当前位置:文档之家› 浅议自由基与动物营养

浅议自由基与动物营养

浅议自由基与动物营养
浅议自由基与动物营养

浅议自由基与动物营养

“生命是一个化学的过程。”化学家拉瓦锡1783年提出的这一著名论断奠定了动物营养研究的理论基础。此后200多年来开展的动物营养研究进程中,很多新理论和新方法不断地向这个领域渗透,使得动物营养研究的方法得以不断改进和发展,内容也更加丰富和深入。而自由基生物学十几年来发展极为迅速,并以非常快的速度拓展其研究范围和应用于其他生命科学。动物体作为需氧生物体,体内活性氧的产生、清除、利用、危害与它所导致的生物分子损伤的修复,还有一氧化氮(NO)及衍生的活性氮的代谢和作用不仅是自由基生物学研究的主要内容,在动物营养保健研究中也必须予以重视。营养学中研究和应用较多的部分维生素:作为维生素A源的β-胡萝卜素、维生素C维生素E,还有其他一些抗氧化剂,也是自由基生物学研究范围内不可缺少的重要组分。自由基与营养的研究逐年猛增,其进展显示出在分子水平与亚分子水平相结合的一个新学术领域与新发展方向。

1.动物体内存在自由基

早在1931年Michalis就提出某些酶促氧化还原反应的中间产物为自由基,他的实验证据也表明生物体内可能存在自由基,然而直到自由基生物学迅猛发展的最近30年里,自由基在体内的产生与清除才得以重视。现在,内源性自由基产生的增多与其清除能力的削弱已经被确认为辐射损伤发展和加重的重要机制,而且已经认识到自由基与许多疾病的发生和发展密切相关。

大量研究表明,动物体内的生物分子包括非自由基与自由基。活性氧是氧自由基及其活性衍生物。它的产生、清除、利用与危害是自由基生物学发展初期研究的主要内容。1986年一氧化氮的生物效应被发现[Palmerm等,1987],活性氮也成为自由基生物学的主要研究对象。而以O、N、C、S石和其它元素为中心的自由基及其衍生物的生物效应不仅涉及自由基之间的反应,也包括自由基与非自由基的反应[Wink DA等,1998]。例如:NO与超氧化物自由基结合成为活性远高于NO或超氧化物自由基的物质ONOO-;ONOO-还可与CO2生成高活性物质,甚至可以均裂成为自由基与非自由基[Squadrito GL等1998]。

2 营养物质与自由基的关系

2.1.在动物体构营养物质是自由基产生的物质基础

动物体内自由基产生于酶反应或非酶反应,其来源除O2外均可追溯到营养物质。从体内一氧化氮的生成过程(见图1)[Marletta MA,1993]就可以非常直观地体现出营养物质为自由基生成的物质基础。这一过程主要是一氧化氮合酶(nitric ox-ide synthase, NOS)催化的酶促反应,底物是精氨酸,NADPH为辅助因子。而且,一氧化氮合酶的生物合成需要氨基酸、核黄素、瞟岭等物质,并需要ATP提供能量。ATP的产生则必然涉及营养物质:糖类、脂类与蛋白质(氨基酸)的代谢以及某些维生素的参与。研究自由基不可不考虑它与营养物质的这种天然联系。

2.2.营养物质是动物体内清除自由基的物质来源

动物体内自由基不断的产生,也不断地被清除,正常情况下自由基始终被清除而维持在一个极低的平衡水平。例如,在多种抗氧化酶,内源性抗氧化剂和外源性抗氧化剂的作用下,活性氧可被清除至极低的水平。机体内需要维持这些抗氧化酶,内源性抗氧化剂和外源性抗氧化剂在一定的浓度,这又必然涉及蛋白质的合成及各种营养物质的代谢。超氧化物歧化酶(Cu,Zn-SOD;Mn—SOD),过氧化氢酶(含有Fe)谷胱甘肽过氧化物酶(含有Fe等抗氧化酶及大分子抗氧化剂,如金属硫蛋白,铜蓝蛋白和小分子抗氧化剂,如谷胱甘肽的生物合成需要氨基酸、矿物元素和ATP的参与。体内必需的抗氧化剂——维生素本身就是营养物质。而一些内源硒、铜、锰是谷胱甘肽过氧化物酶(GSH-Px)与超氧化物歧化酶(Cu,Zu—SOD;Mn

-SOD)生物合成所必需的微量元素.动物体缺乏硒时,心肌GSH-Px活性下降,甚至下降的抗氧化剂,如:尿酸等则来源于营养物质在体内的代谢产物。

动物营养不良时可能导致机体内自由基产量的增加,也可能会因为营养不良而影响了各种抗氧化酶的生物合成及内源性抗氧化剂生成的水平,从而进一步使体内自由基增多。有学者观察到(Robinson等,1997)营养缺乏的大鼠其肝脏中O2产量增高,而谷胱甘肽(GSH)水平下降。 Dabbagh等(1994)发现铁摄取过量可使实验大鼠体内抗氧化剂水平下降,活性氧增高,并出现活性氧所导致的脂质过氧化。Hammrmueller等(1984)指出,锌与铜缺乏可使大鼠肝脏与肺脏的微粒体中依赖NADPH细胞色素P—450还原酶活性增加,导致活性氧产生增多,从而出现脂质过氧化。营养不良或营养缺乏还可能诱发炎症或其它并发症,使NO 及其衍生活性氮和活性氧产生[Wepnir,2000]。95%,因此发生过氧化损伤及线粒体机能失常。如果补充硒,GSH—Px活性下降程度减轻,从而缺硒症也可好转。Chow等(1973)观察到动物组织中GSH-Px活性与膳食中硒的供给量成平行关系。试验证明,缺铜动物其体内Cu,Zn-SOD活性下降;缺乏锰将导致动物组织内Mn-SOD活性下降。日粮维生素缺乏也影响抗氧化物酶的生物合成,例如:Housewirsh等(1975)发现,膳食缺乏维生素E的实验大鼠其肝脏中过氧化氢酶的活性降低。

动物机体内非酶的抗氧化剂水平主要取决于它们在体内的产生与分解。金属硫蛋白、铜蓝蛋白、硒蛋白与氧化还原蛋白的水平决定于它们的生物合成量及其代谢分解率;尿酸的量则随代谢变化而变化。谷跳肝肽(GSH)是体内很重要的抗氧化剂,其氧化产物为GSSH。GSH/GSSH 的比值可以反映体内抗氧化防御能力.营养不良时GSH水平下降,GSH/GSSH比值降低,其原因可能是:蛋白质缺乏而使GSH合成能力削弱;营养不良时体内谷胱甘肽还原酶活性下降,催化GSSH还原为GSH的能力减弱;机体内NADPH/NADP的比值受营养状况的影响而下降,降低了谷航甘肽还原酶的活性。膳食中可为机体提供相当量的GSH,食物供给不足时可加剧体内GSH的水平下降。此外,试验已证明动物维生素B2缺乏可造成谷脱甘肽还原酶活性下降(Beutler,1969)。

