当前位置:文档之家› 基于数据分区的DBSCAN算法_周水庚

基于数据分区的DBSCAN算法_周水庚

基于数据分区的DBSCAN算法_周水庚
基于数据分区的DBSCAN算法_周水庚

分区分配算法的实现

分区分配算法的实现 实验要求: ?分区空闲表要表示出分区号、始址、大小 ?作业序列能够动态输入 ?内存不足,必须有提示功能 ?总结收获体会及对该题解的改进意见和见解 (红色字体为再修改处)

源代码: /********************操作系统实验四:首次适应(first fit)算法的分区分配算法*******************/ #include void main() { int m,n,i,j,j0,k,k0,A[30][3],B[30]; printf("请输入空闲分区块数:"); scanf("%d",&m); printf("\t分区号\t\t大小\t\t起始地址\n"); for(i=0;i

} } } printf("\n---------首次适应算法按地址从小到大排列后空闲区---------\n"); printf("\t分区号\t\t大小\t\t起始地址\n"); for(i=0;i

操作系统实验四实验报告动态分区分配算法

操作系统实验四 【实验题目】:动态分区分配算法 【实验学时】:4学时 【实验目的】 通过这次实验,加深对动态分区分配算法的理解,进一步掌握首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的实现方法。 【实验内容及要求】 问题描述: 设计程序模拟四种动态分区分配算法:首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法的工作过程。假设内存中空闲分区个数为n,空闲分区大小分别为P1, … ,P n,在动态分区分配过程中需要分配的进程个数为m(m≤n),它们需要的分区大小分别为S1, … ,S m,分别利用四种动态分区分配算法将m个进程放入n个空闲分区,给出进程在空闲分区中的分配情况。 程序要求: 1)利用首次适应算法、循环首次适应算法、最佳适应算法和最坏适应算法四种动态分区分配算法模拟分区分配过程。 2)模拟四种算法的分区分配过程,给出每种算法进程在空闲分区中的分配情况。 3)输入:空闲分区个数n,空闲分区大小P1, … ,P n,进程个数m,进程需要的分区大小S1, … ,S m。

4)输出:首次适应算法,循环首次适应算法,最佳适应算法,最坏适应算法,最终内存空闲分区的分配情况。 实现源代码: #include #include #include #include #define max 100 using namespace std; int work_num; int zone_num; struct Data{ int data; char name; }; Data *d=new Data[max]; struct Table{ int data; char array[max]; int length; };

解读差异——分类算法与聚类算法_光环大数据培训

https://www.doczj.com/doc/0816332467.html, 解读差异——分类算法与聚类算法_光环大数据培训 光环大数据培训机构了解到,学习数据挖掘的朋友,对分类算法和聚类算法都很熟悉。无论是分类算法还是聚类算法,都有许多具体的算法来实现具体的数据分析需求。很多时候,我们难以判断选择分类或者聚类的场合是什么。我们最直观的概念是,分类和聚类都是把某个被分析的对象划分到某个类里面,所以觉得这两种方法实际上是差不多一回事。然而当我们学习了许多具体算法之后再回来看,分类和聚类所实现的数据分析功能实际上是大相径庭的,他们之间不仅仅有算法上的具体差异,更重要的是,甚至他们的应用领域和所解决的具体问题都不一样。 1. 类别是否预先定义是最直观区别 算法书上往往这样解释二者的区别:分类是把某个对象划分到某个具体的已经定义的类别当中,而聚类是把一些对象按照具体特征组织到若干个类别里。虽然都是把某个对象划分到某个类别中,但是分类的类别是已经预定义的,而聚类操作时,某个对象所属的类别却不是预定义的。所以,对象所属类别是否为事先,是二者的最基本区别。而这个区别,仅仅是从算法实现流程来看的。 2. 二者解决的具体问题不一样 分类算法的基本功能是做预测。我们已知某个实体的具体特征,然后想判断这个实体具体属于哪一类,或者根据一些已知条件来估计感兴趣的参数。比如:我们已知某个人存款金额是10000元,这个人没有结婚,并且有一辆车,没有固定住房,然后我们估计判断这个人是否会涉嫌信用欺诈问题。这就是最典型的分类问题,预测的结果为离散值,当预测结果为连续值时,分类算法可以退化为计量经济学中常见的回归模型。分类算法的根本目标是发现新的模式、新的知识,与数据挖掘数据分析的根本目标是一致的。 聚类算法的功能是降维。假如待分析的对象很多,我们需要归归类,划划简,从而提高数据分析的效率,这就用到了聚类的算法。很多智能的搜索引擎,会将返回的结果,根据文本的相似程度进行聚类,相似的结果聚在一起,用户就很容

