当前位置:文档之家› 财务会计

财务会计

Chapter 5 Similar Diagonal Matrix(continued)

1.Theorem Let A be an n n ? matrix and Λbe a diagonal matrix ,then

Λ~A (A is diagonalizable 可对角化)?A has n linearly independent eigenvectors.

Example1 Suppose

.320230221????

? ??--=A

(1)Show that A is diagonalizable. (2)Find C and Λ such that .1Λ=-AC C (3)Find .k A (k is a positive integer.)

Solution (1)A I -λ3

2

23

02

21

-----=

λλλ)5()1(2--=λλ0= .5,1321===∴λλλ

For ,121==λλthe corresponding homogeneous system is

O X A I =-)(

that is,

O x x x =????

? ??????? ??----32122022022

0 ∴ A system of fundamental solutions is

????

?

??-=????? ??=110,00121X X

For ,53=λ the corresponding homogeneous system is

O X A I =-)5(

that is,

O x x x =????

? ??????? ??--32122022022

4

????? ??-→-0002202245A I ????? ??-→000220404???

?? ?

?-→000110101

∴ A system of fundamental solutions is

????

?

??-=1113X

(2) Note (3)

Example2 Let

????

? ??---=322232221A

is A similar to a diagonal matrix?

Solution A I -λ3

2

2

23

22

21

------=

λλλ)5()1(2--=λλ0= .5,1321===∴λλλ

For ,121==λλthe corresponding homogeneous system is

O X A I =-)(

that is,

O x x x =???

?

? ??????? ??-----321222222220

????? ??-----→-222220222A I ???

??

??----→440220222

????? ??--→000220222????? ??→000220002????

?

??→000110001 ∴ A system of fundamental solutions is

????

?

??-=1101X

For ,53=λ the corresponding homogeneous system is

O X A I =-)5(

that is,

O x x x =????

? ??????? ??---321222222224

????? ??-→-0002222245A I ????? ??-→000310224????? ??-→000310804???

?

? ??-→000310201

∴ A system of fundamental solutions is

????

? ??-=1322X

2.Theorem If A is n n ? and A has n distinct eigenvalues, then A is diagonalizable.

(反之不成立) 3. Definition Suppose ()().,,,,,,,2121n T

n T

n R b b b a a a ∈== βαWe define an

inner product(内积) by .),(2211n n b a b a b a +++= βα Note 1) If both βαand are row vectors, then .),(T αββα=

2)If both βαand are column vectors, then .),(βαβαT = 4. Properties of Inner Products

()()αββα,,)1=

).,(),(),()2βαβαβαk k k ==

3) If (),,,,21n c c c =γthen

()()γβγαγβα,,),(+=+ and ()()βγαγβαγ,,),(+=+

0),()4≥αα

0),(0=?=ααα

0),(0>?≠ααα Proof 1) 2) 3) 4)

5. Definition The length of α is given by ().,a a =

α

Note 1) α is called an identity vector(unit vector) if .1=α 2) ()(),,,2ααk a a k ka ka k ===

where k is a number.

3)For any nonzero vector α

αααααα?==11,

is an identity vector. 4) βαand are said to be orthogonal(正交) if (),0,=βαdenoted by .βα⊥ If ,0=αthen αis orthogonal to any vector.

6. Definition 1)A vector set is called an orthogonal vector set if it consists of

pairwise orthogonal nonzero vectors. (由非零的两两正交的向量组组成的向量组称为正交向量组)

2)An orthonormal set of vectors(标准正交向量组) is an orthogonal set of unit vectors.

If s ααα,,,21 is an orthonormal set of vectors, then

()),,2,1,(01,s j i j

i j

i j i =?

??≠==αα

Example

is an orthonormal set of vectors.

7.Theorem If r ααα,,,21 are pairwise orthogonal nonzero vectors, then

r ααα,,,21 are linearly independent.

Note The vectors of an orthogonal vector set are linearly independent. Proof

Exercises

1.Is A similar to a diagonal matrix? If so, find C and Λ such that .1Λ=-AC C Also find .k A

?????

??--=????

? ??--=201034011)2(,

301121402)1(A A

2.Suppose

????

?

??=?????

?

?=200010000,111

11B y y x x

A

and A ~B.

(1)Find x , y ; (2)Find C such that .1B AC C =-

1.Solution ?

???? ??--????

? ??-????? ??--=Λ=-313

14

131311

001122110101410)1(k

k k C C A ????

? ??---------+--+-=k k k k k k

k

k k k

k k

k

)1(20

)1()1(22)1()1(20)1(31

343

13231

313

132******** (2)A is not similar to a diagonal matrix.

2.Solution 1)x=y=0 ???

?

?

