当前位置:文档之家› 经管类概率统计A卷(集美大学)

经管类概率统计A卷(集美大学)

经管类概率统计A卷(集美大学)
经管类概率统计A卷(集美大学)

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02,

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

《概率论与数理统计》期末考试题及答案

西南石油大学《概率论与数理统计》期末考试题及答案 一、填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 2、设事件A 与B 独立,A 与B 都不发生的概率为 1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为: ,0 ()1/4,020,2 x Ae x x x x ??

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

概率论与数理统计期末考试试题及解答.doc

《概率论与数理统计》期末试题 一、填空题(每小题 3 分,共 15 分) 1.设事件A, B仅发生一个的概率为,且 P( A) P(B) 0.5 ,则 A, B 至少有一个不发生的概率为 __________. 答案: 解: P( AB AB)0.3 即 0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.52P( AB) 所以 P( AB) 0.1 P(A B) P( AB) 1 P(AB) 0.9. 2.设随机变量X服从泊松分布,且P ( X 1) 4P(X 2) ,则P(X 3) ______. 答案: 1 e1 6 解答: 2 P( X 1) P( X 0) P( X 1) e e , P( X 2) e 2 2e 2 由 P(X 1) 4P( X 2) 知 e e 即 2 2 1 0 解得1,故 1 P(X 3) e 1 6 3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y X 2在区间(0,4) 内的概率密度为 f Y ( y) _________. 答案: 1 1 , 0 y 4, f Y ( y) F Y ( y) f X ( y ) 4 y y 2 0 , 其它. 解答:设 Y 的分布函数为F Y( y), X 的分布函数为 F X (x) ,密度为 f X (x) 则 F Y (y) P(Y y) P(X 2 y) P( y X y ) F X ( y) F X ( y ) 因为 X ~U(0, 2) ,所以F X( y ) 0 ,即 F Y ( y) F X ( y )

故 1 1 , 0 y 4, f Y ( y) F Y ( y) 4 y f X ( y ) 2 y 0 , 其它 . 另解在 (0, 2) 上函数 y x2严格单调,反函数为h( y) y 所以 1 1 , 0 y 4, f Y ( y) f X ( y) 4 y 2 y , 其它 . 4.设随机变量X ,Y 相互独立,且均服从参数为的指数分布,P( X 1) e 2,则_________,P{min( X ,Y) 1} =_________. 答案: 2 ,P{min( X ,Y) 1} 1 e-4 解答: P( X 1) 1 P( X 1) e e 2,故 2 P{min( X ,Y ) 1} 1 P{min( X ,Y ) 1} 1 P( X 1)P(Y 1) 1 e 4. 5.设总体X的概率密度为 ( 1) x , 0 x 1, f ( x) 1 . 0, 其它 X1 , X 2 , , X n是来自X的样本,则未知参数的极大似然估计量为 _________. 答案: $ 1 1 n 1 ln x i n i 1 解答: 似然函数为 n 1)n ( x1 ,L , x n ) L( x1 ,L , x n ; ) ( 1)x i ( i 1 n ln L n ln( 1) ln x i i 1 d ln L n n ln x i @0 d 1 i 1 解似然方程得的极大似然估计为

概率论与数理统计 习题(5)答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=? ???????? 即有 P {V >105}≈ 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少

最新概率论与数理统计期末考试卷附答案

概率论与数理统计期末考试卷 课程名称: 概率论与数理统计 考试时间 专业 班 学号 姓名 一、填空题(每格3分,共18分) 1. 设 3 1)()()(321= ==A P A P A P ,321,,A A A 相互独立,则(1)321,,A A A 至少出现一 个的概率为_ __;(2)321,,A A A 恰好出现一个的概率为_ _ _。 2. 设)2,1(~2N X ,)1(~P Y ,6.0=XY ρ,则=+-2)12(Y X E __ ____。 3.设Y X ,是相互独立的两个随机变量,它们的分布函数分别为)(x F X ,)(y F Y 则 },max{Y X Z =的分布函数是 。 4.若随机变量X 服从正态分布),(2 σμN ,20 21,,,X X X Λ是来自X 的一个样本,令 ∑∑==-=20 11 101 43i i i i X X Y ,则Y 服从分布 。 5. 若对任意给定的0>x ,随机变量y 的条件概率密度???>=-其它 ,00,)(y xe x y f xy z y 则 y 关于x 的回归函数==)(x x y μμ . 二、单项选择题(每小题2分,共10分)

1. 设函数)(x f 在区间],[b a 上等于x sin ,而在此区间外等于0,若)(x f 可以做为某连续型随机变量X 的密度函数,则区间],[b a 为( )。 (A) ]2,0[π ; (B) ],0[π; (C) ]0,2 [π - ; (D) ]2 3, 0[π 。 2. 假设随机变量X 的概率密度为)(x f ,即)(~x f X ,期望μ与方差2 σ都存在,样本)1(,,,21>n X X X n Λ取自X ,X 是样本均值,则有( ) (A) )(~x f X ; (B) )(~min 1x f X i n i ≤≤; (C) )(~max 1x f X i n i ≤≤ ; (D) )(~ ),,,(1 21∏=n i i n x f X X X Λ。 3. 总体2 ~(,)X N μσ,2σ已知,n ≥( )时,才能使总体均值μ的置信度为0.95 的置信区间长不大于L 。(975.0)96.1(=Φ) (A )2215/L σ; (B )22 15.3664/L σ; (C )22 16/L σ; (D )16。 4. 对回归方程的显著性的检验,通常采用3种方法,即相关系数检验法,-F 检验法 和-t 检验法,下列说法正确的( )。 (A) F 检验法最有效; (B) t 检验法最有效; (C) 3种方法是相通的,检验效果是相同的; (D) F 检验法和t 检验法,可以代替相关系数的检验法。 5.设n X X X ,,,21Λ来自正态总体),(2 σμN 的样本(2 σ已知),令n X u /σμ -= ,并且2 1α - u 满足 απ αα-=?- - --121 2 12 122 /dx e u u x (10<<α),则在检验水平α下, 检验00:μμ=H 时,第