2.3 营养物质是自由基所致生物分子损伤修复的物质基础

通常动物体内产生的自由基并没有被清除到生理需要的范围,而只能维持于正常平衡的极低稳定态水平,因此仍然能损伤及重要的生物分子,如 DNA。蛋白自(酶)和生物膜。不过,机体可使被损伤的生物分子得以修复或置换。损伤的蛋白质可以降解,其代谢产物可进人氨基酸库参与蛋白质的重新合成。被损伤的生物分子在修复或置换的过程中所需要的物质,如核苷酸、氨基酸、脂肪酸、酶系统与辅助因子以及能量来源均以营养物质为最终物质基础。饲料或食物中某些天然抗氧化剂及部分非营养素的有效成分可能也直接或间接地在生物分子的修复或置换过程中起到物质基础的作用。

2.4.某些营养物质有利于动物适应氧化应激和防治某些动物疾病

外源性或内源性刺激均可使体内氧化还原状态趋向氧化。氧化应激常常会带来畜禽生产成绩下降(例如:热应激使蛋鸡产蛋率下降),动物产品品质下降(例如:屠宰应激产生PSE 猪肉),甚至发生动物疾病(例如:环境应激和营养性应激引发肉鸡腹水症)等诸多问题。生产实践中,为减小氧化应激所造成的危害,常常在日粮或饮水中大幅度提高抗氧化剂(如:维生素C、维生素E)的用量。而适宜的营养水平也可以减少和预防生理性氧化应激所造成的损伤。

氧化应激常常伴随体内活性氧的大大增加,体内脂质过氧化物,蛋白质氧化修饰产物与DNA 损伤产物的增加,而抗氧化维生素(如:维生素E)与GSH的消耗量也增加,所以应该使抗氧化维生素(如:维生素E,C)与GSH的供给量相应增加。试验和生产实践皆证明应激条件下给动物添加大量的维生素E,抗坏血酸等抗氧化剂有助于动物抗御机体的氧化损伤,从而减少氧化应激带来的危害。Bray(1993)提出,应重视组织中GSH的水平,营养状况与氧

化应激。他认为适宜营养可提高外源性GSH供给量,又可调节组织GSH水平,增加抗氧化能力并预防活性氧所导致的损伤。

3 关注氧化应激对于畜牧生产的危害,加强动物营养与自由基的研究

动物营养学作为应用型科学,其研究主要针对生产实际中所需解决的问题,然而前瞻性的研究和基础研究往往具有更重要和更广泛的指导意义。氧化应激的危害在畜牧生产中已经大量存在,只是人们对其研究得十分肤浅,还没有充分的认识到现象与本质的联系,更未能寻求到解决问题的关键所在。另一方面,我们也可以从确定动物维生素需要量的大量研究中得到启示,动物营养学的发展还必须进一步与更多的新学科及新技术相结合,而动物营养与自由基方面的研究应该成为动物营养研究的重要内容了。

认识自由基

什么是自由基 我们需要氧气才能维持生命。离开氧气我们的生命就不能存在,但是氧气也有对人体有害的一面,有时候它能杀死健康细胞甚至致人于死地。当然,直接杀死细胞的并不是氧气本身,而是由它产生的一种叫氧自由基的有害物质,人体进行新陈代谢时,体内的氧会转化成极不稳定的物质——自由基(Free radical)。它是人体的代谢产物,可以造成生物膜系统损伤以及细胞内氧化磷酸化障碍,是人体疾病、衰老和死亡的直接参与者,对人体的健康和长寿危害非常之大。 细胞经呼吸获取氧,其中98%与细胞器内的葡萄糖和脂肪相结合,转化为能量,满足细胞活动的需要,另外2%的氧则转化成氧自由基。由于这种物质及其不稳定,非常活跃,可以与各种物质发生作用,引起一系列对细胞具有破坏性的连锁反应。 自由基对人体的危害 自由基攻击正常细胞加速细胞的衰老和死亡。自由基像尘粒在人体内部到处游荡,当人体自身的抗氧化系统不能及时消灭过多的自由基,人体的器官和细胞就像裸露在空气的金属一样会被氧化侵蚀,进而导致一些身体不适并加速衰老,如出现皱纹、老年斑、动脉硬化、以及老年痴呆等。 自由基是身体细胞在代谢过程中利用氧气产生的自然产物。自由基主要是指含有活性氧的氧自由基,它会干扰正常细胞的正常功能,破坏细胞膜、溶酶体、线粒体、DNA、RNA、蛋白质结构,使酶失去活性,使激素破坏失去作用,使免疫系统受损,抵抗力下降,促进细胞老化,加速人的衰老,诱发多种疾病甚至引起死亡。 氧自由基的过氧化杀伤,主要是破坏细胞膜的结构和功能,破坏线粒体,断绝细胞的能源,毁坏溶酶体,使细胞自溶。同时它对人体的非细胞结构也有危害作用,可以使血管壁上的粘合剂遭受破坏,使完整密封的血管变得千疮百孔,发生漏血、渗液,进而导致水肿和紫癜等等。同样,当供应心脏血液的冠状动脉突然发生痉挛的时候,心肌细胞由于缺氧而发生一系列的代谢改变,心肌细胞内抗氧化剂含量减少,使生成氧自由基的化学反应由于缺氧而相对加快,在冠状动脉痉挛消除的一刹那,心肌细胞突然重新得到血液的灌注,随之而来有大量的氧转化成氧自由基,而同时由于抗氧化剂的相对不足,不能够清除氧自由基,结果使具有高度杀伤性的氧自由基严重损伤心肌细胞膜,大量离子由心肌细胞内溢出,而后者可以扰乱控制心脏搏动的电流信号,引起心室颤动,从而导致死亡。

动物营养学复习资料及经典期末试题和答案(可编辑修改word版)

