100>方向及铁(bcc,a=的<100>方向,原 子的线密度为多少? 7.镍为面心立方结构,其原子半径为。试确定在镍的 (100),(110)及(111)平面上1中各有多少个原子。 8.石英的密度为。试问: 1)1中有多少个硅原子(与氧原子)? 2)当硅与氧的半径分别为与时,其堆积密度为多少(假设原子是 球形的)?

9.在800℃时个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时个原子中则只有一个原子,试求其激活能(J/原 子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空 位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。 11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。 若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b∥AB。 1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台 阶应为4个b,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后, 滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。 晶体中有一条位错线段在滑移面上并平行AB,段与滑移面垂直。位错的柏氏矢量b与平行而与垂直。试问: 1)欲使段位错在ABCD滑移面上运动而不动,应对晶体施加 怎样的应力? 2)在上述应力作用下位错线如何运动?晶体外形如何变化? 13.设面心立方晶体中的为滑移面,位错滑移后的滑移矢量为 。 1)在晶胞中画出柏氏矢量b的方向并计算出其大小。 2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方 向,并写出此二位错线的晶向指数。

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

材料科学基础A习题答案第5章

材料科学基础A习题 第五章材料的变形与再结晶 1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施: (1)增加该零件的轴径。 (2)通过热处理提高其屈服强度。 (3)用弹性模量更大的金属制作该零件。 问哪一种措施可解决该问题,为什么? 答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。 2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。 答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。 3、下图为两种合金A、B各自的交变加载-卸载应力应变 曲线(分别为实线和虚线),试问那一种合金作为减振材 料更为合适,为什么? 答:B合金作为减振材料更为合适。因为其应变滞 后于应力的变化更为明显,交变加载-卸载应力应变回线 包含的面积更大,即其对振动能的衰减更大。 4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么? 答:发生交滑移时更易塑性变形。因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。 5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么? 答:A曲线为多系滑移变形曲线。这是因为多滑移可导致不同滑移面上的位错相遇, 通过位错反应 力 应变

材料科学基础-张代东-习题答案

材料科学基础-张代东-习题答案 第1章习题解答 1-1 解释下列基本概念 金属键,离子键,共价键,范德华力,氢键,晶体,非晶体,理想晶体,单晶体,多晶体,晶体结构,空间点阵,阵点,晶胞,7个晶系,14 种布拉菲点阵,晶向指数,晶面指数,晶向族,晶面族,晶带,晶带轴,晶带定理,晶面间距,面心立方,体心立方,密排立方,多晶型性,同素异构体,点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙,点缺陷,线缺陷,面缺陷,空位,间隙原子,肖脱基缺陷,弗兰克尔缺陷,点缺陷的平衡浓度,热缺陷,过饱和点缺陷,刃型位错,螺型位错,混合位错,柏氏回路,柏氏矢量,

位错的应力场,位错的应变能,位错密度,晶界,亚晶界,小角度晶界,大角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界,晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界(略) 1-2原子间的结合键共有几种?各自特点如何?答:原子间的键合方式及其特点见下表。 类型特点

分子键借助瞬时电偶极矩的感应作用,无方向性和饱和性 依靠氢桥有方向性和饱和性 1-3问什么四方晶系中只有简单四方和体心四方两种点阵类型? 答:如下图所示,底心四方点阵可取成更简单的简单四方点阵,面心四方点阵可取成更简单的体心四方点阵,故四方晶系中只有简单四方和体心四方两种点阵类型。 1-4试证明在立方晶系中,具有相同指数的晶向和晶面必定相互垂直。 证明:根据晶面指数的确定规则并参照下图, 离子键以离子为结合单位,无方向性和饱和 共价键共用电子对,有方向性键和饱和性 金属键电子的共有化,无方向性键和饱和性

(hkl )晶面ABC 在a 、b 、c 坐标轴上的截距分 别 为ab 、2 , AB 空 h k l 1 h 晶向指数的确定规则, 利用立方晶系中 a b L AB (ha kb lc)( ) h k a c L AC (ha kb lc)( ) h l 由于L 与ABC 面上相交的两条直线垂直, 所以L 垂直于ABC 面,从而在立方晶系具有相 同指 数的晶向和晶面相互垂直。 1-5面心立方结构金属的[100]和[111]晶向间的 夹角是多少? {100}面间距是多少? 答:设[100]和[111]晶向间的夹角为 _____ 5U 2 V ]V 2 WM _________ 10 0 cOS ,U 12 V 12 wj.U 2V 2W 2 1 0 0 1 1 1 [100]和[111]晶向间的夹角为arccos 3/3, b — a c k , h 7, [hkl]晶向L a=b=c , 0 BC 冷;根据 ha kb lc 。 90的特点,有 氛则 3 3