概率论题目

概率论感觉测试(答案) 1. 假设考试周为1个礼拜(周一到周日),且考试时间为均匀分布,假使你有3门考试,则最后一门考试大约在 A 周五 B 周六 C 周日 Answer: B. 一般的讲在[0,1]之间n个均匀分布的随机变量最大值期望为n/(n+1),也就是可以认为这n 个随机变量分别大约在1/(n+1),2/(n+1),...,n(n+1)。这道题那么算一下大概就是在周六的上午。 2. 如果你去参与一项赌博,每次的回报为正态分布,假设你赌了100把发现赢了10000块(明显是很小概率事件,但假设确实发生了),那么你觉得你最有可能是因为 A 有一把赢了巨多 B 一直在慢慢的赢 C 两种情况都有可能 Answer: B. 也许答案对很多人有些出乎意料。在这种情况下,可能有人觉得能够连续赢很多把很难,但是实际上赢一把大的更难。这个问题是随机问题中的长尾和短尾的问题。长尾的意思就是取大的值的概率不是很小,而短尾正好相反。但是题目中的正态分布属于短尾,因为密度函数是指数下降的,如果稍微改一下题目中的分布,则有可能是因为一次赢了很大而最后赢的。另外说一句,有一本书叫《长尾理论》,里面说明了现在的经济中有很多东西是长尾的,比如说一年销量排在100000名之后的歌曲仍然能占据市场的一部分。这是电子商务流行的很重要原因,因为不必支付储存这个长尾的cost。 3. 有一根密度不均匀的绳子,你想通过测量多点的密度来估计他的重量(你知道截面积)。则如果给你n 次测量密度的机会的话,如果n很大,(估算质量就通过这些点取平均然后乘以截面积) A 按规律等间隔选取测量点会测得准些 B 随机选取测量点会测得准些 C 两种方法差不多 Answer: A. 也许这个也略有些意外。对于一维的情况,方法A略好于方法B。但是在高维的情况下方法A就一般情况下不如方法B了,原因是要想获得相同的效果,这个“有规律的点”需要选取太多。这是所谓的Quasi-Monte Carlo Sampling 和Monte Carlo Sampling之间的关系 4. 台湾大选,假定马英九最终得到600000票,谢长廷得到400000票,如果一张一张的唱票,则过程中马英九一直领先谢长廷的概率为 A 0.1 B 0.2 C 0.3 D 0.4

2015-2016第一学期《概率统计》期末考试试卷

华南农业大学期末考试试卷(A 卷) 2015-2016学年第 1 学期 考试科目: 概率论与数理统计 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、选择题(本大题共 8 小题,每小题 3 分,共 18 分) 1、下列命题正确的是( ) (A )若事件A 发生的概率为1,则A 为必然事件; (B )若随机变量X 与Y 不独立,则()()()E X Y E X E Y +=+不一定成立; (C )若X 是连续型随机变量,且()f x 是连续函数,则()Y f X = 一定是连续型随机变量; (D )设A ,B 是任意两个事件,则AB A B = 。 2、设随机变量X 的概率密度为()2 69 x x f x -+-=,若()()P X c P X c >=≤, 则c 的值为( ) (A )0; (B )3; (C ) (D )3-。 3、设总体()0,1X N ,()1,,n X X 是其简单随机样本,2X S ,分别是其样本均值和样本方差,则下列各式正确的是( ) (A )()0,1X N ; (B )()0,1nX N ; (C ) ()1X t n S - ; (D )()()2211n S n χ-- 。 4、设随机变量()0,1X N ,()0,1Y N ,则下列结论正确的是( ) (A )X Y +服从正态分布; (B )22X Y +服从2χ分布;

(C )2 2X Y 服从F 分布; (D )22X Y 和都服从2χ分布。 5、在假设检验的U 检验中,对给定的检验水平α,下列判断正确的是( ) (A )若00:H μμ=,对10:H μμ≠,则拒绝域为{} W αμμμ=>; (B )若00:H μμ=,对10:H μμ<,则拒绝域为12W αμμμ- ???? =>??????; (C )若00:H μμ=,对10:H μμ>,则拒绝域为12W αμμμ- ???? =>??????; (D )若00:H μμ=,对10:H μμ≠,则拒绝域为2W αμμμ???? =≥?????? 。 6、设总体()2,X N μσ ,σ未知,从中抽取容量为16的样本,其样本均值为X ,样本方差为2S ,则未知参数μ的置信度为0.95的置信区间是( ) (A )0.02516S X u ; (B )()0.0251516S X t ; (C )()0.025154 S X t ; (D )0.0254 S X u 。 二、填空题(本大题共 7 小题,每小题 3 分,共 21 分) 1、随机变量1,,n X X 独立且服从同一分布,数学期望为μ,方差为2σ,这n 个随机变量的简单算术平均数为X ,则()i D X X -= 。 2、若事件A 与B 相互独立,()()(),0.3,0.7P A P B P A B α=== ,则α= 。 3、设()210,X N σ ,且()10200.3P X <<=,则()010P X <<= 。 4、设某物体的质量(),0.01X N μ ,为使未知参数μ的置信度为0.95的置信区间的长度不超过0.1,则至少应测量 次。 5、设随机变量X 的分布函数为()0, 00.1,010.3, 120.6,231, 3 x x F x x x x

相关主题
文本预览
相关文档 最新文档