绪论 ★1、名词解释: 养分(营养物质):饲料中凡能被动物用以维持生命、生产产品,具有类似化学性质的物质统称为营养物质(nutrients),亦称为养分或营养素。 营养:是动物摄取、消化、吸收食物并利用食物中的营养物质来维持生命活动、修补体组织、生长和生产产品的全部过程。 营养学:研究生物体营养过程的科学。通过这一过程的研究,可以阐明生命活动的本质,并通过营养调控措施维持生态系统的平衡。 饲料:正常情况下,凡能被动物采食、消化吸收、无毒无害、且能提供营养物质的所有物质均可称为饲料 饲料的营养价值;饲料或养分完成一定营养或营养生理功能的能力大小。 ★ 2、试述动物营养学的研究目标和任务。 答:总体目标:通过研究,揭示养分利用的定性定量规律,形成饲料资源的高效利用、动物产品的高效生产、人类健康及生态环境的长期维护的动物营养科学指南,使动物生产在土壤----植物----动物 ----- 人食物链中与其他要素协调发展,为维持食物链的高效运转发挥积极作用。 任务:(1)确定必需营养素、研究其理化特性和营养生理作用;(2)研究必需营养素在体内的代谢过程及其调节机制;(3)研究营养摄入与动物健康、动物体内外环境间的关系;(4)研究提高动物对饲料利用率的原理与方法;(5)制定动物的适宜养分需要量;(6)探索或改进动物营养学的研究新方法或新手段(饲料营养价值评定、营养需要量)。 ★3、简述动物营养学在动物生产中的地位。答:(1)保障动物健康(2)提高生产水平与 50 年前比较,现代动物的生产水平提高了 80-200%。其中,营养的贡献率占 50-70%。(3)改善产品质量(4)降低生产成本动物生产的总成本中,饲料成本占 50-80% (5)保护生态环境 ★4 学习动物营养学的意义 答:(1)研究养分的摄入与动物健康和高效生产的定性定量规律,可为动物生产提供理论依据和实践指南,维持动物生产的高效进行。(2)有助于揭示动物生命活动的本质、动物与人及环境的互作关系,并通过营养调控措施维持生态系统的平衡。(3)研究饲料的营养本质以及降低饲料投入和成本的方法,使养殖业和饲料工业的保持持续发展。(4)研究营养物质利用的过程和饲料加工、饲喂、环境等对饲料利用的影响,为饲料加工业的发展提供理论依据。 ★5、生产中与动物营养有关的常见问题有哪些? 答:(1)提高动物对自然资源的利用效率;(2)调控养分的摄入和排泄量,影响环境质量; (3)保障动物产品对人类的食用安全。1)缺乏动物组织代谢和生长的细胞调节和分子调节过程的基本知识。2)缺乏对动物与其消化道微生物生态系统相互关系的了解。3).对营养与遗传、营养与健康、营养与环境及动物福利、营养与产品品质等关系的研究十分薄弱。综合考虑这些因素的相互作用时,动物营养需要的含义及需要量有何变化,目前知之极少。4.)动物达到最佳生产性能时的采食量及其调控机制与措施了解不足。5)效迅速地检测饲料中养分和抗营养因子的含量以及评定养分的生物利用率的技术尚不完善。6).饲料资源的开发及利用各类副产物合成动物的必需养分或其前体物的研究十分有限。7).缺乏准确、客观评定动物福利要求的理论和技术。 第一章动物与饲料的化学组成 要求:1.了解动物与植物的相互关系;2.了解动植物体的化学组成及其比较;3.掌握饲料中各种营养物质的基本概念和基本功能。 1.名词解释: CP(粗蛋白质):是指饲料中所有含氮化合物的总称。CP%=N%×6.25 粗灰分(C A):是饲料、动物组织和动物排泄物样品在550-600℃高温炉中将所有有机物质全部氧化后剩余的残渣。灼烧后的残渣中含有泥沙,故为粗灰分 EE(粗脂肪):是饲料、动物组织、动物排泄物中脂溶性物质的总称。常规饲料分析是用乙醚浸提样品所得的物质,故称为乙醚浸出物。 CF(粗纤维):是植物细胞壁的主要组成成分,包括纤维素、半纤维素、木质素及角质等成分。 A D F(酸性洗涤纤维) N D F(中性洗涤纤维) ★2.简述饲料概略养分分析法对饲料养分如何分类、测定各种养分含量的基本原理。 ★3.简述述概略养分分析体系的优缺点。 概况性强.简单使用。尽管分析中存在一些不足,特别是粗纤维分析尚待改进,目前世界各国仍在使用. ★4.简述养分的一般营养生理功能。 (1)机体或动物产品的构成物质(蛋白质、矿物质、水分、脂肪)---部件(2)动物生产的能源物质(碳水化合物、脂肪、蛋白质) ---- 动力(3)动物生产的调节物质(矿物质、维生素、氨基酸、脂肪酸、添加剂)---- 控制系统 ★5.比较动植物体组成成分的异同? 答1:元素组成的比较1)元素种类基本相同,数量差异大;(植物体化学成分含量受生长期、地区、气候影响较大,动物体则相对稳定。)2)元素含量规律 有机元素:均以氧最多、碳氢次之,其它少无机元素:植物含钾高,含钠低动物含钠高,含钾低动物含钙、磷高于植物 3) 元素含量的变异情况 (动物的元素含量变异小,植物的变异大。)化 2 化合物组成的比较 1).水分一般情况下,动物体与饲料植物中都以水分含量最高,但植物变异大,动物变异小。 【(1)植物体水分变异范围很大,可多到 95%,少到 5%;植物整体水分含量随植物从幼龄至成熟,逐渐减少。 (2)动物体水分含量比较恒定,约占体重的 60~70%,一般幼龄动物体内含水多,如初生犊牛含水 75%~80%,成年动物含水较少,相对稳定,如成年牛体内 含水仅 40%~60%。越肥的动物,体内含水量越少,动物体内水分和脂肪的消长关系十分明显。 3)动植物体组织、部位不同含水量不同。 (4)植物的栽培条件、气候、收获期等影响含水量,动物的年龄、营养水平、饲料组成、健康状况也影响体内含水量。】 2).碳水化合物是植物干物质中的主要组成成分,既是植物的结构物质,又是植物的贮备物质。动物体内的碳水化合物主要为糖元和葡萄糖,且含量极少, 通常在 1%以下。 【(1)植物干物质中主要为碳水化合物,占其干物质重量的 3/4 以上。 (2)动物体内完全不含有淀粉和粗纤维等这一类物质。 (3)碳水化合物是动物日粮的主要成分,其主要作用是提供能量,也有其他特殊作用。】

612生物化学与分子生物学

中科院研究生院硕士研究生入学考试 《生物化学与分子生物学》考试大纲 一、考试内容 1.蛋白质化学 考试内容 ●蛋白质的化学组成,20种氨基酸的简写符号 ●氨基酸的理化性质及化学反应 ●蛋白质分子的结构(一级、二级、高级结构的概念及形式) ●蛋白质一级结构测定的一般步骤 ●蛋白质的理化性质及分离纯化和纯度鉴定的方法 ●蛋白质的变性作用 ●蛋白质结构与功能的关系 考试要求 ●了解氨基酸、肽的分类 ●掌握氨基酸与蛋白质的物理性质和化学性质 ●了解蛋白质一级结构的测定方法(目前关于蛋白质一级结构测定的新方法和新思路很多,而教科书和教学中 涉及的可能不够广泛,建议只让学生了解即可) ●理解氨基酸的通式与结构 ●理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基 ●掌握肽键的特点 ●掌握蛋白质的变性作用 ●掌握蛋白质结构与功能的关系 2.核酸化学 考试内容 ●核酸的基本化学组成及分类 ●核苷酸的结构 ●DNA和RNA一级结构的概念和二级结构要特点;DNA的三级结构 ●RNA的分类及各类RNA的生物学功能 ●核酸的主要理化特性 ●核酸的研究方法 考试要求 ●全面了解核酸的组成、结构、结构单位以及掌握核酸的性质 ●全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质 ●掌握DNA的二级结构模型和核酸杂交技术 ●了解microRNA的序列和结构特点(近年来针对非编码RNA的研究越来越深入,建议增加相关考核) 3. 糖类结构与功能 考试内容 ●糖的主要分类及其各自的代表 ●糖聚合物及其代表和它们的生物学功能 ●糖链和糖蛋白的生物活性 考试要求 ●掌握糖的概念及其分类 ●掌握糖类的元素组成、化学本质及生物学功用 ●理解旋光异构 ●掌握单糖、二糖、寡糖和多糖的结构和性质 ●掌握糖的鉴定原理 4. 脂质与生物膜 考试内容

