当前位置:文档之家› 复杂线性及非线性规划问题应用

复杂线性及非线性规划问题应用

复杂线性及非线性规划问题应用
复杂线性及非线性规划问题应用

复杂线性及非线性规划问题应用

获得最大利润,是企业直接目的。本文针对原料油采购与耗用及库存和价格变化对利润的影响得到线性关系,建立了关于原料油的采购和耗用及库存问题的线性规划模型,用逐步搜索法,找出约束条件;最后考虑到由于原料油的紧缺程度、资金周转、运输条件限制等实际情况,导致每月的存储量不同,并用LINGO 求解,解决了复杂线性规划以及非线性规划问题,得出合理的采购、耗用及库存方案,确定最大利润。

标签:采购耗用库存LINGO 约束条件

针对问题三:当价格保持线性上升时,根据每种油第一个月价格,确定出2个月价格。价格就由常量变关于x的函数,其中x上限20。使用LINGO计算,用EXCEL制作曲线图。无论x在取值范围如何变,都能提出最佳采购与耗用方案并确定最大利润。

一、问题的提出

二、问题分析

问题1、2目的是寻求更好的采购和耗用及库存方案,使总利润最大。总利润包含采购原油费用、储存原油费用、销售成品油所得的金额,目标函数由此构成。每个月对原油的精练、存储油量的限制,成品油的硬度也限制在3至6之间,故约束条件可得。

三、基本假设

1.假设原料油能够满足加工需要;

2.不考虑原料油的采购费用和所需的时间;

3.假设原料油的采购和加工是均匀连续的,存储中没有质量损失。

四、符号说明

六、模型的检验

主要运用LINGO检测,第一个月最大利润43750.元,对问题二:逐月最大利润为55227.27元,采购和耗用原料油都满足限制条件。

七、模型评价

1.模型的优点

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

R语言求解线性规划和非线性规划

第七章线性规划与非线性规划 例1m a x z=10x 1+5x2 s.t.5x1+2x2<=8 3x1+4x2=9 x1+x2>=1 x1,x2>=0 首先可化为标准形式:min - z = -10x1 -5x2 s.t. 5x1+2x1<=8 -x1-x2<=-1 3x1+4x2=9 x1,x2>=0 library(Rglpk) obj<-c(-10,-5) mat<-matrix(c(5,2,-1,-1,3,4),3,2,T) dir<-c("<=","<=","==") rhs<-c(8,-1,9) Rglpk_solve_LP(obj,mat,dir,rhs) #直接求解 library(Rglpk) obj<-c(10,5) mat<-matrix(c(5,2,1,1,3,4),3,2,T) dir<-c("<=",">=","==") rhs<-c(8,1,9) Rglpk_solve_LP(obj,mat,dir,rhs,max=T) 非线性规划求解(Rdonlp2) 例2 有如下的条件约束最优化问题:

22min(sin cos ) 1001001001002133 2sin cos 3z x y y x x y x y x y xy x y =+-<

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

非线性规划的概念和原理

第五章 非线性规划的概念和原理 非线性规划的理论是在线性规划的基础上发展起来的。1951年,库恩(H.W.Kuhn )和塔克(A.W.Tucker )等人提出了非线性规划的最优性条件,为它的发展奠定了基础。以后随着电子计算机的普遍使用,非线性规划的理论和方法有了很大的发展,其应用的领域也越来越广泛,特别是在军事,经济,管理,生产过程自动化,工程设计和产品优化设计等方面都有着重要的应用。 一般来说,解非线性规划问题要比求解线性规划问题困难得多,而且也不像线性规划那样有统一的数学模型及如单纯形法这一通用解法。非线性规划的各种算法大都有自己特定的适用范围。都有一定的局限性,到目前为止还没有适合于各种非线性规划问题的一般算法。这正是需要人们进一步研究的课题。 5.1 非线性规划的实例及数学模型 [例题6.1] 投资问题: 假定国家的下一个五年计划内用于发展某种工业的总投资为b 亿元,可供选择兴建的项目共有几个。已知第j 个项目的投资为j a 亿元,可得收益为j c 亿元,问应如何进行投资,才能使盈利率(即单位投资可得到的收益)为最高? 解:令决策变量为j x ,则j x 应满足条件() 10j j x x -= 同时j x 应满足约束条件 1 n j j j a x b =≤∑ 目标函数是要求盈利率()1121 ,,,n j j j n n j j j c x f x x x a x === ∑∑L 最大。 [例题6.2] 厂址选择问题: 设有n 个市场,第j 个市场位置为() ,j j p q ,它对某种货物的需要量为j b ()1,2,,j n =L 。 现计划建立m 个仓库,第i 个仓库的存储容量为i a ()1,2,,i m =L 。试确定仓库的位置,使各仓库对各市场的运输量与路程乘积之和为最小。 解:设第i 个仓库的位置为(),i i x y ()1,2,,i m =L ,第i 个仓库到第j 个市场的货物供应量为i j z ()1,2,,,1,2,,i m j n ==L L ,则第i 个仓库到第j 个市场的距离为

