当前位置:文档之家› 光开关论文

光开关论文

光开关论文
光开关论文

集成电路专业学年论文

论文题目:MEMS光开关的研究及市场分析学院:电子工程学院

年级:2008级

专业:集成电路设计与集成系统

姓名:刘欣

学号:20083410

指导教师:窦雁巍

2011年7月8日

摘要

光开关是光通信网络的重要功能器件,MEMS光开关是最具发展前景的光开关之一。在简介不同种类光开关原理特点的基础上,详细分析了当前主要的MEMS光开关的分类、结构、工艺与性能特点,并给出了研究与发展情况和采用MEMS体硅工艺制作的三种结构的微机械光开关。它们的工作原理都基于硅数字微镜技术。这三种光开关采用了静电力驱动,具有较低的驱动电压。在硅基上制作了光纤自对准耦合槽,并对光开关的开关特性进行了计算机模拟与分析,并进行结果分析。

关键词

微机械;光开关;开关阵列;微镜;硅-玻璃键合;光纤通信

Abstract

Optical switch is an important functional device in optical fibre communication networks, MEMS optical switch is one of the most promiseful optical switches. This paper introduces basic principles and characters of several kinds of optical switches, and illustrates the classification, structures, fabrication methods and functional characters of current MEMS optical switch in details. And recent development and progress on this research area are presented and three kinds of MEMS optical switches with different mechanical structures are produced by the bulk-micromachining processes. Their principles of operation are all based on silicon digital micro mirrors technology. The electrostatic actuators with low driving voltage are used in the three kinds of optical switch. The grooves used for optical fibers being self-aligned coupling are made on silicon substrate for device. Computer simulation and analysis of on-off characteristic show that the second and the third optical switches have switching time.

Key words

MEMS; optical switch; switch array; micro mirror; silicon-on-glass bonding; ptical fiber communication

目录

摘要 ............................................................................................................................................ I Abstract ................................................................................................................................... II 前言 . (1)

第一章光开关的种类与介绍 (2)

1.1 微机械光开关 (2)

1.1.1 光路遮挡型MEMS光开关 (2)

1.1.2移动光纤对接型MEMS光开关 (2)

1.2微镜发射型MEMS光开关 (2)

1.2.1弹出式微镜光开关 (3)

1.2.2扭转式微镜光开关 (3)

1.2.3滑动式微镜光开关 (4)

1.2.4三维阵列光开关 (4)

第二章微机械光开关的设计与分析 (5)

2.1水平驱动2D光开关 (5)

2.2 垂直驱动2D光开关 (6)

2.3扭摆驱动2D、3D光开关 (6)

第三章MEMS光开关的控制 (7)

3.1 MEMS光开关控制原理 (7)

3.2 控制系统设计 (7)

3.2.1硬件设计方案 (7)

3.2.2软件设计方案 (8)

第四章光开关的市场分析 (9)

4.1光开关的优势 (9)

4.2发展动态及潜力 (9)

结论 (11)

参考文献 (12)

前言

光纤通信技术的问世和发展给通信业带来了革命性的变革,目前世界大约85%的通信业务经光纤传输,长途干线网和本地中继网也已广泛使用光纤。同时,密集波分复用(DWDM)技术的发展和成熟为充分应用光纤传输的带宽和容量开拓了广阔的空间,具有高速率、大带宽明显优势的DWDM光通信网络已经成为目前通信网络发展的趋势。光交叉互连(OXC)技术在日益复杂的DWDM网中是关键技术之一,而光开关作为切换光路的功能器件,则是OXC中的关键部分。在众多种类的光开关中,微机械(MEMS)光开关被认为最有可能成为光开关的主流器件。本文在概述多种光开关原理特点的基础上,重点收集与分析了国外研制的几种主要的MEMS光开关,并阐述了各自的结构与性能特点。

光开关是宽带光纤通讯系统中的重要器件,而基于微机电系统(MEMS)技术加工的二维阵列光开关更是一种很有前景的器件。这种二维阵列光开关在平面上布置有N×N 个微镜,每个微镜具有切入光路(反射)和离开光路两种位置状态。光开关与两组N根光纤相连,分别作为入射端和出射端。当微镜(i,j)位于反射位置时,由第i根光纤入射的光束经过微镜反射后由第j根光纤射出,从而实现光路的选择。

第一章光开关的种类与介绍

虽然光开关的历史并不悠久,但随着科学技术的发展,人们研究开发了多种基于不同材料和不同原理的光开关。

1.1 微机械光开关

1.1.1 光路遮挡型MEMS光开关

具有代表性的光路遮挡型光开关是悬臂梁式光开关[1],整个器件尺寸约1-2mm,材料由金、氮化硅和多晶硅组成,并由体硅工艺加工出悬臂梁。它利用8个多晶硅PiN电池(一种非晶硅太阳电池)串联组成光发电机,在光信号的作用下,产生3V电压,电容板受到电场力吸引,将遮片升起,光开关处于开通状态,如无光信号,光发电机无电压输出,遮片下降,光开关关闭。该开关由远端的光信号控制,所以光开关本地是无源的。该光开关驱动光功率仅2.7μW,传输距离达128km,开关速度3.7ms,插损小于0.5dB。但串扰比较大,隔离度不高。一般用于组成光纤线路倒换系统。

1.1.2移动光纤对接型MEMS光开关

具有代表性的移动光纤对接型光开关[2],由美国加州大学戴维斯分校研制。它是一个1*4光开关,利用光纤的移动和对准实现光信号的切换,插入损耗大约为1dB。与以微镜为基础的光开关相比,它采用体硅或LIGA工艺,制造结构和制备方法较为简单,可采用电磁驱动,驱动精度要求低,系统可靠性和稳定性好,稳态时几乎不耗能,缺点是开关速度较低,大约为10ms量级,可连接的最大端口数受到限制,多用于网络自愈保护。

1.2微镜发射型MEMS光开关

相对于移动光纤对接的方法,利用微镜反射原理的光开关更加易于集成和控制,组成光开关阵列。根据组成OXC矩阵的方法,可以把利用微镜反射原理的光开关分成二维和三维两种。在二维(2D)也称数字方式中,微镜和光纤在同一个平面上,微镜只有两种状态(开或关)。通过移动适当位置的反射镜使其反射光束可将任意输入光束耦

合为输出信号。一个N*N的MEMS微镜矩阵用来连接N条输入光纤和N条输出光纤,这种结构为N2结构。它极大地简化了控制电路的设计,一般只需要提供足够的驱动电压使微镜发生动作即可。但是当要扩展成大型光开关阵列时,由于各个输入输出端口的光传输距离有所不同,所以各个端口的插入损耗也不同,这使得2D微镜光开关只能使用在端口数较少的环路里。目前二维系统最大容量是32*32端口,多个器件可以连接起来组成更大的开关阵列,最大可以达到512*512端口。

1.2.1弹出式微镜光开关

它采用表面工艺加工,并利用scratch-drive驱动器(SDA,抓式驱动器)驱动。当100V驱动脉冲电压加载到SDA阵列上时,可滑动的驱动器向支撑梁运动,使支撑梁和微镜之间的铰链扣住,将带有铰链的微反射镜从衬底表面抬升到与表面垂直的位置,从而使光路从直通状态转换到反射状态。这样的设计能有效地将SDA驱动器的平移运动变成微镜的弹出运动,使得整个装置的运动速度较高,同时也可以减小微镜所占的面积。它的开关速度为0.5ms,该结构的缺点在于SDA驱动器与衬底之间的静摩擦力往往会影响其效能,同时插损偏大,约3.1-3.5dB[3]。

1.2.2扭转式微镜光开关

它的结构采用单晶硅体硅工艺加工,光纤呈交叉垂直放置,微反射镜垂直放置在一长悬臂梁的前端,并处于两光纤的交叉点上。悬臂梁采用电磁驱动,在悬臂梁底部粘合一块100μm厚透磁合金,在相对应的衬底位置,微组装一块线圈电磁体,悬臂梁和线圈之间的电磁力便随着线圈中电流的大小和方向而改变,从而使悬臂梁沿电磁力向一边弯曲,带动微反射镜移开原来的位置,实现光路的改变。微镜沿电磁力方向可产生约100μm的位移,驱动电流为1A,响应时间为300μs,插损为0.5dB。该光开关的缺点在于微组装电磁驱动不利于集成制造,而且要靠电磁力保持开或关状态,耗能较大。因此,现在国内外更广泛地采用热或静电驱动此类光开关,用热驱动就是在悬臂梁背面加工一层主要起加热作用的金属膜电阻,通电后,金属膜受热膨胀,使整个悬臂梁向一边弯曲带动微镜偏转;若采用静电驱动,则在衬底上沉积一层金属电极,和悬臂梁末端组成平行板电容器,在静电力的作用下,同样会使悬臂梁带动微镜扭转[4]。