自由基的形成

自由基的形成 自由基又称游离基,是具有非偶电子的基团或原子,它有两个主要特性:一是化学反应活性高;二是具有磁矩。 在一个化学反应中,或在外界(光、热等)影响下,分子中共价键分裂的结果,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。 有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新的共价键的生成。例如酪氨酸自由基(tyrosine radical),共价键的断裂可以有两种方式:均裂(homolytic bond cleavage)和异裂(heterolyticcleavage)。键的断裂方式是两个成键电子在两个参与原子或碎片间平均分配的过程称为键的均裂(homolyticbondcleavage)。两个成键电子的分离可以表示为从键出发的两个单箭头。所形成的碎片有一个未成对电子,如H·,CH·,Cl·等。若是由一个以上的原子组成时,称为自由基(radical)。因为它有未成对电子,自由基和自由原子非常的活泼,通常无法分离得到。不过在许多反应中,自由基和自由原子以中间体的形式存在,尽管浓度很低,存留时间很短。这样的反应称为自由基反应(radical reactions)。自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其它物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏作用,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 产生自由基的方法 ①引发剂引发,通过引发剂分解产生自由基 ②热引发,通过直接对单体进行加热,打开乙烯基单体的双键生成自由基 ③光引发,在光的激发下,使许多烯类单体形成自由基而聚合 ④辐射引发,通过高能辐射线,使单体吸收辐射能而分解成自由基 ⑤等离子体引发,等离子体可以引发单体形成自由基进行聚合,也可以使杂环开环聚合 ⑥微波引发,微波可以直接引发有些烯类单体进行自由基聚合。

动物营养学试题及答案(A)

甘肃农业大学成人高等教育(函授) 《动物营养学》课程考试(A)卷注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 2. 密封线和装订线内不准答题。 A.脚气病 B.多发性神经炎 C.麻痹症 D.佝偻病 10.以下( )的吸收主要是以被动吸收的方式进行吸收。 A.电解质 B.短链脂肪酸 C.水 D.氨基酸 11.反刍动物比单胃动物能更好的利用()。 A.蛋白质 B.脂肪 C.无氮浸出物 D.粗纤维 12.反刍动物使用高精料饲粮时,容易出现酸中毒,饲粮中添加缓冲剂,可以提高瘤胃的消化功能,防止酸中毒,生产中常用的缓冲剂为()。 A.碳酸氢钠 B.氢氧化钠 C.硫酸铜 D.氯化钠 13.鸡体内缺硒的主要表现为()。 A.贫血 B.佝偻病 C.夜盲症 D.渗出性素质 14.寡肽是含有()氨基酸残基的蛋白质。 个以上个以上个以下个 15.动物体内缺锌的典型症状为()。 A.贫血 B.佝偻病 C.夜盲症 D.皮肤角质化不全 答: 1、B 2、D 3、A 4、B 5、A 6、A,B,C,D 7、A 8、A 9、B 10、D 11、D 12、A 13、D 14、D 15、D 二、填空题(30分,每空2分) 1.钙和磷的典型缺乏症有()()()。 2.反刍动物日粮中使用非蛋白氮作为氮源时,氮硫比例大于()可能引起硫缺乏。 3.引起动物白肌病是因为动物缺乏微量元素()或维生素()。 4.与家禽产软壳蛋有关的维生素是(),鸡发生渗出性素质症,是因为缺乏维生素()或微量元素();禽类的硫胺素的典型缺乏症()。 5.寡糖的营养和益生作用表现为()、结合并排出外源性病原菌、()和寡聚糖的能量效应等四个方面。 6.水中有毒的物质包括()、()、()等。 答:1、佝偻病骨质软化症软骨症产褥热任意填三个 2、10-12:1 3、硒E 4、维生素D E 硒多发性神经炎 5、促进机体肠道内微升态平衡调节体内的免疫系统 6、硝酸盐重金属盐亚硝酸盐或氟化物

自由基

自由基 自由基是指能够独立存在的,含有一个或多个未成对电子的分子或分子的一部分。由于自由基中含有未成对电子,具有配对的倾向。因此大多数自由基都很活泼,具有高度的化学活性。自由基的配对反应过程,又会形成新的自由基。在正常情况下,人体内的自由基是处于不断产生与清除的动态平衡之中。自由基是机体有效的防御系统,如不能维持一定水平的自由基则会对机体的生命活动带来不利影响。但自由基产生过多或清除过慢,它通过攻击生命大分子物质及各种细胞,会造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 自由基过量产生的原因 1、人体非正常代谢产物 2、有毒化学品接触 3、毒品、吸烟、酗酒 4、长时间的日晒 5、长期生活在富氧/缺氧环境 6、环境污染因素 7、过量运动 8、疾病 9、不健康的饮食习惯(营养过剩以及脂肪摄入过量)10、辐射污染11、心理因素 自由基对生命大分子的损害 ★由于自由基高度的活泼性与极强的氧化反应能力,能通过氧化作用来攻击其所遇到的任何分子,使机体内大分子物质产生过氧化变性,交联或断裂,从而引起细胞结构和功能的破坏,导致机体组织损害和器官退行性变化。 ★自由基作用于核酸类物质会引起一系列的化学变化,诸如氨基或羟基的脱除、碱基与核糖连接键的断裂、核糖的氧化和磷酸酯键的断裂等。 在体内以水分为介质环境中通过电离辐射诱导自由基的研究表明,大剂量辐射可直接使DNA断裂,小剂量辐射可使DNA主链断裂。 ★自由基对蛋白质的损害 自由基可直接作用于蛋白质,也可通过脂类过氧化产物间接与蛋白质产生破坏作用。 ★自由基对糖类的损害 自由基通过氧化性降解使多糖断裂,如影响脑脊液中的多糖,从而影响大脑的正常功能。自由基使核糖、脱氧核糖形成脱氢自由基,导致DNA主链断裂或碱基破坏,还可使细胞膜寡糖链中糖分子羟基氧化生成不饱和的羰基或聚合成双聚物,从而破坏细胞膜上的多糖结构,影响细胞免疫功能的发挥。 ★自由基对脂质的损害 脂质中的多不饱和脂肪酸由于含有多个双键而化学性质活泼,最易受自由基的破坏发生氧化反应。磷脂是构成生物膜的重要部分,因富含多不饱和的脂肪酸故极易受自由基所破坏。这将严重影响膜的各种生理功能,自由基对生物膜组织的破坏很严重,会引起细胞功能的极大紊乱。 自由基与疾病 (一)自由基与衰老 从古至今,依据对衰老机理的不同理解,人们提出各种各样的衰老学说多达300余种。自由基学说就是其中之一。反映出衰老本质的部分机理。 英国Harman于1956年率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,已为人们所普遍接受。自由基衰老理论的中心内容认为,衰老来自机体正常代谢过程中产生自由基随机而破坏性的作用结果,由自由基引起机体衰老的主要机制可以概括为以下三个方面。