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用 (一) 问题描述 非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。本实验就是用matlab 软件来解决非线性规划问题。 (二) 基本要求 掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。 题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大? 题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定 系数. 题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大. (三) 数据结构 题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0

数学建模线性规划与非线性规划

实验7:线性规划与非线性规划 班级:2015级电科班,学号:222015333210187,姓名:吴京宣,第1组 ====================================================================== 一、实验目的: 1. 了解线性规划的基本内容。 2. 直观了解非线性规划的基本内容。 3. 掌握用数学软件求解优化问题。 二、实验内容 1. 两个引例. 2. 用数学软件包MATLAB求解线性规划与非线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 非线性规划的基本理论 6. 钢管订购及运输优化模型. 三、实验步骤 对以下问题,编写M文件: 1.某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过800箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每100箱甲饮料获利可增加1万元,问应否改变生产计划. 2.某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60 台、80台.每季度的生产费用为(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类 1无约束的非线性规划 当问题没有约束条件时,即求多元函数的极值问题,一般模型为 ()min 0 x R f X X ∈??? ≥?? 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1一般迭代法 即为可行方向法。对于问题()min 0x R f X X ∈??? ≥?? 给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的 ),2,1()( =k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。 由一个解向量) (k X 求出另一个新的解向量)1(+k X 向量是由方向和长度确定的,所以),2,1()1( =+=+k P X X k k k k λ 即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即 .)()()(10 ≥≥≥≥k X f X f X f 检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否 ε≤?+||)(||1k X f 。 1.1.2一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等);

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

第三章 非线性规划[001]

第三章 非线性规划 §1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。 例 1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A 元,投资于第),,1(n i i 个项目需花资金i a 元,并预计可收益i b 元。试选择最佳投资方案。 解 设投资决策变量为 个项目 决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1 , 则投资总额为 n i i i x a 1 ,投资总收益为 n i i i x b 1。因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 n i i i A x a 10 另外,由于),,1(n i x i 只取值0或1,所以还有 .,,1,0)1(n i x x i i 最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为: n i i i n i i i x a x b Q 11 max s.t. n i i i A x a 10 .,,1,0)1(n i x x i i 上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。可概括为一般形式 )(min x f q j x h j ,,1,0)(s.t. (NP) p i x g i ,,1,0)(

MAAB非线性规划及非线性约束条件求解

M A T L A B 非线性规划及非线性约束条件求解 【题1】求非线性规划问题:221212121min 262 f x x x x x x = +--- clear all clc f=@(x)((1/2)*x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-6*x(2)); A=[11;-12;21]; b=[2;2;3]; Aeq=[];beq=[]; lb=[0;0]; ub=[100;100]; x0=[11]'; intlist=[0;0]; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题2】求非线性规划问题:123min f x x x =- clear all clc f=@(x)(-x(1)*x(2)*x(3)); A=[-1-2-2;122]; b=[0;72]; Aeq=[];beq=[]; lb=[];ub=[]; x0=[1;1;1]; intlist=[000]'; [errmsg,Z,X]=BNB20_new(f,x0,intlist,lb,ub,A,b,Aeq,beq) 【题3】求非线性规划问题:()12212122min 42421x f e x x x x x =++++ function [c,ceq]=nolic2(x) c(1)=x(1)*x(2)-x(1)-x(2)+3/2; ceq=[]; end clear all clc f=@(x)exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2) +1); A=[];b=[];Aeq=[];beq=[]; lb=[-10-10]'; ub=[]; x0=[11]'; intlist=[00]';