1.2.3滑动式微镜光开关

它的基本结构与转动式很相似,驱动电压为30V,开关速度小于100μs,插损小于0.9dB,。它也具有单层体硅结构,采用深反应离子蚀刻(DRIE)工艺,这种技术可以对硅作深度达200μm蚀刻,同时蚀刻出宽度小到20μm并接近理想状态的垂直墙、窄沟道及孔。该结构包括可动和固定两部分,可动部分的悬梁侧壁可用作反射镜,在自然状态下光有一反射输出。在可动和固定部分之间有梳齿式的交叉电极,在两电极之间加上电压,静电力使悬臂梁在力的方向上产生约45μm的平动位移,悬臂梁的端部就不再对光有阻断作用。这种光开关的缺点在于工作频率受到谐振频率影响,使得开关速度受到限制,微镜平动位移也有限,而且DRIE工艺牵涉到对材料的各向同性和异性刻蚀问题,对镜面表面粗糙度有着一定的影响[5]。

1.2.4三维阵列光开关

在三维(3D),也称为模拟光束偏转开关中,输入输出光纤均成二维排列,两组可以绕轴改变倾斜角度的微反射镜安装在二维阵列中,每个输入和输出光纤都有相对应的反射镜。在这种结构中,N*N转换仅需要2N个反射镜。通过将反射镜偏转至合适的角度,在三维空间反射光束,可将任意输入反射镜" 光纤与任意输出反射镜" 光纤交叉连接。AT&A公司推出的著名的Wave Star Lamda Router全光波长路由系统,其光交叉连接系统可实现256*256的交叉连接,可节约25%的运行费用和99%的能耗,其采用体硅工艺制成的3D微镜光开关阵列[6]。

三维光开关阵列的一个微镜单元[7],它以表面工艺为基础,利用3D光刻镀铜技术制成,与CMOS工艺有着良好的兼容性。它由5层结构组成,由底层往上依次是电连接用底部电极、底部支撑柱、扭转梁和被抬起的电极、顶部微镜支撑柱、微镜。在静电力作用下,微镜可以绕X轴和Y轴运动,从而使输入光束产生不同方向上的输出。在244V驱动电压下微镜最大偏转角可达到2.65o,镜面的曲率半径3.8cm,镜面的表面粗糙度为12nm。构成阵列时采用两组微镜相对安装。这种结构的最大优点是由光程差所引起的插入损耗对光开关阵列端口数的扩展不产生很大的影响,有利于集成并组成大规模光开关阵列。但另一方面,由于需要精确和快速稳定地控制光束,它的控制电路和结构设计较为复杂。

第二章微机械光开关的设计与分析

采用MEMS体硅工艺,制作MEMS一共有三种结构微机械光开关:水平驱动光开关,垂直驱动光开关和扭摆驱动光开关[8]。虽然它们的工作原理都基于硅数字微镜技术,但由于它们都具有不同的结构,因此原理也具有差异。光开关采用静电力驱动,具有较低的驱动电压,其中扭摆式光开关的驱动电压小于15V。对于2D开关阵列,在硅基上制作了光纤自对准耦合槽[9]。对开关特性进行计算机模拟和分析,分析光开关的开关时间。

2.1水平驱动2D光开关

开关速度是光开关的一个重要指标,要有高的开关速度,就要有高的谐振频率,谐振频率可表示为

(2-1) 其中M mirror、M truss和M beam分别是悬梁镜、端部构架和折叠梁的质量;k folded是折叠梁的弹性系数,有

(2-2) 其中E为杨氏模量;h、b和L分别为折叠的厚度、宽度和长度,由(2-1)和(2-2)可以看出谐振频率主要和折叠梁的长度和宽度有关,增加宽度和减小长度将有利于提高谐振频率,也就是开关速度。

可动电极的纵向位移

(2-3) 其中n为梳齿电极数;ε0为真空介电常数;y为位移;y0为电极初始重合长度;d 为电极间间隙。由上式可以看出,要增加开关灵敏度和隔离度,减小功耗,就要增加悬臂梁的长度和减小宽度,这与提高谐振频率的要求相矛盾。

2.2 垂直驱动2D光开关

和前一种光开关一样,开关速度和驱动电压是考虑的重要因素,动和定极板间的静电力

(2-4)

其中C为动和定极板间的电容;ε0为真空介电常数;s为质量块面积;d为电极间间隙,由(2-2)和(2-4)可得纵向位移

(2-5)

其中E为杨氏模量;h、b和L分别为固支梁的厚度、宽度和长度;V为驱动电压;k folded是固支梁沿z方向的弹性系数。由(2-5)可以看出,要增加开关灵敏度和隔离度,减小功耗,说法要增加固支梁的长度和减小宽度,邮于L?b,因此长度对弹性的影响远大于宽度。为此设计了折叠梁,增加了梁的长度,同时减小了芯片面积。

质量块的谐振频率可表示为

(2-6) 由(2-4)和(2-6)可以看出增加悬臂梁的长度和减小宽度,谐振频率将降低,不利于提高开关速度,这与减小功耗又矛盾。因此应综合考虑这些因素,此设计结构的f0>2kH z。垂直式光开关的计算机有根元分析(FEA)结果,分析表明此结构有高的谐振频率从而可得到高的开关速度(小于1ms),驱动电压小于30V。

2.3扭摆驱动2D、3D光开关

对于扭摆式结构设计了扭摆式固支梁[10],在静电力的作用下,由于固支梁不是连接在质量块边沿的中心,因此质量块以固支梁为轴产生一扭转。理论研究表明,要减小驱动电压,应尽量减小梁的宽度和增加梁的长度,和垂直驱动式一样,同时也要考虑结构对开关速度的影响。扭摆式光开关的计算机有限元分析结果,分析表明此结构有高的开关速度(小于1ms)和低的驱动电压(小于15V)。

第三章MEMS光开关的控制

本章阐述的控制方案针对的是二维结构、采用静电法驱动的MEMS光开关。

3.1 MEMS光开关控制原理

MEMS光开关的优点在于光波路由的切换是通过外部控制信息以及相应的高低电平控制内部16块微镜片抬升与否来完成的。我们选用的MEMS光开关规定在控制信息的格式上,不管其内部有多少个微镜片,都需要由一系列"1"和"0"组成的64位串行数据来完成控制。依据MEMS光开关的具体工作原理以及所需数字信号间的时序关系,所需的64位控制信息、以及其他信号(如CLK、ENA信号)可以由高速单片机来提供。

本控制系统在单板调试期间,由一台PC机的相应程序模拟本地控制,发出相应的路由信息。串口同时也是仪器仪表设备的通信协议,并可用于获取远程采集设备的数据。发送给单片机,单片机再进行进一步的控制动作。MEMS光开关路由成功与否等信息由单片机读取其内部寄存器中的64位控制数据,与原始的正确的64位数据进行对比完成。操作完成后,又由单片机通过串口向PC机产生相应的反馈信息。形成人机、远程与本地之间的交互。

3.2 控制系统设计

基于前述原理,该子系统的设计将分为硬件和软件设计两方面。

3.2.1硬件设计方案

试验阶段将为MEMS设计四个控制通道,其中保留厂家的测试版电路并以此作为一个控制通道;为本地单片机不同类型的控制信息提供两个通道;此外,为将来可能用到的FPGA芯片控制信息预留一个通道。实际应用阶段将只保留一个单片机通道与一个FPGA控制通道。

在单板调试期间,路由与管理信息来自模拟网管的PC机软件,而在实际应用中,一切路由与管理信息将来自主控制板。虽然试验与实用阶段控制通道不止一个,但某一时期起作用的只有一个通道。通道的切换通过手动跳线完成。单片机选用高速低耗双串口多中断的单片机。此单片机将为MEMS光开关提供64位控制信息以及所需的其他控