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

动态分区分配算法资料

动态分区分配算法 一实验内容与要求 内容:动态分区分配是根据进程的实际需要,动态地为之分配内存空间,而在分配时,须按照一定的分配算法,从空闲分区表或空闲分区链中选出一分区分配给该作业。在本实验中运用了三种分配算法,分别是1.首次适应算法,2.循环首次适应算法,3.最佳适应算法。 要求:动态分区算法也称为可变分区分配算法,常见的空闲区查找算法有首次适应算法,循环首次适应算法,最佳适应算法。特别注意分区回收时,相邻空闲分区需要合并。 (1)参考操作系统教材理解这3种分配算法以及回收算法。 (2)实现3种分配算法以及回收算法。 (3)已知作业申请内存和释放内存的序列,给出内存的使用情况。 (4)作业申请内存和释放内存的序列可以存放在文本文件中。 (5)设计简单的交互界面,演示所设计的功能。(可以使用MFC进行界面的设计) (6)可根据自己能力,在完成以上基本要求后,对程序功能进行适当扩充。 二、需求分析 本次实验通过用C语言进行编程并调试、运行,形象地表现出动态分区的分配方式,直观地展现了首次适应算法和最佳适应算法对内存的释放和回收方式之间的区别。加深了我们对两种算法优缺点的理解,帮助我们了解一些数据结构和分配算法,进一步加深我们对动态分区存储器管理方式及其实现过程的理解。主要的问题在于,如何解决两种算法对内存的释放和回收空间的表示。 动态分区分配:又称为可变分区分配,这种分配方式并不事先先将主存划分成一块块的分区,而是在作业进入主存时,根据作业的大小动态地建立分区。并使分区的大小正好适应作业的需要。因此系统中分区的大小是可变的,分区的数

目也是可变的。 分区分配算法: 1.首次适应法: 为作业选择分区时总是按地址从高到低搜索,只要找到可以容纳该作业的空白块,就把该空白块分配给该作业。 特点:优先利用内存中底地址部分的空闲分区 (将所有空闲区,按其地址递增的顺序链接) 2.循环首次适应算法 该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 3.最佳适应算法: 接到内存申请时,在空闲块表中找到一个不小于请求的最小空块进行分配;为作业选择分区时总是寻找其大小最接近于作业所要求的存储区域。 三、概要设计 动态分区常用的数据结构有空闲分区表和空闲分区链,用来记录内存的使用情况,此题中我采用的是空闲分区链的结构,用链指针将所有的分区链接成一条链,每个分区的结构如下所示: typedef struct freearea//定义一个空闲区说明表结构 { int ID; //分区号 long size; //分区大小 long address; //分区地址 int state; //状态 }ElemType; typedef struct DuLNode //double linked list { ElemType data; struct DuLNode *prior; //前趋指针 struct DuLNode *next; //后继指针 }DuLNode,*DuLinkList;

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。 当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。目前Web 数据挖掘面临着一些问题,包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。在Web 技术高速发展的今天,

全面解析数据挖掘的分类及各种分析方法

全面解析数据挖掘的分类及各种分析方法 1.数据挖掘能做以下六种不同事情(分析方法): ?分类(Classification) ?估值(Estimation) ?预言(Prediction) ?相关性分组或关联规则(Affinitygroupingorassociationrules) ?聚集(Clustering) ?描述和可视化(DescriptionandVisualization) ?复杂数据类型挖掘(Text,Web,图形图像,视频,音频等) 2.数据挖掘分类 以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘?直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。 ?间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。 ?分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘 3.各种分析方法的简介 ?分类(Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a.信用卡申请者,分类为低、中、高风险 b.分配客户到预先定义的客户分片 注意:类的个数是确定的,预先定义好的 ?估值(Estimation) 估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。 例子: a.根据购买模式,估计一个家庭的孩子个数 b.根据购买模式,估计一个家庭的收入 c.估计realestate的价值