生物化学与分子生物学问答题

机体是如何维持血糖平衡的(说明血糖的来源、去路及调节过程)? 血液中的葡萄糖称为血糖,机体血糖平衡是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等器官代谢协调的结果(由于血糖的来源与去路保持动态平衡,血糖是组织、中枢神经、脑能量来源的主要保证)。 A.血糖来源(3分) 糖类消化吸收:食物中的糖类经消化吸收入血,这是血糖最主要的来源;肝糖原分解:短期饥饿后,肝中储存的糖原分解成葡萄糖进入血液;糖异生作用:在较长时间饥饿后,氨基酸、甘油等非糖物质在肝内异生合成葡萄糖;其他单糖转化成葡萄糖。 B.血糖去路(4分) 氧化供能:葡萄糖在组织细胞中通过有氧氧化和无氧酵解产生ATP,为细胞供给能量,此为血糖的主要去路。合成糖原:进食后,肝和肌肉等组织将葡萄糖合成糖原以储存。转化成非糖物质:可转化为甘油、脂肪酸以合成脂肪;可转化为氨基酸、合成蛋白质。转变成其他糖或糖衍生物(戊糖磷酸途径),如核糖、脱氧核糖、氨基多糖等。血糖浓度高于肾阈时可随尿排出一部分。 C.血糖的调节(2分) 胰岛素是体内唯一降低血糖的激素,但胰岛素分泌受机体血糖的控制(机体血糖升高胰岛素分泌减少)。胰岛素分泌增加,糖原合酶活性提高、糖原磷酸化酶活性降低,糖原分解降低、糖原合成提高,血糖降低。否则相反(胰岛素分泌减少,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高)。胰高血糖素、肾上腺素作用是升高机体血糖。胰高血糖素、肾上腺素分泌增加,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高。否则相反。 老师,丙酮酸被还原为乳酸后,乳酸的去路是什么 这个问题很重要。 肌组织产生的乳酸的去向包括:大量乳酸透过肌细胞膜进入血液,在肝脏进行糖异生转变为葡萄糖。大量乳酸进入血液,在心肌中经LDH1催化生成丙酮酸氧化供能;部分乳酸在肌肉内脱氢生成丙酮酸而进入到有氧氧化供能。大量乳酸透过肌细胞膜进入血液,在肾脏异生为糖或经尿排出体外。 下面问题你能回答出来不 1说明脂肪氧化供能的过程 (1)脂肪动员:脂肪组织中的甘油三酯在HSL的作用下水解释放脂酸和甘油。 (2)脂酸氧化:经脂肪酸活化、脂酰CoA进入线粒体、β-氧化、乙酰CoA进入三羧酸循环彻底氧化成H2O 和CO2并释放能量。 (3)甘油氧化:经磷酸化、脱氢、异构转变成3-磷酸甘油醛,3-磷酸甘油醛循糖氧化分解途径彻底分解生成H2O 和CO2并释放能量。 1.丙氨酸异生形成葡萄糖的过程 答:(1)丙氨酸经GPT催化生成丙酮酸。(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖。1,6-双磷酸果糖经果糖双磷酸酶催化生成6-磷酸果糖,再异构成6-磷酸葡萄糖。6-磷酸葡萄糖在葡萄糖-6-磷酸酶作用下生成葡萄糖。

动物营养学模拟考试题答案

中国农业大学动物科技学院动物营养学模拟考试题答案姓名:班级:学号: 一、填空题(15分,每空0.5分) 1.(甘露寡糖或甘露低聚糖)、(低聚果糖或果寡糖)、(寡葡萄糖)(寡木糖) (寡乳糖)(壳寡糖)。任选其中三个都给分。 2. 引起动物贫血症的原因,可能是缺乏微量元素(铁、钴或铜任选其中两个都 给分)等和维生素(叶酸、维生素B6、维生素B12、维生素K、维生素C;任选其中两个都给分)等;引起动物白肌病是因为动物缺乏微量元素(硒)或维生素(E);鸡发生渗出性素质症,是因为缺乏维生素(E)或微量元素(硒);与家禽产软壳蛋有关的维生素是(维生素D); 3. 食盐缺乏的典型缺乏症包括(厌食、异食癖、咬尾、神经症状,任选其中两 个都给分),反刍动物镁缺乏产生(草痉挛或肌肉抽搐)。 4.理想蛋白质中把(赖氨酸)作为基准氨基酸,其相对需要量定为(100),其他 氨基酸表示为(相当于赖氨酸的百分数)。 5. 能产生氨基酸拮抗的氨基酸有:赖氨酸与(精氨酸);亮氨酸与(异亮氨酸或 缬氨酸);苏氨酸与(丝氨酸)。 7. 缺(铜),毛弯曲减少。缺乏(含硫氨基酸或蛋氨酸或胱氨酸或硫)或(锌或碘或钴或铜),毛易脱落、断裂和强度下降。 8. 水的来源有(饮水)、(饲料水)、(代谢水),水的流失途径是(粪、尿)、(呼 吸与蒸发)、(动物产品)。 二、名词解释(30分,每个3分) 1. 动物营养:是指动物摄取、消化、吸收、利用饲料中营养物质的全过程,是一系列物理、化学及生理变化过程的总称。 2. 真消化率:在计算消化率时扣除粪便中的内源部分,所得出的消化率为饲料中某种营养素的真实消化率,计算公式如下: 饲料中某营养食入饲料中某营养素-(粪中某营养素-消化道内源某营养素) 素真消化率(%) = ─────────────────────────×100 食入饲料中某营养素