??-=101010101)2(C

Chapter5 Similar Diagonal Matrix(continued)

1. Theorem If n -dimensional vectors )(,,,21n m m ≤ααα are linearly independent, then we can find an orthogonal vector set m βββ,,,21 such that k β can be linearly represented in terms of ).,,2,1(,,,21m k k =ααα The Gram-Schmidt Orthogonalization Process(施密特正交化方法)

111122221111)

,()

,(),(),(),(),(--------

=t t t t t t t t t ββββαββββαββββααβ

That is,

11αβ=

1111222)

,()

,(ββββααβ-

=

222231111333)

,()

,(),(),(ββββαββββααβ--

=

Example1 ???

?

?

??=????? ??=????? ??=001,011,111321αααare linearly independent. Find an

orthonormal set of vectors by the Gram-Schmidt orthogonalization process.

Solution Step1 transform 321,,ααα into an orthogonal vector set by the Gram-Schmidt process

11αβ=

1111222),(),(ββββααβ-=1

232βα-=?

???

? ??-=3231

31 222231111333),(),(),(),(ββββαββββααβ--=2132131ββα--=?

???

? ??-=021

21

Step2 transform 321,,βββ into unit vectors

111ββγ=131

β=?????

?

?

?=3

13131 222ββγ=

263

β=?

????

? ??-=626161

3

33ββγ=

32β=???

?

? ??-=02121

321,,γγγ is an orthonormal set of vectors.

Example2

Solution

2.Definition An n n ? real matrix is said to be an orthogonal matrix if

).,.(,1T T T A A e i I A A AA ===-

3. Properties of an Orthogonal Matrix (1) A is an orthogonal matrix.1±=?A

Proof

(2) A is an orthogonal matrix.1,-?A A T are also orthogonal matrices. Proof

(3)n n n n B A ??, are orthogonal matrices.AB ? is also an orthogonal matrix.

Proof

(4) A is an orthogonal matrix.?The row/column vectors of A are orthonormal set of vectors. Proof

Example is an orthogonal matrix.

4. Properties of the Eigenvalues and Eigenvectors of a Real Symmetric Matrix (1)The eigenvalues of a real symmetric matrix are all real numbers.

(2)The eigenvectors belonging to distinct eigenvalues of a real symmetric matrix are orthogonal. Proof

5.Theorem ?a real symmetric matrix A ,?an orthogonal matrix C , ?

),,,,(211n T diag AC C AC C λλλ ==- where ),,2,1(n i i =λ are the eigenvalues of A .

Example1 Suppose

????

? ??=133313331A

Find an orthogonal matrix C such that AC C AC C T =-1 is diagonal.

Solution A I -λ1

3

3

31

3

3

31

---------=λλλ)7()2(2-+=λλ0= ∴ The eigenvalues of A are .7,2321=-==λλλ

For ,221-==λλthe corresponding homogeneous system is

O X A I =--)2(

that is,

O x x x =???

?

? ??????? ??---------321333333333 A system of fundamental solutions is

????

?

??-=????? ??-=101,01121αα

Next we transform 21,αα into an orthogonal vector set as follows:

11αβ=

1111222),(),(ββββααβ-=?

???

? ??--=11

21

and then we transform 21,ββ into unit vectors as follows:

1

11ββ=

X ????

? ??-=02121

2

22ββ=

X ?????

? ??--=626161 For ,73=λ the corresponding homogeneous system is

O X A I =-)7(

that is,

O x x x =???

?

? ??????? ??------321633363336 ????? ??------→-3363636337A I ????? ??----→990990633???

?? ??---→000990633

????? ??--→000110211?

???? ?

?--→000110101 A system of fundamental solutions is

????

?

??=1113α

Next we transform 3α into a unit vector as follows:

3

33αα=X ?????

? ?

?=3

13131 Let

(),0,,3

16

231612

131612

1321?????

? ?

?-

--==X X X C then C is orthogonal and

).7,2,2(1--==-diag AC C AC C T Example2

Solution

Exercises

1. Suppose .11111????

??

? ??=α Find a set of vectors ),3,2( =k k α such that

),3,2(,1 =k k αα is an orthogonal vector set.

2.Find an orthogonal matrix C and the diagonal matrix Λ

such

that .1Λ==-AC C AC C T

??????

?

?

?=?????

??--=01

001000000100

10)2(,622234243)1(A A 3. Suppose

????

? ??-

-=???

?? ??=3

23

23

1323

132

313232,114P where AP P T Find the eigenvalues and eigenvectors of A .

1.Solution ??????

? ??-

--=??????? ??--=??

??

?

?? ??-=1,01,00113131313212121βββ

2.Solution ????? ??-=Λ?????

? ?

?--=277,0)1(312

343

22312

13

2

2

312

1

C ??????? ??--=Λ??????

?

?

?-

-=1111,0

0000000)2(212

121212

12

12121C 3.Solution );0(,,41313232111≠???

?

? ??-==k k X λ

???

?

? ??+????? ??-===232313231322232,1k k X λλ.)0,(32both not are k k

相关主题
文本预览
相关文档 最新文档