实验报告-动态分区分配算法

南昌大学实验报告 学生姓名:马江涛学号: 8000612091 专业班级:计算机软件121班 实验类型:□验证□综合□设计□创新实验日期: 2014-05-08 实验成绩: 【实验要求】 1、编程实现首次适应算法和最佳适应算法的动态分区分配的分配过程和回收过程。其中,空闲分区通过分区链来管理;在进行内存分配时,系统优先使用空闲区低端的空间。 2、假设初始状态下,可用内存空间为640K,并依次有下列请求序列: 1)作业1申请130KB。 2)作业2申请60KB。 3)作业3申请100KB。 4)作业2释放60KB。 5)作业4申请200KB。 6)作业3释放100KB。 7)作业1释放130KB。 8)作业5申请140KB。 9)作业6申请60KB。 10)作业7申请50KB。 11)作业6释放60KB。 请分别用首次适应算法和最佳适应算法进行内存块的分配和回收,要求每次分配和回收后显示出空闲内存分区链的情况【可参考后文的实验提示】。 3、上机时认真的进行测试,输入不同的资源分配请求,写出实验结果; 4、具体要求: (1)对你的程序关键代码处进行注释。 (2)给出实验数据,对结果进行分析,说明对相关知识点的理解。 【实验目的】 了解动态分区分配方式中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。 【实验思路】 首次适应算法(First-fit):当要分配内存空间时,就查表,在各空闲区中查找满足大小要求的可用块。只要找到第一个足以满足要球的空闲块就停止查找,并把它分配出去;如果该空闲空间与所需空间大小一样,则从空闲表中取消该项;如果还有剩余,则余下的部分仍留在空闲表中,但应修改分区大小和分区始址。 最佳适应算法(Best-fit):当要分配内存空间时,就查找空闲表中满足要求的空闲块,并使得剩余块是最小的。然后把它分配出去,若大小恰好合适,则

循环首次适应的动态分区分配算法模拟

课程设计报告 课程设计题目:循环首次适应的动态分区分配算法模拟 专业:计算机科学与技术 班级:10204102 姓名:谱 学号: 10204102 指导教师:高小辉 2013年1月11 日

目录 一.循环首次适应算法 (3) 1. 概述 (3) 2.需求分析 (3) 二.实验指导 (4) 1.基本思想 (4) 2.数据结构 (4) 三.运行环境 (6) 四.流程图 (6) 五.循环首次适应算法代码 (5) 六.调试结果 (11) 七、总结 (14) 八.参考文献 (14)

一.循环首次适应算法 1.概述: 该算法是由首次适应算法演变而成的。在为进程分配内存空间时,不再是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到一个能满足要求的空闲分区,从中划出一块的请求大小相等的内存空间分配给作业。为实现该算法,应设置一起始查找指针,用于指示下一次起始查询的空闲分区,并采用循环查找方式,即如果最后一个(链尾)空闲分区的大小仍不能满足要求,则返回到第一个空闲分区,比较大小是否满足,找到后,应调整起始查询指针。 2. 需求分析 了解动态分区分配中使用的数据结构和分配算法,并进一步加深对动态分区存储管理方式及其实现过程的理解。采用首次适应算法的动态分区分配过程alloc()和回收过程free()。 空闲分区通过空闲分区链表来管理,在进行内存分配时,系统优先使用空闲区低端的空间,即每次分配内存空间是总是从低址部分开始进行循环,找到第一个合适的空间,便按作业所需分配的大小分配给作业。 作业完成时,需要释放作业所占空间,此时要考虑到四种情况: (1)回收区与插入点的前一个空闲分区相邻接。此时将二者合并,修改前一 分区的大小。 (2)回收区与插入点的后一空闲分区相邻接,将二者合并,用回收区的首址 作为新空闲区的首址。 (3)回收区同时与插入点的前后两个空闲分区相邻接,三者合并,使用前一空 闲分区的表项和首址。 (4)回收区单独存在。 二、实验指导 1.基本思想 动态分区是指系统不预先划分固定分区,而是在装入程序的时候划分内存区域,使得为程序分配的分区大小恰好等于该程序的需求量,且分区的个数是动态的。显然动态分区有较大的灵活性,较之固定分区能获得好的内存利用率。 2.数据结构 动态分区管理可以用两种数据结构实现,一种是已分配区表和空闲区表,也就是用预先定义好的系统空间来存放空间分配信息。

大数据常用算法清单

目录 大数据经典算法 (2) 一、C4.5 (2) 二、K-Means算法 (2) 三、支持向量机 (2) 四、The Apriori algorithm (2) 五、最大期望(EM)算法 (2) 六、PageRank (3) 七、AdaBoost (3) 八、kNN: k-nearest neighbor classification (3) 九、Naive Bayes (3) 十、CART: 分类与回归树 (3) 十一、mahout算法集 (4)