生物化学与分子生物学试题库完整

“生物化学与分子生物学” 题库 第二军医大学基础医学部 生物化学与分子生物学教研室编制 2004年7月

第一篇生物大分子的结构与功能 第一章蛋白质的结构与功能 一、单项选择题(A型题) 1.蛋白质的一级结构是指下面的哪一种情况?( ) A、氨基酸种类的数量 B、分子中的各种化学键 C、氨基酸残基的排列顺序 D、多肽链的形态和大小 E、氨基酸的连接方式 2.关于蛋白质分子三级结构的描述,其中错误的是:( ) A、天然蛋白质分子均有这种结构 B、具有三级结构的多肽链都有生物学活性 C、三级结构的稳定性主要是次级键维系 D、亲水基团多聚集在三级结构的表面 E、骨架链原子的空间排布 3、学习“蛋白质结构与功能”的理论后,我们认识到错误概念是()。 A、蛋白质变性是肽键断裂所致 B、蛋白质的一级结构决定其空间结构 C、肽键的键长较单键短,但较双键长 D、四级结构蛋白质必定由二条或二条以上多肽链组成 E、蛋白质活性不仅取决于其一级结构,还依赖于高级结构的正确 4、通过“蛋白质、核酸的结构与功能”的学习,认为错误的概念是()。 A、氢键是维系多肽链β-折叠的主要化学键 B、DNA分子的二级结构是双螺旋,维系其稳定的重要因素是碱基堆积力 C、蛋白质变性后可以恢复,但DNA变性后则不能恢复 D、谷氨酸、半胱氨酸和甘氨酸三者组成GSH E、蛋白质亚基具有三级结构,而tRNA三级结构呈倒L形 5、“蛋白质分子结构与功能”一章学习,告之我们以下概念不对的是()。 A、氢键不仅是维系β-折叠的作用力,也是稳定β-转角结构的化学键 B、活性蛋白质均具有四级结构 C、α-螺旋的每一圈包含3.6个氨基酸残基 D、亚基独立存在时,不呈现生物学活性的 E、肽键是不可以自由旋转的 6、关于蛋白质分子中α-螺旋的下列描述,哪一项是错误的?() A、蛋白质的一种二级结构 B、呈右手螺旋

3、自由基与疾病

自由基与疾病【自由基是万病之源】 大家在日常生活中都非常了解,铁在空气中会生锈、钢在空气中会变绿色,银器在空气中会变黑,这就是氧化作用。大自然中氧化作用是破坏性,如铁生锈若不及时处理、保护,很快就会被腐蚀掉,而人的新陈代谢也是一种氧化,还原过程,自由基就是在这一过程中产生的,也如同人体生锈,如不及时预防处理也会构成对人体损害。 人体本身有一种能力称为“抗氧化能力”来清除多余的自由基,但人随年龄增大或患疾病时清除自由基的能力也随之降低。所以自由基开始对人的细胞攻击,诱发多种疾病,医学研究证明与自由基有关的疾病有100多种。 脑梗塞、脑出血、颅脑外伤、蛛网膜下腔出血、脑膜炎、脑水肿、老年性痴呆、帕金斯症、多发性硬化,甚至精神分裂症,都应当注意自由基的损伤。 氧自由基不但与衰老有关,而且还和许多衰老有关的疾病有关系,比如动脉硬化症、高血压、骨关节炎、白内障以及帕金森氏病等等。正常人体内有一套清除自由基的系统,即便如此,这个系统的力量会因人的年龄增长及体质改变而减弱,随着时间的推移,自由基会在细胞内不断积累。这会致使自由基的负面效应大大增强,从而引起多种疾病发病率的提高。 自由基与疾病的连锁反应 自由基与衰老有明显的关系,一些科学家认为自由基是引起衰老的主要原因。自由基能促使体内脂褐素生成,脂褐素在皮肤细胞中堆积即形成老年斑,在脑细胞中堆积,会引起记忆力减退或智力障碍,甚至出现老年痴呆症。自由基还可导致老年人皮肤松弛、皱纹增多、骨质再生能力减弱等,还会引起视网膜病变,诱发老年性视力障碍(如眼花、白内障)。而且,自由基还可引起器官组织细胞老化和死亡。老年人感觉与记忆力下降、动作迟钝及智力障碍的一个重要原因,就是由于过多的自由基导致了神经细胞数量大量减少。另外,自由基和脂质过氧化还与肺损伤、艾滋病、癌症、肾病、糖尿病的发生有密切关系,所以寻找消除自由基及抗氧化药物对于保护人类健康具有重大意义。 衰老与自由基1 自由基有两个来源:一是来自体外,如环境污染、紫外线照射、室内外废气、烟尘、细菌等等,它们会直接导致自由基的产生;二是来自体内,人体内也会自然形成自由基,它是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞。 人体细胞遭受到自由基攻击,就好比铁暴露在空气中久了会生锈一样,这个过程叫做氧化。铁生锈了,就表示开始耗损,渐渐就会被腐蚀,人体衰老的过程就好像是铁被氧化的过程一样,实际上,生命衰老和病变的过程也就是氧化的速度超过还原的速度,而让我们体内细胞“生锈”的物质就是自由基。如果受损“生

动物营养_试题及答案

《动物营养学》试卷及答案 一、选择题(15分,每空1分) 1.在饲料能量营养价值体系中,鸡的营养需要多采用( C )体系表示。 A.总能 B.消化能 C.代谢能 D.净能 2.含硫氨基酸包括蛋氨酸,胱氨酸和(D)。 A.赖氨酸 B.硫胺素 C.色氨酸 D.半胱氨酸。 3.自然界中维生素K的主要拮抗物为( B )。 A.硫胺素 B.双香豆素 C.凝集素 D.棉酚 4.动物摄入饲料的总能减去粪能的差值称为(A)。 A.消化能 B.代谢能 C.气体能 D.生产净能 5.当反刍动物饲粮中粗饲料比例比较高时,瘤胃液中哪一种挥发性脂肪酸的比例相对较高(A)。 A.乙酸 B.丙酸 C.丁酸 D.戊酸 6.必需矿物元素按动物体内含量和需要两不同分成常量矿物元素和微量矿物元素两大类,常量矿物元素一般指在动物体内含量高于(C)的元素。 A.1% B.0.1% C.0.01% D.0.001% 7.哪种氨基酸易与赖氨酸发生拮抗(B)。 A.胱氨酸 B.精氨酸 C.蛋氨酸 D.苏氨酸 8.寡糖是由( D )个糖单位通过糖苷键组成的一类糖。De A.10个以上 B.2个以上 C.50个以下 D.2-10个 9.下列哪种脂肪酸为必需脂肪酸( B )? A.油酸 B.亚麻酸 C.EPA D.DHA 10.使用禾谷类及其它植物性饲料配制猪饲料时,(B)常为第一限制性氨基酸。 A.蛋氨酸 B.赖氨酸 C.色氨酸 D.苏氨酸 11.鸡体内缺硒的主要表现为( D )。 A.贫血 B.佝偻病 C.夜盲症 D.渗出性素质 12.动物体内通过一碳单位的转移而参与嘌呤、嘧啶和某些氨基酸的代谢,哪一种维生素在一碳单位的转移过程中必不可少( A )。 A.叶酸 B.泛酸 C.生物素 D.胆碱 13.哪种营养素缺乏后容易导致坏血病?D A.维生素A B.维生素E C.维生素B1 D.维生素C 14.瘤胃微生物包含细菌、真菌和( D )。 A.乳酸杆菌 B.双歧杆菌 C.芽孢杆菌 D.纤毛虫 15.在饲料能量营养价值体系中,世界各国的猪营养需要多采用( B )体系表示。 A.总能 B.消化能 C.代谢能 D.净能 二、填空题(30分,每空2分) 1.维生素A有三种衍生物(视黄醛视黄酸视黄醇) 2.(双香豆素)是自然界中维生素K的主要拮抗物。 3.水的来源有(饮水饲料水代谢水) 4.按照概略养分分析方案中酸-碱处理法测定粗纤维,造成测定结果低于实际含量的原因是:相当数量的(半纤维素)溶解于酸溶液中,相当数量的(木质素)溶解于碱溶液中。