制信号,如时钟CLK信号、路由使能信号等。并-串转换电路用于将单片机并行发出的控制信息转换成MEMS要求的串行数据。这一功能由单片机和并-串转换芯片共同完成;串-并转换电路用于单片机并行读入MEMS内部寄存器中的串行原始路由信息。这一功能由单片机和串-并转换芯片共同完成。

3.2.2软件设计方案

因为在调试中需要人机交互,所以需要PC机程序和单片机控制程序各一套。两套程序通过RS-232接口进行通信[11]。程序间的通信首先是PC发往单片机的数据,然后是单片机发往PC的数据。

PC机程序采用图形界面,收发的各种信息将会在程序界面上给管理员作出相应的实时提示。单片机控制程序与PC机程序相比,难度在于其既要发送MEMS需要的时钟信号、使能信号等,又要发送64位微镜片控制数据。这些信号之间有着严格的时序关系。编程时应该特别注意延时程序和指令编写技巧[12]。

第四章光开关的市场分析

4.1光开关的优势

MEMS光开关的优势体现在性能、功能、规模、可靠性和成本等几个方面。在关键的性能指标如插入损耗、波长平坦度、PDL(偏振相关损耗)和串扰方面,MEMS 技术能达到的性能可与其他技术所能达到的最高性能相比。比如基于MEMS技术制作的2×2光开关模块的插入损耗可达0.4dB,PDL小于0.1dB,串扰小于-70dB。

在功能方面,微镜具有可靠的闭锁功能,能够保证光路切换的准确性。在规模方面,采用2D结构的MEMS光开关已有64*64的商用产品,采用3D结构的MEMS光开关也有上千端口数的样品,从而使构建中等规模和大规模光纤网络节点成为可能。

在可靠性方面,单晶硅极好的机械性能可使制成的器件能够抗疲劳,由于单晶硅中没有位错,所以从本质上它不会产生疲劳,是一种完美的弹性材料。MEMS 光开关的寿命已超过3800万次,并且在温度循环、冲击、振动和长期高温贮存等可靠性指标方面,均满足Telcordia GR-1073-Core标准。

在成本方面,MEMS光开关为降低系统成本提供了多种可能,MEMS芯片的功能度使得更低成本的网络设置和架构以及光纤层的保护成为可能。MEMS尺寸小和功耗低的特性使得系统的外形可以缩小,节省了中继器和终端节点占用的地盘。

MEMS器件的单批产量很高,经济性好,而且器件与器件之间重复性好。执行器与光器件集成在单个芯片上,可以在一个硅片上重复多次,从而可以提供价格更低的光器件。这些在成本方面的节约将使器件价格下降,最终降低设备和营运成本。

4.2发展动态及潜力

硅MEMS加工技术最早出现于二十世纪六十年代,所采用的主要技术是单晶硅各向异性腐蚀技术(体硅微机械),其代表产品是硅压力传感器。

八十年代美国率先开发出以多晶硅为结构层、二氧化硅为牺牲层的表面牺牲层技术(表面微机械),并开发出微硅静电马达,使得MEMS技术得到质的飞跃发展。表面微机械加工技术与半导体集成电路技术最为相近,其主要特点是在薄膜淀积的基础上,利用光刻、刻蚀等集成电路常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单

元,获得可微动结构。

进入九十年代,随着深槽刻蚀技术、键合技术及其它关键技术的成功应用,体硅微机械又得到了飞速发展,并发展出多种体硅工艺与表面微机械工艺相互结合的新工艺。特别是开发出利用感应耦合等离子体(ICP)和侧壁钝化(SPP)的先进硅刻蚀工艺(ASE),可对硅材料进行很大深宽比的三维微加工,其加工厚度可达几百微米,侧壁垂直度可接近九十度。这使得MEMS技术不仅在传感器领域的应用得到迅速发展,而且在光纤通信、微型化学分析系统、DNA分析及微型机器人等领域的应用研究也得到空前发展。

目前仍有不少的机构(包括Dicon、Luncent、Jdsu、Nortel等)在进行MEMS光开关的应用开发。目前全球有60家左右的MEMS 制造工厂,上百家MEMS领域的新兴公司以及更多的大学和研究机构。世界领先的Coventor公司的MEMS 计算机辅助设计(CAD)软件工具,目前全球的用户已超过300家。

全球光纤通信市场在经历了近三年的冬眠期之后,随着朗讯市场份额的好转和市值的抬头,使人们重新燃起了春天的希望。

世界市场光开关的需求量在九十年代初、中期增长缓慢,只有数十万件。但在九十年代后期,随着全光网络的兴起、发展,经济信息化过程的加快,特别是全球范围光交换机及其交换矩阵系统市场需求猛增,系统设备销售2006年将增长至32亿美元,对光开关的需求也将会急剧上升。根据日本光通信行业的预测,九十年代末世界光开关年需求量近百万件。近期外刊报道,北美九十年代末光开关的需求量为数十万件。据统计,世界光开关年销售增长率已达到13%。光开关在国内光无源器件市场所占份额较小,随着全光通信网络系统的开发、应用,国内市场需求量将会大幅度增长。对于国内厂商而言,是难得的机遇,更是巨大的挑战。

结论

MEMS光开关是目前最有发展前景,最能适应DWDM全光通信网要求的光开关。由于MEMS技术具有兼容性强、易集成、设计灵活、可大规模生产的优势,MEMS光开关的集成化和产业化将是未来MEMS光开关的发展方向。然而要实现MEMS光开关器件的产业化,需要解决提供标准工艺流程、标准工艺参数和标准设计规则,同时解决多用户加工途径和测试封装技术等一系列问题。

尽管近年来MEMS光器件制造商风云变幻,潮起潮落,但MEMS技术的应用领域不仅仅是光通信,依然保持着强劲的生命力。以其研究方向多元化、加工工艺多样化、系统单片集成化、制造与封装统一化、应用领域全面化为标志的固有特征和先天优势,必将在通信、导航、传感、医用、交通、航空航天等军事和民用领域得到广泛的推广和应用。

参考文献

[1]马军山,陈高庭,王向朝等.用于光通信的微电子机械系统技术进展[J].激光与光电子学

展.1999,10(6):11-18.

[2]GONZALEZ C, COLLINS S D. Micromachined 1×n fiber-optic switch [J]. IEEE Photonics

Technology Letters.1997,9(5):2-14.

[3]李锋编译.MEMSMOEMS在光通信中的应用[J],光机电信息.2002,8(4):8-12.

[4]MAEKOBA H, HELIN P, REYNE G ,et al. Self-aligned vertical mirror and V-grooves applied to an

optical-switch: modeling and optimization of bi-stable operation by electromagnetic actuation [J].Sensors and Actuators.2001,87(2):172-178.

[5]LI J, ZHANG Q X, LIU A Q. Advanced fiber optical switches using deep RIE(DRIE) fabrication

[J].Sensors and Actuators.2003,102(8):286-295.

[6]KIM J H,LEE H K, KIM B I, et al. A high fill-factor micro-mirror stacked on a crossbar torsion

spring for electrostatically-actuated two-axis operation in large-scale optical switch[A] [C]. IEEE 16th Int MEMS Conf Tech.Japan:136-139.

[7] E.Ollier and P.Mottier. Integrated Electrostatic Micro-switch for Optical Fiber Networks Driven by

Low Voltage[J].Electronics Letters.1996,32(5)2007-2009.

[8]Y.B.Gianchandani and K.Najafi. A Bulk Silicon Dissoveled Water Process for Micro

-electromechanical Devices,IEEE J[J]. Microelectromechancial Syst.1992,1(2):77-85.

[9] A.W.Groeneveld and M.Elwenspoek, Comb-Drive Actuators for Large Displacements[J]. Micromech.

Microeng.1996,6(8):320-329.

[10]徐永青,梁春广等.硅基SiO2光波导[J].半导体学报.2001,22(12):1546-1550.

[11]马忠梅,籍顺心,张凯,马岩编著.单片机的C语言应用程序设计[M].北京:北京航空航天大学出版

社.2000:40-50.

[12]范逸之,江文贤,陈立元编著.C++Builder与RS-232串行通信控制[M].北京:清华大学社.2002:65-69.