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料科学基础课后作业第三章

3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的w Ni=90%,另一个铸件的w Ni=50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为什么?找出消除偏析的措施。 答: 合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分配系数为k0=Cα/C L。对一给定的合金系,溶质原子再分配系数与合金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距成正比。当w Ni=50% 时,液相线与固相线之间的水平距离更大,固相与液相成分差异越大;同时其凝固结晶温度比w Ni=90%的结晶温度低,原子扩散能力降低,所以比偏析越严重。 一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化退火来消除偏析。 3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi=50%的合金在520℃时开始凝固出成分为w Sb=87%的固相。w Bi=80%的合金在400℃时开始凝固出成分为w Sb=64%的固相。根据上述条件,要求: 1)绘出Bi-Sb相图,并标出各线和各相区的名称; 2)从相图上确定w Sb=40%合金的开始结晶终了温度,并求出它在400℃时的平衡相成分及其含量。

解:1 )相图如图所示; 2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左右),350℃(左右) 固、液相成分w Sb(L) =20%, w Sb(S)=64% 固、液相含量: %5.54%10020-6440-64=?=L ω %5.45%100)1(=?-=L S ωω 3-7.根据下列实验数据绘出概略的二元共晶相图:組元A 的熔点为1000℃,組元B 的熔点为700℃;w B =25%的合金在500℃结晶完毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;w B =50%的合金在500℃结晶完毕后,则由40%的先共晶α相与60%的(α+β)共晶体组成,而此合金中的α相总量为50%。 解:由题意由(α+β)共晶含量得 01.03226--25.0?=+)()()(αβααωωωB B B 6.0--5.0=+)()()(αβααωωωB B B

材料科学基础考题1

材料科学基础考题 Ⅰ卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷 二、选择题(每题2分,共20分) 1.在体心立方结构中,柏氏矢量为a[110]的位错( )分解为a/2[111]+a/2]111[. (A) 不能(B) 能(C) 可能 2.原子扩散的驱动力是:( ) (A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度 3.凝固的热力学条件为:() (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4.在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现() (A) 氧离子空位(B) 钛离子空位(C)阳离子空位 5.在三元系浓度三角形中,凡成分位于()上的合金,它们含有另两个顶角所代表的两组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6.有效分配系数k e 表示液相的混合程度,其值范围是() (A)1

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

材料科学基础课后作业及答案

材料科学基础课后作业及答案(分章 节) 第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS 解:1、查表得:XNa=,XF= 根据鲍林公式可得NaF中离子键比例为:[1?e共价键比例为:%=% 2、同理,CaO中离子键比例为:[1?e共价键比例为:%=% 12?(?)412?(?)4]?100%?% ]?100%? % 23、ZnS中离子键比例为:ZnS 中离子键含量?[1?e?1/4(?)]?100%?% 共价键比例为:%=% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。稳态结构与亚稳态结构

之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出晶面族各包括多少晶面?写出它们的密勒指数。[1101]4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。5.根据刚性球模型回答下

材料科学基础_名词解释

金属键: 金属键(metallic bond)是化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成. 晶体: 是由许多质点(包括原子、离子或分子)在三维空间作有规则的周期性重复排列而构成的固体 同素异晶转变(并举例): 金属在固态下随温度的变化,由一种晶格变为另一种晶格的现象,称为金属的同素异晶转变。液态纯铁冷却到1538℃时,结晶成具有体心立方晶格的δ-Fe;继续冷到1394℃时发生同素异晶的转变,转变为面心立方晶格γ-Fe;再继续冷却到912℃时,γ-Fe又转变为体心立方晶格的α-Fe。 晶胞: 在空间点阵中,能代表空间点阵结构特点的小平行六面体,反映晶格特征的最小几何单元。 点阵常数: 晶胞三条棱边的边长a、b、c及晶轴之间的夹角α、β、γ称为晶胞参数 晶面指数: 晶体中原子所构成的平面。 晶面族: 晶体中具有等同条件(这些晶面的原子排列情况和面间距完全相同),而只是空间位向不同的各组晶面称为晶面族 晶向指数: 晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