大数据经典算法 一、C4.5 C4.5,是机器学习算法中的一个分类决策树算法, 二、K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割(k < n)。它与处理混合正态分布的最大期望算法(本十大算法第五条)很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 三、支持向量机 支持向量机,它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。 五、最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

常用数据分析方法分类介绍(注明来源)

常用数据分析方法有那些 文章来源:ECP数据分析时间:2013/6/2813:35:06发布者:常用数据分析(关注:554) 标签: 本文包括: 常用数据分析方法:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析; 问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、Cronbach’a 信度系数分析、结构方程模型分析(structural equations modeling)。 数据分析常用的图表方法:柏拉图(排列图)、直方图(Histogram)、散点图(scatter diagram)、鱼骨图(Ishikawa)、FMEA、点图、柱状图、雷达图、趋势图。 数据分析统计工具:SPSS、minitab、JMP。 常用数据分析方法: 1、聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 2、因子分析(Factor Analysis) 因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。 因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。 3、相关分析(Correlation Analysis) 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。 4、对应分析(Correspondence Analysis) 对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

数据挖掘分类算法的研究与应用

首都师范大学 硕士学位论文 数据挖掘分类算法的研究与应用 姓名:刘振岩 申请学位级别:硕士 专业:计算机应用技术 指导教师:王万森 2003.4.1

首都师范入学硕.卜学位论Z数据挖掘分类算法的研究与应用 摘要 , f随着数据库技术的成熟应用和Internet的迅速发展,人类积累的数据量正在以指数速度增长。科于这些数据,人{}j已经不满足于传统的查询、统计分析手段,而需要发现更深层次的规律,对决策或科研工作提供更有效的决策支持。正是为了满足这种要求,从大量数据中提取出隐藏在其中的有用信息,将机器学习应用于大型数据库的数据挖掘(DataMining)技术得到了长足的发展。 所谓数据挖掘(DataMining,DM),也可以称为数据库中的知识发现(KnowledgeDiscoverDat曲鹅e,KDD),就是从大量的、不完全的、有噪声的、模糊的、随机的数据r},,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是数据库研究中的一个很有应用价值的新领域,它又是一门广义的交叉学科,融合了数据库、人工智能、机器学习、统计学等多个领域的理论和技术。 分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。{乍多分类的方法已被机器学习、专家系统、统计学和神经生物学方面的研究者提}H。本论文主要侧重数据挖掘中分类算法的研究,并将分类算法划分为急切分类和懒散分类,全部研究内容基本围绕着这种划分方法展开。.1本文的主要研究内容:, l,讨论了数掂挖掘中分类的基本技术,包括数据分类的过程,分类数据所需的数据预处理技术,以及分类方法的比较和评估标准;比较了几种典 型的分类算法,包括决策树、k.最近邻分类、神经网络算法:接着,引 出本文的研究重点,即将分类算法划分为急切分类和懒散分类,并基于 这种划分展歼对数据挖掘分类算法的研究。 2.结合对决簸树方法的研究,重点研究并实现了一个“懒散的基于模型的分类”思想的“懒散的决策树算法”。在决策树方法的研究中,阐述了决 策树的基本概念以及决策树的优缺点,决策树方法的应用状况,分析了 决策树算法的迸一步的研究重点。伪了更好地满足网络环境下的应用需 求,结合传统的决策树方法,基于Ⅶ懒散的基于模型的分类”的思想, 实现了一个网络环境下基于B/S模式的“懒散的决策树算法”。实践表明: 在WEB应fH程序叶i采用此算法取得了很好的效果。、 ≯ 3.选取神经H络分类算法作为急切分类算法的代表进行深入的研究。在神经网络中,重点分析研究了感知器基本模型,包括感知器基本模型的构 造及其学习算法,模型的几何意义及其局限性。并针对该模型只有在线 性可分的情况一F彳‘能用感知器的学习算法进行分类的这一固有局限性, 研究并推广了感知器模型。