光开关的原理及种类

一、前言 光纤通信技术的问世和发展给通信业带来了革命性的变革,目前世界大约85%的通信业务经光纤传输,长途干线网和本地中继网也已广泛使用光纤。同时,密集波分复用(DWDM) 技术的发展和成熟为充分应用光纤传输的带宽和容量开拓了广阔的空间,具有高速率、大带宽明显优势的DWDM 光通信网络已经成为目前通信网络发展的趋势。特别是近几年,以IP 为主的Internet 业务呈现爆炸性增长,这种增长趋势不仅改变了IP 网络层与底层传输网络的关系,而且对整个网络的组网方式、节点设计、管理和控制提出了新的要求。一种智能化网络体系结构—自动交换光网络(ASON :automatic switched optical networks) 成为当今系统研究的热点,它的核心节点由光交叉连接(OXC :optical cross connect) 设备构成,通过OXC ,可实现动态波长选路和对光网络灵活、有效的管理。光交叉互连(OXC) 技术在日益复杂的DWDM 网中是关键技术之一,而光开关作为切换光路的功能器件,则是OXC 中的关键部分。光开关矩阵是OXC 的核心部分,它可实现动态光路径管理、光网络的故障保护、波长动态分配等功能,对解决目前复杂网络中的波长争用,提高波长重用率,进行网络灵活配置均有重要的意义。 光开关不仅是OXC 中的核心器件,它还广泛应用于以下领域。 (1)光网络的保护倒换系统,实际的光缆传输系统中都留有备用光纤,当工作通道传输中断或性能劣化到一定程度,光开关将主信号自动转至备用光纤系统传输,从而使接收端能接收到正常信号而感觉不到网路已出了故障,其会将网络节点连成环形以进一步改善网络的生存性。 (2)网络性能的实时监控系统,在远端光纤测试点,通过1XN多路光开关把多根 光纤接到光时域反射仪上,进行实时网络监控,通过计算机控制光开关倒换顺序和时间,实现对所有光纤的检测,并将检测结果传回网络控制中心,一旦发现某一路出现问题,可在网管中心直接进行处理。 ( 3)光开关还应用在光纤通信器件测试系统以及城域网、接入网的差/分复用和交 换设备中。光开关的引入使未来全光网络更具灵活性、智能性、生存性。光开关技术已经成为未来光联网、光交换的关键技术,在通信、自动控制等领域发挥着越来越重要的作用。 在众多种类的光开关中,微机械(MEMS) 光开关被认为最有可能成为光开关的主流器件。本文在概述多种光开关原理特点的基础上,重点分析了几种主要的MEMS 光开关,并阐述了各自的结构与性能特点。 二、光开关的原理及种类 光开关性能参数有多种,如:快切换速度、高隔离度、小插入损耗、对偏振不敏感及可靠性,不同领域对它的要求也各不相同。其种类有保护、切换系统中常用的传统光机械开关,也有这几年飞速发展的新型光开关,如:热光开关、液晶开关、电光开关、声光开关、微光机电系统光开关(MOEMS ,micro optic electro mechanical systems) 、 气泡开关等。在超高速光通信领域,还有马赫-曾德尔(Maeh-Zehnder) 干涉型光开关、非线性环路镜(NOLM ,nonlinear optical fiber loop mirror) 光开关等光控开关。 1、机械光开关 传统机械光开关的工作原理:通过热、静电等动力,旋转微反射镜,将光直接送到或反射到

光开关定义分类

1.光开关是按一定要求将一个光通道的光信号转换到另一个光通道的器件。 2.光开关可使光路之间进行直接交换, 是光网络中完成全光交换的核心器件,在全光网络中, 光开关可实现在全光层的路由选择、波长选择、光交叉连接以及自愈保护等重要功能。 3.其中光交叉连接设备(OXC) 和光分插复用设备(OADM) 可以说是全光网的核心。而光开关和光开关阵列恰恰是OXC 和OADM的核心技术。 4.全光网络中应用的光开关应具有快的响应速度、低的插入损耗、低通道串音、对偏振不敏感、可集成性和可扩展性、低成本、低功耗、热稳定性好等特性。 今后光开关发展的方向:光调制光开关和波导调制光开关的技术发展较快,其开关时间具有几个ps 到10ps的开发潜力,可以满足全光通信网络实现高速光交换、光交叉连接的要求。因此,光调制光开关和波导调制光开关是今后光开关的发展方向。但是,光调制光开关和波导调制光开关串音大的缺点目前尚无技术突破,还处于实验室研究阶段,而且价格昂贵,近几年要达到实用化的水平并投入市场不太可能。目前采用较为成熟的MEMS技术研制开发光开关、光开关列阵,并在此基础上组建、完善全光交换机及其交换矩阵系统等全光网络节点设备,具有非常大的现实应用价值。 目前,MEMS技术还存在一些问题:一是迫切需要用于微电子机械系统设计的先进的模拟工具和模型建立工具(大多数微电子机械设备都是用功能差的不能准确预测执行情况的分析工具来建立的,这种方式效率低下,费时费力),只有运用合适的开发工具,并配以连通高性能工作站以及本地的和远程的超级计算机网络才能从根本上改变这种局面;其次,微电子机械系统的包装面临独特的挑战,因为微电子机械装置形状差异大,并且部分装置还要求放置于特定的环境中,所以几乎每开发一套微电子机械系统就需要为其设计一个专用的包装。容许设计者从已有的标准包中挑选出新的微电子机械设备的包装也不失为一个较好的办法。(应用光学2005) 常见的光开关: 1.MEMS光开关:而MEMS光开关是基于半导体微细加工技术构筑在半导体基片上的微镜阵列, 即将电、机械和光集成为一块芯片, 能透明地传送不同速率、不同协议的业务。目前已成为一种最流行的光开关制作技术。其基本原理通过静电力或电磁力的作用, 使可以活动的微镜产生升降、旋转或移动, 从而改变输入光的传播方向以实现光路通断的功能, 使任一输入和输出端口相连接, 且1 个输出端口在同一时间只能和1个输入端口相连接。与现有的基于光波导技术的光开关相比, MEMS 光开关具有低串音、低插损的优点成为全光网络中的关键光器件。 MEMS光开关优点:与现有的基于光波导技术的光开关相比, MEMS 光开关具有低串音、低插损的优点成为全光网络中的关键光器件。同时它既有机械光开关和波导光开关的优点, 又克服了光机械开关难以集成和扩展性差等缺点, 它结构紧凑、重量轻, 且扩展性较好。 MEMS光开关特性:低插入损耗; 低串扰; 与波长、速率、调制方式无关; 功耗低; 坚固、寿命长; 可集成扩展成大规模光开关矩阵; 适中的响应速度(开关时间从100ns~10ms)。在光交叉连接及需要支持大容最交换的系统中, 基于MEMS 技术的解决方案已是主流。 MEMS光开关分类:MEMS 光开关可以分为二维和三维光开关。二维光开关由一种受静电控制的二维微小镜面阵列组成,光束在二维空间传输。准直光束和旋转微镜构成多端口光开关, 对于M×N 的光开关矩阵, 光开关具有M×N个微反射镜。二维光开关的微反射镜具有两个状态0和1(通和断), 当光开关处于1 态时, 反射镜处于由输入光纤准直系统出射的光束传播通道内, 将光束反射至相应的输出通道并经准直系统进入目标输出光纤;当光开关处于0 态时, 微反射镜不在光束传播通道内, 由输入通道光纤出射的光束直接进入其对面的光纤。三维MEMS 的微镜固定在一个万向支架上, 可以沿任意方向偏转。每根输入光纤都有一个对应的MEMS 输入微镜, 同样, 每根输出光纤也都有其对应的MEMS 输出微镜[17]。因此, 对于M×N 三维MEMS 光开关, 则具有M+N 个MEMS 微反射镜。由每根输出光纤出射的光束可以由其对应的输入微镜反射到任意一个输出微镜, 而相应的输出微镜可以将来自任一输入微镜的光束反射到其对应的输出光纤。对于M×N 三维MEMS 光开关, 每个输入微镜有N 个态, 而输出微镜则具有M个状态。目前, Iolon 利用MEMS 实现了光开关的大量自动化生产。该结构开关时间小余5ms。Xeros 基于MEMS 微镜技术, 设计了能升级到1152×1152 的光