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在 实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都 可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数 的极值问题,一般模型为 I r m i n f(X) X 一0 此类问题即为无约束的非线性规划问题 1.1无约束非线性规划的解法 1.1.1 一般迭代法 即为可行方向法。对于问题J mnf(X) [X X O 给出f (X)的极小点的初始值X(O),按某种规律计算出一系列的X(k)(k =1,2,…), 希望点阵{X (k)}的极限X "就是f (X)的一个极小点。 由一个解向量X(k)求出另一个新的解向量X(kI) 向量是由方向和长度确定的,所以XZ I)=X k「k P k(k =12…) 即求解A和P k,选择'k和P k的原则是使目标函数在点阵上的值逐步减小,即 f (X0) 一f (X1) 一- f (X k) 一. 检验{X(k)}是否收敛与最优解,及对于给定的精度;7,是否IIlf(X k JlF ; 1.1.2 一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维搜索的方法很多,常用的有: (1)试探法(“成功一失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。考虑一维极小化问题 a?f(t) 若f (t)是[a,b]区间上的下单峰函数,我们介绍通过不断地缩短[a,b]的长度,来

线性与非线性规划问题求解

线性与非线性规划问题求解 实验目的:学会用lindo 和lingo 软件求解线性和非线性规划,并作简单分析。 实验内容: 问题1:最佳连续投资方案 某部门在今后五年内考虑下列项目投资,已知 项目1 从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目 2 第三年年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4 万元; 项目 3 第二年年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3 万元; 项目4 五年内每年年初可购买公债,于每年末归还,并加利息6%. 该部门现有资金10万元,问它应如何确定给这些项目每年的投资额,使到第五年末拥有的资金的本利总额为最大? 提示:设ij y 表示第i 年年初投资给项目j 的资金额度(单位:万元),则各年的投资限制为 第一年:;101411≤+y y 第二年:年初拥有的资金额为,06.110141114y y y --+因此有 ;06.0101411242321y y y y y +-≤++ 第三年:年初拥有的资金额为 ;06.115.106.01024232124111411y y y y y y y ---+++- 因此有 ;06.006.015.0102423211411343231y y y y y y y y +--++≤++ 依次类推有: 第四年: ;06.006.015.006.015.01034323124232114114441y y y y y y y y y y +--+-+++≤+ 第五年: ; 06.006.015.006.015.006.015.0104441343231242321141154y y y y y y y y y y y +-+-++-+++≤本问题是要制定投资方案使第五年末该部门拥有的资金额最大,即 5441322306.115.125.140.1max y y y y f +++=. 问题2:运输问题 某公司有3个仓库A1、A2、A3,库存原料量分别为:A1为21吨,A2为12吨,A3为27

非线性规划模型在产品组合中的应用

龙源期刊网 https://www.doczj.com/doc/0d18560912.html, 非线性规划模型在产品组合中的应用 作者:尹聪春 来源:《中国管理信息化》2012年第08期 [摘要]非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。本文主要介绍用Excel规划求解工具制作的非线性规划模型来解决经济管理中的产品组合问题。 [关键词]非线性规划;模型;产品组合;应用 doi : 10 . 3969 / j . issn . 1673 - 0194 . 2012 . 08. 065 [中图分类号] F272 [文献标识码] A [文章编号] 1673 - 0194(2012)08- 0096- 02 1 非线性规划数学模型 对实际规划问题作定量分析,必须建立数学模型。建立数学模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,称之为目标函数。然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,称之为约束条件。非线性规划问题的一般数学模型可表述为求未知量x1,x2,…,xn,使满足约束条件: gi(x1,…,xn)≥ 0i=1,…,m hj(x1,…,xn)=0j=1,…,p 并使目标函数f(x1,…,xn)达到最小值(或最大值)。其中:诸gi和诸hj都是定义在n维向量空间Rn的某子集D(定义域)上的实值函数,且至少有一个是非线性函数。 上述模型可简记为: minf(x) s.t.gi(x)≥ 0i=1,…,m hj(x)=0j=1,…,p

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

求解非线性规划

求解非线性规划

————————————————————————————————作者:————————————————————————————————日期:

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数,Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设置。 例2 求下列非线性规划问题

线性规划和基本不等式常见题型

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222 x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将直线 向右上方平移,过点A (2,0)时,有最小值2, 过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260 302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域, △ABC 的面积即为所求, 由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数 A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得 到整点个数为13个,选 D 四,求非线性目标函数的最值 例4、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则 z=x 2 +y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、