存储管理分区分配算法

/*9.3.2 源程序*/ /***pcb.c***/ #include "stdio.h" #include "stdlib.h" #include "string.h" #define MAX 32767 typedef struct node /*设置分区描述器*/ { int address,size; struct node *next; }RECT; /*函数原型*/ RECT *assignment(RECT *head,int application); void acceptment1(RECT *head,RECT *back1); void acceptment2(RECT *head,RECT *back1) ; int backcheck(RECT *head,RECT *back1); void print(RECT *head); /*变量声明*/ RECT *head,*back,*assign1,*p; int application1,maxblocknum; char way; /*主函数*/ main() { char choose[10]; int check; head=malloc(sizeof(RECT)); /*建立可利用区表的初始状态*/ p=malloc(sizeof(RECT)); head->size=MAX; head->address=0; head->next=p; maxblocknum=1; p->size=MAX; p->address=0; p->next=NULL; print(head); /*输出可利用表初始状态*/ printf("Enter the way(best or first(b/f)\n");/*选择适应策略*/ scanf("%c",&way); do{ printf("Enter the assign or accept(as/ac)\n"); scanf("%s",choose); /*选择分配或回收*/ if(strcmp(choose,"as")==0) /*as为分配*/ { printf("Input application:\n");

大数据开发算法都有哪些

大数据开发算法都有哪些 若想在一个领域中站稳脚跟,就必须有超人的魄力和先进的知识;同样,你如果想在大数据行业拿到高薪,就必须有独特的技能,熟练的技巧。千锋教育大数据培训带来高薪必备的几个算法,助攻你的大数据行业。 一、推荐算法 CB 基于内容的算法-CB,它根据用户过去喜欢的产品(item),为用户推荐和他过去喜欢的产品相似的产品。例如,一个推荐饭店的电影可以依据用户之前喜欢很多的电影为他推荐。(Hadoop) CF 协同过滤算法(Collaborative Filtering, CF)是很常用的一种算法,在很多电商网站上都有用到。是一种基于相似度的方法。CF算法包括基于用户的CF(User-based CF)和基于物品的CF(Item-based CF)。(Hadoop) 二、分类算法 SVM SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方

法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析,SVM最基本的应用就是分类。(Hadoop) 它的最大特点是根据结构风险最小化准则,以最大化分类间隔构造最优分类超平面来提高学习机的泛化能力,较好地解决了非线性、高维数、局部极小点等问题。(Hadoop) NB 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯(Naive Bayes)算法。 这些算法主要利用Bayes定理来预测一个未知类别的样本属于各个类别的可能性,选择其中可能性最大的一个类别作为该样本的最终类别。(Hadoop) 三、聚类算法 层次聚类 层次聚类方法(Hierarchical Clustering)就是通过对数据集按照某种方法进行层次分解,直到满足某种条件为止。 按照分类原理的不同,可以分为凝聚和分裂两种方法,取决于层次分解是以

数据分类

统计分类就是根据事物的内在特点,按照一定标志将重复出现的社会经济现象体区分为不同的类型。 统计分布是在统计分组的基础上,把总体的所有单位按组归排列。形成总体中各个单位在各组间的分布。其实质是把总体的全部单位按某标志所分的组进行分配所形成的数列,所以又称分配数列或分布数列。统计分布由两个构成要素所组成:总体按某标志所分的组,各组所占有的单位数—次数。根据分组标志的不同,分配数列分为品质分配数列和变量分配数列。统计分布分为离散型分布和连续型分布。常见的离散型分布有:0-1分布B(1,p)、二项分布B(n,p)、泊松分布P(λ);常见的连续型分布有:均匀分布U[a,b]、指数分布E[λ]、Γ-分布Γ(λ,α)、正态分布N(μ,σ2)。 数据展示方式,即数据描述方式。 一、用图表展示定性数据。定性数据包括分类数据和顺序数据,它们的图表展示方法基本相同。通常可以用频数分布表和图形来描述。其中,图形描述又分为饼图、条形图、环形图。 二、用图表展示定量数据。定性数据的图示表示方法,也都适用于定量数据。但定量数据还有一些特定的图示方法,它们并不适用于定性数据。1、生成频数分别表;2、定量数据的图形表示。常用来表述定量数据统计图形有:直方图、折线图和散点图。 三、用统计表来表示数据。统计表是一种用密集的形式归纳数据的方法,它主要利用行和列中的数据来表述现象特征。 四、用数字来概括数据。1、定性数据的数字特征。由于定性数据主要是计数,比较简单,对定性数据的集中趋势常用的方法就是计算比例、百分比、中位数和众数;2、定量数据的数字特征。反映定量数据特征的统计量常用的有:1、反映数据集中趋势的水平度量:平均数、中位数、众数和分位数等;2、反映数据离散程度的差异度量:极差、四分位差、标准差和方差。