光开关的工作原理

光开关,光开关得分类,光开关得工作原理就 是什么? 2010年03月20日 17:30 作者:佚名用户评论(0) 关键字:光开关(7) 光开关,光开关得分类,光开关得工作原理就是什么? 光开关就是一种具有一个或多个可选择得传输窗口,可对光传输线路或集成光路中得光信号进行相互转换或逻辑操作得器件。 机械式光开关:插入损耗低;隔离度高;不受偏振与波长影响;开关时间长(ms),重复性较差。 其它光开关:开关时间短(ms);体积小;插入损耗大;隔离度低。 光开关得特性参数 1、插入损耗(Insertion loss) 2、回波损耗(Return loss) 从输入端返回得光功率与输入光功率得比值。 3、隔离度 两个相隔离得输出端口光功率得比值. 4、串扰 输入光功率与从非导通端口输出得光功率得比值。

5、消光比 两个端口处于导通与非导通状态得插入损耗之差。 ER=IL-IL0 6、开关时间 开关端口从某一初状态转为通或者断所需得时间.从在开关上施加或撤去能量得时刻算起。 光开关得工作原理: 1、机械式光开关 移动光纤式光开关 移动反射镜式光开关

以上两种体积大,难实现集成化得开关网络.近年正大力发展一种集成得微机电系统(MEMS)开关,在硅片上用微加工技术做出大量可移动得微型镜片构成得开关阵列. 用16 个移动反射镜光开关构成得两组4 4MEMS开关阵列 2 电光开关 电光开关得原理一般就是利用材料得电光效应或电吸收效应,在电场作用下改变材料 得折射率与光得相位,再利用光得干涉或偏振等使光强突变或光路转变。 电光开关一般利用泡克耳斯(Pockels)效应,即折射率n随光场E而变化得电光效应。折射率变化与光场得变化关系为: 而光波传输距离L相应得相位变化为: 定向耦合型光开关

光开关的工作原理

光开关,光开关的分类,光开关的工作原理是 什么? 2010 年03 月20 日 17:30 www.elecfans.co 作者:佚名用户评论(0) 关键字:光开关(7) 光开关,光开关的分类,光开关的工作原理是什么? 光开关是一种具有一个或多个可选择的传输窗口,可对光传输线路或集成光路中的光信号进行相互转换或逻辑操作的器件。 机械式光开关:插入损耗低;隔离度高;不受偏振和波长影响;开关时间长(ms),重复性较差。 其它光开关:开关时间短(ms);体积小;插入损耗大;隔离度低。 光开关的特性参数 1.插入损耗(Insertion loss) 2.回波损耗(Return loss) 从输入端返回的光功率与输入光功率的比值。

3.隔离度 两个相隔离的输出端口光功率的比值。 4. 串扰 输入光功率与从非导通端口输出的光功率的比值。 5.消光比 两个端口处于导通和非导通状态的插入损耗之差。 ER=IL-IL0 6.开关时间 开关端口从某一初状态转为通或者断所需的时间。从在开关上施加或撤去能量的时刻算起。 光开关的工作原理: 1. 机械式光开关

移动光纤式光开关 移动反射镜式光开关 以上两种体积大,难实现集成化的开关网络。近年正大力发展一种集成的微机电系统(MEMS)开关,在硅片上用微加工技术做出大量可移动的微型镜片构成的开关阵列。 用16 个移动反射镜光开关构成的两组4 4MEMS开关阵列 2 电光开关

电光开关的原理一般是利用材料的电光效应或电吸收效应,在电场作用下改变材料的折射率和光的相位,再利用光的干涉或偏振等使光强突变或光路转变。 电光开关一般利用泡克耳斯(Pockels) 效应,即折射率 n随光场E而变化的电光效应。 折射率变化与光场的变化关系为: 而光波传输距离L相应的相位变化为: 定向耦合型光开关 定向耦合器中两耦合波导光功率周期性相互转换

ADPT012_led调光开关,pwm调光开关规格书V11.1

规格说明书 电容式触摸感应按键专用I C 12个独立触摸感应通路 ADPT012 V11.1 全国客服中心电话:4006-992-661 公司电话:0755-8297-7641 0755-8297-7857 0755-8369-3048 自动传真:0755-2263-4057 E-mail: samples@https://www.doczj.com/doc/0d3615484.html, (样品专用) sinoada@https://www.doczj.com/doc/0d3615484.html,(商务专用) 官方网站: https://www.doczj.com/doc/0d3615484.html, 客服QQ: 800-000-251 资料在公司官方网站上会随时更新,敬请留意!

目录 1. 概述 (3) 2. 特性简介 (3) 3. 管脚描述 (3) 4. 封装信息 (4) 5. 绝对最大值 (5) 6. 低功耗处理 (6) 7. 参考应用电路 (6) 7.1:BCD或(BCD+INT)(INT可悬空)编码输出 (6) 7.2:ADC输出 (7) 7.3:点对点输出(最多可以输出9个按键) (8) 7.4:I2C方式或I2C+INT方式输出 (9) 8.应用说明 (10) 9 修改记录 (11)

1. 概述 ADPT012 是一款有12个独立的电容式触摸感应通道和多个控制端口的专用集成电路。 本产品的特点和优势: 输出信号可根据需要设置,选择范围宽,操作简单,使用方便 可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高 广泛使用在消费电子、数码产品、便携式产品、小家电、家电、智能控制、工业控制等等诸多方面应用电路简单,外围器件少,加工方便,成本低。 抗电源干扰及手机干扰特性好。EFT可以达到4KV以上;近距离、多角度手机干扰、对讲机干扰,触摸响应灵敏度及可靠性不受影响。 2. 特性简介 典型工作电压:2.4V~5.5V 工作频率:DC~20MHz 电容式触摸感应通道:12通道 内置上电复位(POR) 内置低电压复位(LVR) 采用低功率的CMOS技术 3. 管脚描述 管脚名称用法功能描述 GND POWER 电源地 VDD POWER 电源正 RST I 外部复位输入端 Out0 ~ Out8 O 通用端口 OSCO O 高频率晶体振荡器输出端 OSCI I 高频率晶体振荡器/RC振荡器输入端 Touch0 ~ Touch11 I 触摸感应信号输入端 VC2 I 灵敏度电容输入端 VC1 I 灵敏度电容输入端

PWM实现精准LED调光

加速调光频率 PWM实现精准LED调光无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。 无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。 一、PWM调光能调配准确色光 一般来说,模拟调光比较容易实行,这是因为LED驱动器的输出电流变化与控制电压成比例,而且模拟调光也不会引发额外的电磁兼容性(EMC)/电磁干扰(EMI)潜在频率问题。然而,大部分设计采用PWM调光的理由都是基于LED的基本特性,即放射光的位移是与平均驱动电流的大小成比例(图1)。对于单色LED来说,主要光波的波长会发生变化,而在白光LED 方面,出现变化的是相对色温(CCT)。对于人们的肉眼来说,很难察觉出红、绿或蓝光LED 中的奈米波长变化,尤其是当光的强度也同样在改变,但是白光的色温变化则比较容易察觉出来。大多数的白光LED都包含一片可放射出蓝光频谱光子的晶圆,这些光子在撞击磷光涂层后便会放射出各种可见光范围内的光子。在较小的电流下,磷光会成为主导并使光线偏向黄色;而在较大电流下,LED放射出来的蓝光则较多,使得光线偏向蓝色,同时也会产生较高的CCT。对于使用超过一个白光LED的应用,在两个相邻LED之间出现的CCT差异会很明显,且视觉令人不悦,此概念可以进一步延伸将多个单色LED光线混和在一起的光源。一旦超过一个光源,任何出现在它们之间的CCT差异都会令人感到刺眼。

sw1x8光开关资料

FAST FIBER OPTIC 1x8 SWITCH OVERVIEW The sercalo fiber optic switch is a very fast opto-mechanical switch based on the MEMS technology. The component makes an optical connection between an optical port and either one of 8 input or output lines. The highly reliable switching mechanism use integrated micromirrors and features below 1 ms switching time and only 1.4 dB insertion loss. The switch is powered by a 5 V supply voltage. A 5 V TTL or CMOS drive signal is used to control the switching state. The switching mechanism offers the reliability of a solid state device; it neither wears out nor degrades over time. Even after billions of cycles the switching quality stays constant. The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards.FEATURES ? reliable ? 1.2 dB insertion loss ? 1 ms response time ? 60 dB crosstalk ? miniature size ? non-latching APPLICATIONS ? Optical Reconfiguration ? Instrumentation ? Provisioning ORDERING INFORMATION SW1x8-9N-12-16 sercalo