衰老与疾病的根源

衰老与疾病的根源 一、自由基—早已被锁定的罪魁祸首 早在20世纪40年代,科学家就发现生物体存在自由基信号。1956年美国人哈曼提出衰老自由基机理,认为自由基是衰老与疾病的元凶,被广泛接受。1969年美国人McCord 和Fridovich发现了SOD,证实活性氧自由基存在于生物体。1998年美国人菲希戈特、穆拉德、伊格纳罗三个人因发现氮氧自由基一起获得诺贝尔奖,更加扩大认识了各种不同自由基对机体的伤害。迄今历经数十年研究,人们已经证实,人类备受衰老和疾病折磨的真正原因是自由基对人体的侵害。它是危害人类健康的天然杀手。冠心病、心绞痛、心肌梗塞、脑血栓、脑溢血、高血压、高血脂、糖尿病、癌变、失眠便秘、关节疼痛、四肢麻木……这些常见的慢性疾病都是由于自由基造成的。 美国医学博士Harman于1956年率先提出自由基与机体衰老和疾病有关;接着在1957年发表了第一篇研究报告,阐述用含0.5%~1%自由基清除剂的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,20年后即1976年被西方主流医学所普遍接受。 自由基衰老理论的中心容认为,衰老来自机体遭受自由基侵害而发生的破坏性结果。 权威的疾病理论认为:体自由基对细胞成分,尤其是对血管血液的有害进攻是人体衰老和多种疾病的根本原因,而所有这一切都是自由基对人体细胞的一个慢性氧化的过程。所以要对抗自由基,就要找到一个强效的抗氧化剂,从源头上扼制疾病的发生。 二、过氧化给人类带来的损伤和疾病 氧在人体必不可少,然而过多的氧却会对人体造成不可挽回的损伤,引起多种慢性疾病,甚至产生急性氧中毒导致生命危险。这就是我们平常所说的过氧化损伤。 过量的氧能导致疾病?听起来不可思议,但事实就是如此。氧的化学特性很活泼,也很危险,在正常的生物化学反应中,氧会变得很不稳定,能够“氧化”邻近的分子,使得物质发生性质的改变,比如:切开的苹果会很短时间就出现棕褐色,铁会生锈等等。在人体,过度的氧化会引起细胞损伤,从而导致癌症、发炎、动脉损伤以及衰老。氧化对生物体的损害主要表现为自由基的链式反应受到破坏,导致生物膜结构功能发生改变;蛋白质对氧化也是很敏感的,尤其是其中的含硫氨基酸;DNA分子中的碱基和戊糖都是易氧化的位置,氧化可导致DNA断裂、碱基降解和与蛋白质交联,使得遗传物质发生变异或导致细胞死亡。 过氧化是诱发多种慢性疾病的重要原因。比如肿瘤,糖尿病及其并发症、血管硬化、心脑血管疾病、肾病、辐射损伤、免疫性疾病等等,都与其密切相关。

《动物营养学》复习题答案

《动物营养学》复习题答案

一、名词解释(每个3分,共18分) 1.基础代谢。指健康正常的动物在适温环境条件下,处于空腹、绝对安静及放松状态时,维持自身生存所必需的最低限度的能量代谢。 2.必需氨基酸。凡是动物体内不能合成,或者合成的量不能满足动物的需要, 3.比较屠宰试验。为进一步了解动物机体成分的变化和评定胴体品质、必须屠宰动物,以比较实验组与对照组的差异,故称为比较屠宰实验 4.养分消化率。饲料中可消化养分占食入饲料养分的百分率。 5.能量蛋白比。D×M×(Kcal Kj ) / CPg / Kgf ××d 6.短期优饲法为配种前的母畜提供提供较高营养水平的饲料以促使排卵,。 7.必需脂肪酸。凡是动物体内不能合成,必需由饲粮供给,或者通过体内特定先体物形成,对机体正常机能和健康具有保护作用的脂肪酸称为8.限制性氨基酸(LAA)。是指一定饲料或饲粮所含必需氨基酸的量与动物所需的蛋白质必需氨基 第 2 页,

酸的量相比,比值偏低的氨基酸。由于这些氨基酸的不足,限制了动物对其他必需和非必需氨基酸的利用。比值最低的称第一限制性氨基酸 9.营养需要。是指动物在最适宜的环境条件下,正常、健康生长或达到理想生产成绩对各种营养物质种类和数量的最低要求。简称“需要”。营养需要量是一个群体平均值,不包括一切可能增加需要量而设定的保险系数 11.饲养试验。在生产条件下,按生物统计对试验设计的要求,选择一定数量符合要求的试验动物,控制非测定因素一致或相似后进行分组饲养。通过测定比较各组获得的结果,借助特定的统计分析方法,对此结果作出技术判断的整个过程称为动物的科学饲养试验,简称饲养试验。12.维持需要。维持需要是指动物在维持状态下对能量和其他营养素的需要 13.饲养标准是根据大量饲养实验结果和动物生产实践的经验总结,对各种特定动物所需的各种营养物质的定额作出的规定,这种系统的营养定额及有关资料统称为饲养标准。 14.养分消化率(公式) 即为表观消化率= (食 第 3 页,

生物化学与分子生物学名词解释

生物化学与分子生物学名词解释

生化名解 1、肽单元(peptide unit):参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,

而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶 原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。