分类算法综述

《数据挖掘》 数据挖掘分类算法综述 专业:计算机科学与技术专业学号:S2******* 姓名:张靖 指导教师:陈俊杰 时间:2011年08月21日

数据挖掘分类算法综述 数据挖掘出现于20世纪80年代后期,是数据库研究中最有应用价值的新领域之一。它最早是以从数据中发现知识(KDD,Knowledge Discovery in Database)研究起步,所谓的数据挖掘(Data Mining,简称为DM),就从大量的、不完全的、有噪声的、模糊的、随机的、实际应用的数据中提取隐含在其中的、人们不知道的但又有用的信息和知识的过程。 分类是一种重要的数据挖掘技术。分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器)。该模型能把未知类别的样本映射到给定类别中的一种技术。 1. 分类的基本步骤 数据分类过程主要包含两个步骤: 第一步,建立一个描述已知数据集类别或概念的模型。如图1所示,该模型是通过对数据库中各数据行内容的分析而获得的。每一数据行都可认为是属于一个确定的数据类别,其类别值是由一个属性描述(被称为类别属性)。分类学习方法所使用的数据集称为训练样本集合,因此分类学习又可以称为有指导学习(learning by example)。它是在已知训练样本类别情况下,通过学习建立相应模型,而无指导学习则是在训练样本的类别与类别个数均未知的情况下进行的。 通常分类学习所获得的模型可以表示为分类规则形式、决策树形式或数学公式形式。例如,给定一个顾客信用信息数据库,通过学习所获得的分类规则可用于识别顾客是否是具有良好的信用等级或一般的信用等级。分类规则也可用于对今后未知所属类别的数据进行识别判断,同时也可以帮助用户更好的了解数据库中的内容。 图1 数据分类过程中的学习建模 第二步,利用所获得的模型进行分类操作。首先对模型分类准确率进行估计,例如使用保持(holdout)方法。如果一个学习所获模型的准确率经测试被认为是可以接受的,那么就可以使用这一模型对未来数据行或对象(其类别未知)进行分类。例如,在图2中利用学习获得的分类规则(模型)。对已知测试数据进行模型

实验四动态分区分配算法实验分析报告及程序

实验四动态分区分配算法实验报告及程序

————————————————————————————————作者:————————————————————————————————日期:

实验报告四动态分区分配算法 班级学号姓名 一、实验目的 动态分区分配是根据进程的实际需要,动态地为之分配内存空间,而在分配时,须按照一定的分配算法,从空闲分区表或空闲分区链中选出一分区分配给该作业。在本实验中运用了四种分配算法,分别是 1.首次适应算法,2.循环首次适应算法,3.最坏适应算法4.最佳适应算法。 二、实验环境 普通的计算机一台,编译环境Microsoft Visual C++ 6.0 三、算法思想 1.数据结构 (1)分区开始地址startaddress (2)分区大小size (3)分区状态state 2.功能介绍 (1)首次适应算法 在首次适应算法中,是从已建立好的数组中顺序查找,直至找到第一个大小能满足要求的空闲分区为止,然后再按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空间令开辟一块新的地址,大小为原来的大小减去作业大小,若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 (2)循环首次适应算法 该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。

数据挖掘中的文本挖掘的分类算法综述

数据挖掘中的文本挖掘的分类算法综述 摘要 随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。 关键词:数据挖掘,文本挖掘,文本分类算法 ABSTRACT With the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work. KEYWORDS: data mining, text mining, text classification algorithms,KNN 目录 摘要 (1) ABSTRACT (1) 目录 (1)

分类算法综述

分类算法综述 1 分类算法分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。分类可描述如下:输入数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…, vn ;c)。在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新

数据所属的类。注意是预测,而不能肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 2 典型分类算法介绍解决分类问题的方法很多,下面介绍一些经典的分类方法,分析 各自的优缺点。 2.1 决策树分类算法决策树(Decision Tree)是一种有向无环图(Directed Acyclic Graphics,DAG)。决策树方法是利用信息论中 的信息增益寻找数据库中具有最大信息量的属性字段,建立决策树的一个结点,在根据该属性字段的 不同取值建立树的分支,在每个子分支子集中重复 建立树的下层结点和分支的一个过程。构造决策树 的具体过程为:首先寻找初始分裂,整个训练集作 为产生决策树的集合,训练集每个记录必须是已经 分好类的,以决定哪个属性域(Field)作为目前最 好的分类指标。一般的做法是穷尽所有的属性域, 对每个属性域分裂的好坏做出量化,计算出最好的 一个分裂。量化的标准是计算每个分裂的多样性(Diversity)指标。其次,重复第一步,直至每个叶 节点内的记录都属于同一类且增长到一棵完整的树。

相关主题
文本预览
相关文档 最新文档