常用调光方法的工作原理

常用调光方法的工作原理 1、脉冲宽度调制(PWM)调光法 这种调光控制法是利用调节高频逆变器中功率开关管的脉冲占空比,从而实现灯输出功率的调节。半桥逆变器的最大占空比为0.5,以确保半桥逆变器中的两个功率开关管之间有一个死时间,以避免两个功率开关管由于共态导通而损坏。 这种调光控制法能使功率开关管导通时工作在零电压开关(ZVS)状态,关断瞬间需采用吸收电容以达到ZCS工作条件,这样即可进入ZVS工作方式,这是它的优点,同时EMI 和功率开关管的电应力可以明显降低,然而,如果脉冲占空比太小,以致电感电流不连续,将会失去ZVS工作特性,并且由于供电直流电压较高,而使功率开关管上的电应力加大,这种不连续电流导通状态将导致电子镇流器的工作可靠性降低并加大EMI辐射。 除了小的脉冲占空比外,当灯电路发生故障时,也会出现功率开关管的不连续电流工作状态,当灯负载出现开路故障时,电感电流将流过谐振电容,由于这个电容的容量较小,所以阻抗较大,而在这个谐振电容上产生较高的电压。除非两个功率开关管有吸收保护电路,否则这时功率开关管将承受很大的电压应力。 2、改变半桥逆变器供电电压调光法 利用改变半桥逆变器供电电压的方法实现调光有以下优点: ①利用调节半桥逆变器供电电压来实现调光。 ②脉冲占空比(约0.5)固定,使半桥逆变器工作在软开关工作状态,并可在镇流电感电 流连续的工作条件下实现宽调光范围的调光(这也可使开关控制电路简化)。 ③由于开关工作频率固定,所以可以针对给定的荧光灯型号简化控制电路设计。 ④由于开关工作频率刚好大于谐振频率,所以可以降低无功功率和提高电路工作效率。 ⑤由于开关工作频率固定,所以可以比较方便地确定灯负载匹配电路中无源器件的参数。 ⑥可在较宽的灯功率范围内(5%~100%)保持ZVS工作条件。 ⑦在很低的半桥逆变器供电电压下,电子镇流器电路将会失去较开关特性,会出现镇流 电感电流不连续的工作状态。然而在直流供电电压很低的情况下,这种工作状态不再是个问题,这时功率开关管的电应力和损耗都将很小,即使工作在硬开关,在低直流供电电压情况下(如20V)也不会产生太多的EMI辐射。 ⑧可实现平滑和几乎线性的灯功率调节控制特性。 ⑨可得到低功率解决方案,半桥逆变器的供电电压可以选得很低(如5%~100%的调光范 围对应30~120V),这样可采用低电压电容和低耐电压值的功率MOSFET。

调光开关接线

节能省电其实一直是日常生活中一个亟待解决的问题但在通过遥控器和调光开关实现灯光调控之前人们一直没有找到一个既能解决实际问题在价格方面又能接受的适当方法所谓灯光调节其实就是根据家中某一区域的使用功能不同的时间室外光亮度等来控制照明其中最重要的一点就是可进行预设即具有将照明亮度转变为一系列程序设置的功能这也是我们称之为智能的原因这些设置也称为场景因为它本身就是根据人们对于不同场景的灯光需求 来设置的。 调光/调速/调音 调光开关往往只能用在白炽灯上(即灯泡)。调光只能调节灯光明暗,不能节约电源。调速现在通常是无极调速。调音是调节音量的大小。 随着现代建筑和照明技术的发展,传统的照明设计方法已经不能解决实际场景对照明效果的不同需求,简单的控制方式更不便于管理和维护。 红外线无线遥控调光灯 以节能环保为目的,与现代通信技术、计算机技术、控制技术等相结合的智能照明技术,满足了“绿色照明”的设计要求,具有较大的发展空间。本文主要介绍了遥控调光灯的基本原理和硬件电路设计,由主机和遥控从机两部分组成。本系统基于红外线无线遥感技术,以高亮度LED灯为光源,以A T89S52单片机为从机的核心器件实现红外线远程控制,以ATMEGA16L单片机作为主机的核心器件主要负责调光,采用PWM节能法来实现对LED 灯启停、亮度等多种工作状态进行快速而准确地控制。电路结构简单、成本低、操作方便、遥控距离在8m左右,可广泛应用于家庭照明。 近年来,全球性的能源短缺和环境污染问题日益突出,人们迫切希望应用节能环保的新技术。当今绝大部分照明控制系统都是利用各类普通的手动开关来控制灯具的开关状态,其亮度调节也是通过普通的调光开关进行相应的调节,每次操作都必须走到开关处才能完成。在日常生活中,人们往往因离电灯开关较远,即使在暂时不需要照明的时候,人们也懒得去熄灯,任其亮着,直到睡觉前或外出才关灯。这种情况非常普遍,从而造成电能的大量浪费。 基于上述原因,为了更方便生活,本文设计出了一遥控调光灯,其不仅可以遥控开、关灯,还能根据需要任意调节灯光的亮度,有记忆存储功能,可分为睡眠/工作两种模式。此外,本设计还有一大亮点——采用高亮度LED灯作为光源。半导体照明以寿命长、节能、环保

led灯调光原理分析对比

看到论坛上有朋友问起LED调光原理,正好手头上有一份这样的资料,发上来大家一起看看。帖子主要对大电流LED调光原理进行了对比分析,是一篇 不错的文章。 一般来说,LED调光技术的运用不仅可以提高对比度,还可以减少耗电量。下面将对大电流LED调光原理进行对比分析。 对比度一般都被定义为系统可产生出的最亮色彩(白色)与最暗色彩(黑色)的发光度比率。可以通过控制进入的正向电流来调节LED的亮度级别,即模拟调光。LED的色彩可以随着正向电流的变化而位移,因此对于一些可容忍色彩位移的低档照明系统而言,模拟调光不失为一个合适的选择。但是,对于基于LED的LCD显示屏等的高端应用来说,为获得想要的色彩一致性和各种亮度级别,就必须采用更复杂的调光技术。针对高端应用的LED驱动器一般都采用固定频率工作模式与PWM调光机制。在PWM调光中,LED正向电流以减少的占空比在0%至100%间转换,以进行亮度控制。然而,PWM调光信号的频率必须大于100Hz,以免出现闪烁或抖动。为尽量降低可听到噪声和辐射,高端照明系统的调光频率范围一般要求几万赫兹。可是,更高的调光频率将大幅缩小驱动的调光范围,反而降低系统的最大亮度。本文将探讨在固定频率、时间延迟磁滞控制和固定导通时间的降压式LED驱动器中,高频PWM调光技术的性能表现,并通过测试数据来衡量不同配置下的性能。 LED调光范围

在PWM调光中,LED正向电流以受控的占空比(DDim)进行开/关(ON/OFF),以达到想要的亮度级别。DDim的动态范围定义了PWM调光配置所能实现的最大亮度级别。如上所述,LED亮度与LED正向电流成比例,因此,在使用PWM 调光配置时所得到的最高和最低LED电流平均值分别由式1和式2表示。 ILED_Max=DDim_Max×ILE D (1) ILED_Min=DDim_Min×ILED (2) 其中,ILED为LED电流,ILED_Max为LED电流的平均最高值,ILED_Min 为LED电流的平均最低值,DDim_Max为最大调光占空比,DDim_Min为最小调光占空比。因此,最高和最低LED明亮的比率,又被看作PWM调光范围,用 式3表示。 调光范围=DDim_Max/DDim_Min (3) 式3表示PWM调光范围与最大、最小调光占空比之间的关系。对于给定的调光频率FDim,DDim_Max表示最大占空比,即LED电流在下一个调光周期开始前,从所需的正向电流降低至零的时间;DDim_Min表示最小占空比,即LED电流由零升至所需的正向电流(IF)的时间。