晶向族(举例); 晶体结构中那些原子密度相同的等同晶向称为晶向族。<111>:[111],[-1-11][11-1][-1-1-1][1-1-1][-111][-11-1][1-11] 晶带和晶带轴: 所有相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴。 配位数: 在晶体中,与某一原子最邻近且等距离的原子数称为配位数 致密度: 晶胞内原子球所占体积与晶胞体积之比值 晶面间距: 两近邻平行晶面间的垂直距离 对称:通过某种几何操作后物体空间性质完全还原为原始状态 空间点阵:将构成物质结构的粒子抽象为质点后,质点在三维空间的排列情况 布拉菲点阵:考虑点阵上的阵点的具体排列而得到的点阵具体排列形式,而不是强调是布拉菲数学计算得到的十四种排列 固溶体:溶质原子在固态的溶剂中的晶格或间隙位置存在,晶体结构保持溶剂的物质 中间相:两种或以上元素原子形成与其组元的晶体结构均不相同的化合物 准晶:有独特结构和对称性的物质,原子排列在晶体的有序

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

答案材料科学基础11

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。 ①网状特别是沿晶界析出的连续网状Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降; ②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。符合σs=σ 0+KS0-1/2的规律,S0 片层间距。 ③第二相为粒状分布时,颗粒越细小,分布越均匀,合金的强度越高,符合Gb的规律,λ粒子之间的平均距离。第二相的数量越多,对塑性的危害越大; ④片状与粒状相比,片状强度高,塑性、韧性差; ⑤沿晶界析出时,不论什么形态都降低晶界强度,使钢的机械性能下降。 第二相无论是片状还是粒状都阻止位错的移动。 方法:合金化,即加入合金元素,通过热处理或变形改变第二相的形态及分布。 4、细晶强化 细晶强化:随晶粒尺寸的减小,材料的强度硬度升高,塑性、韧性也得到改善的现象称为细晶强化。细化晶粒不但可以提高强度又可改善钢的塑性和韧性,是一种较好的强

材料科学基础作业参考答案

《材料科学基础》作业参考答案 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)和[236]。 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。解答: (1) (2)首先求(111)和(112)的交线。 由式(2-7),即得u=k1l2-k2l1=1x2-1x1=1 v=l1h2-l2h1=1x1-2x1=-1 w=h1k2-h2k1=1x1-1x1=0 所以,(111)和(112)两晶面交线的晶向指数为[110]或者[110]。如下图所示。

3 立方晶系的{111}、{110}、{123}晶面族各包括多少晶面?写出它们的密勒指数。 解答: ++++++++= )213()231()321()132()312()321()231()123(}123{ + ++++++)312()132()213()123()132()312()231() 132()123()213()321()231()213()123()312()321(++++ ++++ 注意:书中有重复的。如(111)与(111)应为同一晶面,只是位于坐标原点的位置不同。 6.(略) 7.(题略) (1)(2)用公式 求。 (3) 用公式 求。 (1)d(100)=0.286nm d(110)=0.202nm d(123)=0.076nm 显然,d(100)最大。 222hkl d h k l =++

(2) d(100)=0.365nm d(111)=0.211nm d(112)=0.149nm 显然,d(100)最大。 (3) d(1120)=0.1605 nm d(1010)=0.278nm d(1012)=0.190nm 显然,d(1010)最大。 由(1)、(2)、(3)得低指数的面间距较大,而高指数的晶面间距则较小 8.回答下列问题: (1)通过计算判断(110)、(132)、(311)晶面是否属于同一晶带? (2)求(211)和(110)晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。解答提示:(1)首先求任两面的交线,即求晶面(h1 k1 l1)和(h2 k2 l2)的求晶带轴[uvw] u = k1 l2 - k2 l1、v = l1 h2-l2h1、w=h1 k2- h2 k1 再判断该晶带轴是否与另一面垂直,即是否满足uh+vk+wl=0。 (2)采用以上公式求得后,任写5个,注意h,k,l必须最小整数化。 10.(题略) 利用公式(2-12)(2-13)求。 正负离子之间的距离:R0=R+ + R-=23.1nm 单价离子半径:R Na+=Cn/(Z1-σ)= Cn/(11-4.52)=Cn/6.48 单价离子半径:R F-=Cn/(Z2-σ)= Cn/(9-4.52) =Cn/4.48 所以,Cn=61.186 从而,R Na+=9.44nm R F-=13.66nm 答:略。 18.(题略)注意写详细一些。 第四章 2.(题略) 解答提示:利用公式(4-1)解答。 取A=1,则 ) ( kT u e e N n- =,

相关主题
文本预览
相关文档 最新文档