求解非线性规划

非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 1.2 线性规划与非线性规划的区别 如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。 1.3 非线性规划的Matlab 解法 Matlab 中非线性规划的数学模型写成以下形式 )(min x f ???????=≤=?≤0 )(0)(x Ceq x C Beq x Aeq B Ax , 其中)(x f 是标量函数, Beq Aeq B A ,,,是相应维数的矩阵和向量,)(),(x Ceq x C 是非线性向量函数。 Matlab 中的命令是 X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) 它的返回值是向量x ,其中FUN 是用M 文件定义的函数)(x f ;X0是x 的初始值;A,B,Aeq,Beq 定义了线性约束Beq X Aeq B X A =≤*,*,如果没有等式约束,则A=[],B=[],Aeq=[],Beq=[];LB 和UB 是变量x 的下界和上界,如果上界和下界没有约束,则LB=[],UB=[],如果x 无下界,则LB=-inf ,如果x 无上界,则UB=inf ;NONLCON 是用M 文件定义的非线性向量函数)(),(x Ceq x C ;OPTIONS 定义了优化参数,可以使用Matlab 缺省的参数设置。 例2 求下列非线性规划问题

《线性规划与基本不等式》的案例分析

高考考点:《不等关系、线性规划与基本不等式》的案例分析 一、高考要求 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景。 2.一元二次不等式 (1)会从实际背景中抽象出一元二次不等式模型。 (2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。 (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。 3.二元一次不等式组与简单的线性规划问题 (1)会从实际情境中抽象出二元二次不等式组。 (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 4.基本不等式: (1)了解基本不等式的证明过程。 (2)会用基本不等式解决简单的最大(小)值问题。 二、规律分析

【规律总结】 全面分析这六年来的试题,可以看出,山东卷全面落实考纲对这一部分的规定,考查不等式的解法、线性规划和基本不等式的应用,每年的考查形式稍有变化,但总体上考点不变。具体来说,有这样的规律: (1)文科几乎每年涉及一元二次不等式的解法。理科涉及绝对值不等式的解法较多,一般与集合、函数的定义域求解结合较多,以选择题为主。 (2)几乎每年都考查线性规划问题,并且基本上都是以填空题和选择题的形式出现,只有2010年在填空题中考查了基本不等式,分析发现2010年以前山东高考是填空题的形式进行考查,2011年之后,则改为以选择题的形式考查。 (2)从2011年开始,山东高考考查线性规划的比重和难度在逐渐增加,2011年只是考查求线性规划的最大值问题,2012年的高考既考查求最大值又增加了求最小值,这两年都设计一个小题,2013则是设计了两个小题,并且与解析几何相结合,难度教以往有所增加。2014年将线性规划问题文科放在了第10,理科在9,难度再次增大。

非线性规划(教案)

非线性规划 线性规划及其扩展问题的约束条件和目标函数都是关于决策变量的一次函数。虽然大量的实际问题可以简化为线性规划及其扩展问题来求解,但是还有相当多的问题很难用线性函数加以描述。如果目标函数或约束条件中包含有非线性函数,就称这样的规划问题为非线性规划问题。由于人们对实际问题解的精度要求越来越高,非线性规划自20世纪70年代以来得到了长足的发展;目前,已成为运筹学的一个重要分支,在管理科学、最优设计、系统控制等许多领域得到了广泛的应用。 一般来讲,非线性规划问题的求解要比线性规划问题的求解困难得多;而且也不象线性规划问题那样具有一种通用的求解方法(单纯形法)。非线性规划没有能够适应所有问题的一般求解方法,各种方法都只能在其特定的范围内发挥作用。 本章在简要介绍非线性规划基本概念和一维搜索的基础上,重点介绍无约束极值问题和约束极值问题的求解方法。 §1非线性规划的数学模型 1.1 非线性规划问题 [例1] 某商店经销A 、B 两种产品,售价分别为20和380元。据统计,售出一件A 产品的平均时间为0.5小时,而售出一件B 产品的平均时间与其销售的数量成正比,表达式为n 2.01+。若该商店总的营业时间为1000小时,试确定使其营业额最大的营业计划。 解:设1x 和2x 分别代表商店经销A 、B 两种产品的件数,于是有如下数学模型: 2138020)(m ax x x x f += 10002.05.02 221≤++x x x 0,021≥≥x x 1.2 非线性规划问题的数学模型 同线性规划问题的数学模型一样,非线性规划问题的数学模型可以具有不同的形式;但由于我们可以自由地实现不同形式之间的转换,因此我们可以用如下一般形式来加以描述: n E X X f ∈),(m in ),,2,1(,0)(m i X h i == ),,2,1(,0)(l j X g j =≥ 其中T n x x x X ),,,(21 =是n 维欧氏空间n E 中的向量点。

相关主题
文本预览
相关文档 最新文档