PWM调光开关 led调光调光开关的介绍

阿达电子公司主要PWM调光开关、LED调光开关主要IC有:ADA01AL/ADPT005/ADPT008/ADPT012/ADA16/ADPT01。PWM调光就是通过调整灯亮的时间与灯灭时间的比例来调整平均感观亮度的方法。在微小的时间片里,LED或灯要么是全开、要么是全关,没有半开的中间状态。PWM调光可以是分档的,也可以是无级的。 阿达电子公司部分PWM调光开关、LED调光开关芯片介绍: ADA01AL单通道电容式触摸IC芯片: ADA01AL是一款单通道电容式触摸IC, 专门针对LED灯的应用,内置强大的电容感应式触摸算法,广泛适用于各种类型的LED灯具控制产品。 ADPT005_5通道触摸感应IC芯片: ADPT005 是一款有5个独立的电容式触摸感应通道和5个输出端口的8位专用集成电路。ADPT008_8通道触摸感应IC芯片: ADPT008 是一款有8个独立的电容式触摸感应通道和10个控制端口的专用集成电路。 ADPT012_12通道触摸感应IC芯片: ADPT012 是一款有12个独立的电容式触摸感应通道和多个控制端口的专用集成电路。 抗电源干扰及手机干扰特性好。EFT可以达到4KV以上;近距离、多角度手机干扰、对讲机干扰,触摸响应灵敏度及可靠性不受影响。 ADA16 TSSOP28封装16通道触摸感应IC: 本产品经过多年类型客户的检验,稳定性和抗干扰能力等各方面表现优秀,目前已广泛使用于:门禁,考勤机,安防,小家电,便携式产品,KTV面板,智能家居,智能控制面板,汽车周边电子产品等等。 请注意,当触摸介质比较厚时,单个触摸点的面积要相对的大一些,比如用3mm以上的非导电介质时,单个按键的触摸面积最好在直径为15mm左右 以上是我们为您整理阿达电子公司的部分PWM调光开关、LED调光开关芯片资料,更多详细资料请稳步到资料下载或者产品中心进行更详细的查看。 关键词:PWM调光开关、LED调光开关

光开关

光开关是较为重要的光无源器件,在光网络系统中可对光信号进行通断和切换。光开关在光分/插复用(OADM)、时分复用(TDM)、波分复用(WDM)中有着广泛的应用。光开关以其高速度、高稳定性、低串扰等优势成为各大通信公司和研究单位的研究重点。光开关有着广阔的市场前景,是最具发展潜力的光无源器件之一。 一、光开关与全光网络 近几年,随着远程通信和计算机通信的飞速发展,特别是Internet/Intranet业务的爆炸式崛起,传统的基于电子领域的传输系统已难以满足日益增加的业务需要。密集波分复用(DWDM)技术利用单模光纤的低损耗窗口,在一根光纤中同时传输多路波长载波,并采用掺铒光纤放大器(EDFA)来取代传统的光电中继系统。不但在不增加光纤的基础上使容量成倍增加,还摆脱了由于光电转换过程中“电子瓶颈”所带来的单根光纤传输速率制约。因而被认为是提高光纤通信容量的一种有效途径,如图1所示。 从图2中我们看到,光交叉连接器(OXC)和光上/下路复用器(OADM)是全光网络的关键。OADM和OXC可以管理任意波长的信号,从而更充分地利用带宽。而且,环状网络拓扑结构增强了WDM设备的可靠性以及数据的生存性。 光交叉连接矩阵是OXC的核心,它要求无阻塞、低延迟、宽带和高可靠性,并且要具有单向、双向和广播形式的功能,如图3所示。而光开关又是光交换和光互连中最基本的器件,它的性能、价格将直接影响到OXC系统的商用化进程。 二、光开关概述 目前,在光传送网中各种不同交换原理和实现技术的光开关被广泛地提出。不同原理和技术的光开关具有不同的特性,适用于不同的场合。依据不同的光开关原理,光开关可分为:机械光开关、磁光开关、热光开关、电光开关和声光开关。依据光开关的交换介质来分,光开关可分为:自由空间交换光开关和波导交换光开关。 机械式光开关:机械式光开关发展已比较成熟,可分为移动光纤、移动套管、移动准直器、移动反光镜、移动棱镜和移动耦合器。传统的机械式光开关插入损耗较低(≤2dB);隔离度高(>45dB);不受偏振和波长的影响。其缺陷在于开关时间较长,一般为毫秒量级,有时还存在回跳抖动和重复性较差的问题。另外其体积较大,不易做成大型的光开关矩阵。机械式光开关,已经做成产品,在国内市场上主要有康顺公司生产的1×2,1×4,2×2机械式光开关,国外的主要有E-TEK,JDS,Dicon,Lightech,Oplink等公司的产品。 微电子机械光开关(MEMS):MEMS是由半导体材料,如Si等,构成的微机械结构。它将电、机械和光集成为一块芯片,能透明地传送不同速率、不同协议的业务。MEMS已广泛应用在工业领域。MEMS器件的结构很像IC的结构,它的基本原理就是通过静电的作用使可以活动的微镜面发生转动。从而改变输入光的传播方向。MEMS既有机械光开关的低损耗、低串扰、低偏振敏感性和高消光比的优点,又有波导开关

光开关的原理及种类

?一、前言 光纤通信技术的问世和发展给通信业带来了革命性的变革,目前世界大约85%的通信业务经光纤传输,长途干线网和本地中继网也已广泛使用光纤。同时,密集波分复用(DWDM)技术的发展和成熟为充分应用光纤传输的带宽和容量开拓了广阔的空间,具有高速率、大带宽明显优势的DWDM光通信网络已经成为目前通信网络发展的趋势。特别是近几年,以IP为主的Internet业务呈现爆炸性增长,这种增长趋势不仅改变了IP网络层与底层传输网络的关系,而且对整个网络的组网方式、节点设计、管理和控制提出了新的要求。一种智能化网络体系结构—自动交换光网络(ASON:automatic switched optical networks)成为当今系统研究的热点,它的核心节点由光交叉连接(OXC:optical cross connect)设备构成,通过OXC,可实现动态波长选路和对光网络灵活、有效的管理。光交叉互连(OXC)技术在日益复杂的DWDM网中是关键技术之一,而光开关作为切换光路的功能器件,则是OXC中的关键部分。光开关矩阵是OXC的核心部分,它可实现动态光路径管理、光网络的故障保护、波长动态分配等功能,对解决目前复杂网络中的波长争用,提高波长重用率,进行网络灵活配置均有重要的意义。 光开关不仅是OXC中的核心器件,它还广泛应用于以下领域。 (1)光网络的保护倒换系统,实际的光缆传输系统中都留有备用光纤,当工作通道传输中断或性能劣化到一定程度,光开关将主信号自动转至备用光纤系统传输,从而使接收端能接收到正常信号而感觉不到网路已出了故障,其会将网络节点连成环形以进一步改善网络的生存性。 (2)网络性能的实时监控系统,在远端光纤测试点,通过1×N多路光开关把多根光纤接到光时域反射仪上,进行实时网络监控,通过计算机控制光开关倒换顺序和时间,实现对所有光纤的检测,并将检测结果传回网络控制中心,一旦发现某一路出现问题,可在网管中心直接进行处理。 (3)光开关还应用在光纤通信器件测试系统以及城域网、接入网的差/分复用和交换设备中。光开关的引入使未来全光网络更具灵活性、智能性、生存性。光开关技术已经成为未来光联网、光交换的关键技术,在通信、自动控制等领域发挥着越来越重要的作用。 在众多种类的光开关中,微机械(MEMS)光开关被认为最有可能成为光开关的主流器件。本文在概述多种光开关原理特点的基础上,重点分析了几种主要的MEMS光开关,并阐述了各自的结构与性能特点。 二、光开关的原理及种类 光开关性能参数有多种,如:快切换速度、高隔离度、小插入损耗、对偏振不敏感及可靠性,不同领域对它的要求也各不相同。其种类有保护、切换系统中常用的传统光机械开关,也有这几年飞速发展的新型光开关,如:热光开关、液晶开关、电光开关、声光开关、微光机电系统光开关(MOEMS,micro optic electro mechanical systems)、气泡开关等。在超高速光通信领域,还有马赫-曾德尔(Maeh-Zehnder)干涉型光开关、非线性环路镜(NOLM,nonlinear optical fiber loop mirror)光开关等光控开关。

ADA01AL-B升级版_led调光开关,pwm调光开关规格书V2.1

规格 说明 书
单 通 道 电 容 式 触 摸 感 应 IC LED灯光控制IC ADA01AL(升级版) V2 . 1
全国客服中心电话: 全国客服中心电话:4006-992-661 直线电话: 直线电话:0755-8369-3048 8297-7857 8297-7641 自动传真: 自动传真:0755-2263-4057 E-mail: sinoada@https://www.doczj.com/doc/0d3615484.html, 企业 QQ: 800-000-251 官方网站: https://www.doczj.com/doc/0d3615484.html, 资料在公司官方网站上会随时更新, 资料在公司官方网站上会随时更新,敬请留意! 敬请留意!