2011研究生复试动物营养学精彩试题B及问题详解

华中农业大学二0一一年硕士研究生入学考试 试题纸 课程名称:动物营养学B第1页共 4 页注意:所有答案必须写在答题本上,不得写在试题纸上,否则无效。 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。答案错选或未选者,该题不得分。每小题1分,共20分。) 1.下列碳水化合物属于单糖的是 A.半乳糖 B. 乳糖 C. 蔗糖 D.麦芽糖 2.直链淀粉的结构中,连接葡萄糖的糖苷键是 A.α-1,4糖苷键 B.α-1,6糖苷键 C. β-1,4糖苷键 D.β-1,6糖苷键 3.一般来说,饲粮中谷物比例越高,瘤胃液中比例越高的酸是 A.乙酸 B.丙酸 C.丁酸 D.乳酸 4.只在小肠黏膜细胞中合成的脂蛋白是 A.乳糜微粒 B.VLDL C.LDL D.HDL 5.反刍动物适用的能量体系是 A.总能体系 B.消化能体系 C.代谢能体系 D.净能体系6.动植物体化学组成的最大差别是植物体含有 A.粗蛋白质 B.粗纤维 C.粗脂肪 D.粗灰分7.检查发现羔羊出现夜盲症,眼睛粘膜干燥,消化道粘膜损伤,运动失调等症状,可初步诊断为缺乏 A.维生素A B.维生素D C.维生素E D.维生素K 8.猪常出现口腔粘膜增生,食欲下降,皮肤角化不全等症状,缺乏的元素是 A.铜 B.锌 C.碘 D.锰 9.引起禽类产生滑腱症是缺乏 A.钾 B.碘 C.锰 D.镁 10.缺硒一般不会出现的症状是 A.肝坏死B.白肌病 C.雏鸡小脑软化 D.雏鸡渗出性素质病11.大麦中可溶性NSP主要是 A.阿拉伯木聚糖B.β-葡聚糖 C.甘露聚糖 D.半乳聚糖

第2页共 4 页12.实验时间短,实验动物有限,通常采用的实验设计为 A.单向分类实验设计B.随机化完全区组设计 C.复因子实验设计 D.拉丁方设计 13. 下列元素中不属于微量元素的是 A.铁 B.锌 C.硫 D.铜 14. 下列脂肪酸熔点最低的是 A.亚麻酸 B.花生油酸 C.油酸 D.亚油酸 15. 木樨草中含有的双香豆素会影响动物体利用 A.维生素A B.维生素D C.维生素E D.维生素K 16. 下列属于n-6多不饱和脂肪酸的是 A、棕榈酸 B.油酸 C.α-亚麻酸 D.花生四烯酸 17.瘤胃内pH变动范围是 A.2.0~5.0 B.5.0~6.0 C.5.0~7.5 D.7.0~8.5 18. 标准奶是奶中含 A.乳糖3% B.乳糖4% C.乳脂3% D.乳脂4% 19. 禽饲料的能量价值常用的表示是 A.总能 B.代谢能 C.消化能 D.净能 20. 在动物体内,维生素D3的活性远大于维生素D2的动物是 A.猪 B.禽 C.反刍动物 D.所有动物二、多选题(在下列每小题的5个备选答案中选出所有正确答案,并将其字母标号填入答题表中相应题号下;正确答案没有选全或有选错的,该题无分。每小题2分,共10分。) 21.属于成年猪必需氨基酸的有 A. 赖氨酸 B.蛋氨酸 C.色氨酸 D. 精氨酸 E.组氨酸 22.缺乏后可引起动物发生贫血现象的维生素有 A.维生素A B.维生素D C.维生素B6 D.叶酸 E.维生素B12 23.蔗糖在酸或转化酶作用下,水解为 A. D-葡萄糖 B. D-果糖 C. D–甘露糖 D. 阿拉伯糖 E. 半乳糖

人类疾病与自由基的关系

人類疾病與自由基的關係

人類疾病與自由基的關係 癌症(Cancer) 心血管疾病(Cardiovascular disease) 糖尿病(Diabetes-mellitus) 巴金森氏症(Parkinson disease) 阿茲海默症(Alzheimer disease) 風濕性關節炎等發炎性疾病 老化(Ageing)。 2

癌症(cancer) ?在癌細胞中發現氧化壓力造成氧化還原失衡的比例遠大於正常細胞 ?活性氧分子(ROS)或活性氮分子(NOS)會去破壞DNA的結構,造成DNA的突變是細胞癌化的最關鍵因素。 3

心血管疾病 活性氧分子(ROS)可能引起的心血管疾病包括 ?動脈粥狀硬化(atherosclerosis) ?缺血性心臟病(ischemic heart disease) ?高血壓(hypertension) ?心肌疾病(cadiomyophathies) ?心肌肥大(cardiac hypertrophy) ?鬱血性心衰竭(congestive heart failure)等。 4

心血管疾病 ?低密度脂蛋白(LDL)很容易被自由基氧化。 ?被氧化的LDL經過一連串的變化促進泡沫細胞的形成而附著在血管壁上。 ?被氧化的LDL亦會抑制HDL的合成、損傷內皮、使單核球黏附至內皮及促使血小板聚集,進而產生動脈粥狀硬化及血栓。 ?血栓會將血管阻塞,如果發生在供應心臟血管的冠狀動脈造成心肌缺血,就是冠心症;如果發生在腦部,就會造成中風。 5

心血管疾病 ?血栓缺血後血液再灌流造成的傷害是因為當血液再度灌流時,會使氧氣突然大增,導致大量的自由基產生。 ?為了要清理因缺氧而壞死的組織,體內會產生大量的白血球來做善後的工作,而白血球清理的方法就是製造更多的自由基,因而對組織造成更進一步的傷害。 ?自由基也會氧化細胞膜上磷脂質及細胞內的蛋白質,而造成細胞通透性改變及細胞功能受損。 6

(完整版)生物化学与分子生物学知识总结

生物化学与分子生物学知识总结 第一章蛋白质的结构与功能 1.组成蛋白质的元素主要有C、H、O、N和 S。 2.蛋白质元素组成的特点各种蛋白质的含氮量很接近,平均为16%。 100克样品中蛋白质的含量 (g %)= 每克样品含氮克数× 6.25×100 3.组成人体蛋白质的20种氨基酸均属于L- -氨基酸氨基酸 4.可根据侧链结构和理化性质进行分类 非极性脂肪族氨基酸极性中性氨基酸芳香族氨基酸酸性氨基酸碱性氨基酸 5.脯氨酸属于亚氨基酸 6.等电点(isoelectric point, pI) 在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。 氨基酸与茚三酮反应生成蓝紫色化合物 7.蛋白质的分子结构包括: 一级结构(primary structure) 二级结构(secondary structure) 三级结构(tertiary structure) 四级结构(quaternary structure) 1)一级结构定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。主要的化学键:肽键,有些蛋白质还包括二硫键。 2)二级结构定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及

氨基酸残基侧链的构象主要的化学键:氢键 ?蛋白质二级结构 包括α-螺旋 (α -helix) β-折叠 (β-pleated sheet) β-转角 (β-turn) 无规卷曲 (random coil) 3)三级结构定义:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。主要的化学键: 8. 模体(motif)是具有特殊功能的超二级结构,是由二个或 三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。 9.分子伴侣(chaperon)通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构。 蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。 ?蛋白质胶体稳定的因素: 颗粒表面电荷、水化膜 10.蛋白质的变性: 在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。 变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 ?造成变性的因素: 如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。 由于空间结构改变,分子内部疏水基团暴露,亲水基团被掩盖,故水溶性降低。由于变性蛋白质分子不对称性增加,故粘度增加。由于变性蛋白质肽键暴露,易被蛋白酶水解。

相关主题
文本预览
相关文档 最新文档