1、概述 ........................................................................................................................................ 3 2、特性简介 ................................................................................................................................. 3 3、封装及引脚说明 ...................................................................................................................... 5 4、应用电路 ................................................................................................................................. 6 5、电气参数 ................................................................................................................................. 8 6、应用说明 ................................................................................................................................. 9 7. 修改记录 ................................................................................................................................ 10
第 2 页 共 10 页

调光开关电路原理图

上篇写到什么是调光开关,后来很多人就问我“调光开关如何接线?”在这里小编亲自写了一下调光开关的电路原理图,希望能对大家有用。 调光开关电路原理图 当两个电极间的电压“正常”并且门上几乎没有电压时,三端双向可控硅开关就会成为一个打开的开关——它不会导电。这是因为来自N型材料的电子沿着P型材料的边缘进入空穴,产生一个耗尽区,即一处几乎没有自由电子和空穴的区域。 如果您给门提供足够强劲的电压,它就会破坏耗尽区,使电子能够通过三端双向可控硅开关移动。确切的次序随着电流的方向(也就是处于交流电周期的那个部分)而改变。我们可以这样理解:因为电流在流动,所以上接头是阴极而下接头则为阳极。这样的电路安排使门上增加的电压将与上接头承载相同的电荷。因此我们可以得出类似于以下的结论: 当门在“充电”时,门和下接头间的电压差变得足够大,使得电子在它们之间开始移动。从N型材料(e 区)移出的电子破坏了e区和d区之间的耗尽区。接着电压差把更多的自由电子带到d区,破坏了d区和c区之间的耗尽区。来自c 区的电子会朝着下接头移动,在d区的空穴之间跳动。这也给c区带来了更多的空穴,使电子可以从c区和b区之间的耗尽区移出来。这里的电压很强,足以把电子从a区带到b区的空穴中,破坏最后一个耗尽区。随着耗尽区的消失,电子可以在上接头和下接头间自由移动,三端双向可控硅开关此时开始导电!(注意:除了三端双向可控硅开关之外,一些调光开关还包含一个类似的半导体装置,称为两端交流开关。这些电路的工作原理都基本相同。) 为了让三端双向可控硅开关开始传导两个电极间的电流,门上需要有一个升压器。这个必需的电压水平不会改变,但是您可以调节从门开始“充电”到达到这一电压所需要的时间。此时就需要可变电阻器和触发电容发挥作用。

PWM实现精准LED调光

PWM实现精准LED调光

加速调光频率 PWM实现精准LED调光无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。 无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。 一、PWM调光能调配准确色光 一般来说,模拟调光比较容易实行,这是因为LED驱动器的输出电流变化与控制电压成比

例,而且模拟调光也不会引发额外的电磁兼容性(EMC)/电磁干扰(EMI)潜在频率问题。然而,大部分设计采用PWM调光的理由都是基于LED的基本特性,即放射光的位移是与平均驱动电流的大小成比例(图1)。对于单色LED来说,主要光波的波长会发生变化,而在白光LED方面,出现变化的是相对色温(CCT)。对于人们的肉眼来说,很难察觉出红、绿或蓝光LED中的奈米波长变化,尤其是当光的强度也同样在改变,但是白光的色温变化则比较容易察觉出来。大多数的白光LED都包含一片可放射出蓝光频谱光子的晶圆,这些光子在撞击磷光涂层后便会放射出各种可见光范围内的光子。在较小的电流下,磷光会成为主导并使光线偏向黄色;而在较大电流下,LED 放射出来的蓝光则较多,使得光线偏向蓝色,同时也会产生较高的CCT。对于使用超过一个白光LED的应用,在两个相邻LED之间出现的CCT差异会很明显,且视觉令人不悦,此概念可以进一步延伸将多个单色LED光线混和在一起的光源。一旦超过一个光源,任何出现在它们之间的CCT 差异都会令人感到刺眼。

光开关主流技术

光开关主流技术 北京锦坤科技有限公司w https://www.doczj.com/doc/0d3615484.html, 陈希明,周平( 重庆邮电学院光电工程学院, 重庆400065) 摘要:光开关是光网络中完成全光交换的核心器件,它的研究日益成为全光通信领域关注的焦点。文章重点介绍了光开关在全光网络中的应用、MEMS 光开关和 热光开关的基本工作原理及两种光开关技术的进展,并就其他光开关作了简要介绍。 关键词:全光网络;光开关;光通信.中图分类号: TN929.11 文献标志码: A 1 前言 全光网络是指上、下载的业务信号及交换过程均以光波的形式进行, 没有任何的光电及电光转换, 全部过程都在光域范围内完成[1, 2]。光开关是按一定要求将一个光通道的光信号转换到另一个光通道的器件。光开关可使光路之间进行直接交换, 是光网络中完成全光交换的核心器件, 随着全光网络市场的扩大, 光开关的研究日益成为全光通信领域关注的焦点。在全光网络中, 光开关可实现在全光层的路由选择、波长选择、光交叉连接以及自愈保护等重要功能,因此光开关是全光通信许多设备中的关键光器件, 其响应速度、串音、插入损耗等性能将直接影响全光通信的质量[3- 6]。其中光交叉连接设备(OXC) 和光分插复用设备(OADM) 可以说是全光网的核心[7]。而光开关和光开关阵列恰恰是OXC 和OADM的核心技术。研制全光的交叉连接OXC 和分插复用OADM设备, 成为建设大容量通信干线网络十分重要的一环。全光网络中应用的光开关应具有快的响应速度、低的插入损耗、低通道串音、对偏振不敏感、可集成性和可扩展性、低成本、低功耗、热稳定性好等特性[6- 8]。 2 光开关在全光网络中的应用 当前业已成熟的、且已实现商品化的微电子机械光开关和热光开关, 集中了机械式光开关和波导光开关的优点, 同时又克服了它们固有的缺点。此类光开关主要采用硅微加工技术将开关集成在单片硅基底上并能构成大规模矩阵阵列。另外, 此类开关批量生产时成本较低, 在开关损耗、串扰、消光比、开关尺寸等性能方面优势明显, 是光开关的较佳选择。 2.1 微电子机械系统(MEMS - micro - electro - mechanical-sys tems ) MEMS 是通过微制造技术将微型机械元件、微型传感器、微型执行器和信号处理及控制电路等在普通硅基底上集成。我国的MEMS 研究始于1989 年, 经过十几年的发展, 在多种微型传感器、微执行器和若干微系统样机等方面已有一定的基础和技术储备, 开发出了若干小批量、多品种、高质量的MEMS 器件和系统, 目前已广泛应用于工业领域[9]。而MEMS 光开关是基于半导体微细加工技术构筑在半导体基片上的微镜阵列, 即将电、机械和光集成为一块芯片, 能透明地传送不同速率、不同协议的业务。目前已成为一种最流行的光开关制作技术。其基本原理通过静电力或电磁力的作用, 使可以活动的微镜产生升降、旋转或移动, 从而改变输入光的传播方向以实现光路通断的功能, 使任一输入和输出端口相连接, 且1 个输出端口在同一时间只能和1 个输入端口相连接。与现有的基于光波导技术的光开关相比, MEMS 光开关具有低串音、低插损的优点成为全光网络中的关键光器件。同时它既有机械光开关和波导光开关的优点, 又克服了光机械开关难以集成和扩展性差等缺点[10- 13], 它结构 紧凑、重量轻, 且扩展性较好。MEMS 光开关的特性可概括为[14- 16]: 低插入损耗; 低串扰; 与波长、速率、调制方式无关; 功耗低; 坚固、寿命长; 可集成扩展成大规模光开关矩阵; 适中的响应速度(开关时间从100ns~10ms)。在光交叉连接及需要支持大容最交换的系统中, 基于MEMS 技术的解决方案已是主流。MEMS 光开关可以分为二维和三维光开关。二维

相关主题
文本预览
相关文档 最新文档