当前位置:文档之家› 怎样理解分布函数

怎样理解分布函数

怎样理解分布函数
怎样理解分布函数

怎样理解分布函数

概率论中一个非常重要的函数就是分布函数,知道了随机变量的

分布函数,就知道了它的概率分布,也就可以计算概率了。

一、理解好分布函数的定义:

F(x)=P(X≤x),

所以分布函数在任意一点x的值,表示随机变量落在x点左边(X≤x)的概率。它的定义域是(-∞,+∞),值域是[0,1].

二、掌握好分布函数的性质:

(1)0≤F(x)≤1;

(2)F(+∞)=1,F(-∞)=0;

可以利用这条性质确定分布函数中的参数,例如:

设随机变量X的分布函数为:F(x)=A+Barctanx,求常数A与B.

就应利用本性质计算出A=1/2,B=1/π.

(3)单调不减;

(4)右连续性。

三、会利用分布函数求概率

在利用分布函数求概率时,以下公式经常利用。

(1)P(a

(2)P(a≤X≤b)=F(b)-F(a-0);

(3)P(a≤X

(4)P(a

(5)P(X=a)=F(a)-F(a-0).

以上公式的规律是:

对于左端点a,不包括它时,用函数值F(a),包括它时,用右极限F(a-0);

对于右端点b,不包括它时,用右极限F(b-0),包括它时,用函数值F(b).

四、会利用分布列或密度函数求分布函数

根据分布列求分布函数时,先将RV X的取值从小到大排好,x1

当x i≤x

当x

根据分布密度求分布函数时,先考虑密度函数是几段的,如果它被x1

n 分成n+1段的,则F(x)也被x1

当x i≤x

F(x)=∫[-∞,x

]f1(x)dx+∫[x1,x2]f2(x)dx+...+∫[x i,x]f(i+1)(x)dx;

1

当x

五、会利用分布函数求分布列或密度函数

如果分布函数是分段常数的,则它是离散型随机变量的分布函数,应求分布列。需要确定它取什么值,以及取这些值的概率。

它取的值就是分段函数的各段端点x1,x2,...,x n,因为在其它点分布函数连续,它们的概率为0。而

P(X=x

)=F(x i)-F(x i-0).

i

如果分布函数是连续的,则它是连续型随机变量的分布函数,应求分布密度。对于F(x)的可导点,密度函数f(x)=F'(x),对于F(x)的不可导点x0,f(x0)的值你可以根据它周围点x的函数值自定。

二次函数根的分布专题

一元二次方程根的分布专题 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ? ? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,02121221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k分布 设一元二次方程20(0) ax bx c a ++=>的两不等实根为1x,2x,k为常数。则一元二次方 k1x2x k 根 的 分 布 ① 12 x x k② 12 k x x③ 12 x k x 图 象 充 要 条 件 2 b k a f k 2 b k a f k f k 根 的 分 布 ④ 1122 k x x k⑤ 11223 k x k x k⑥两根有且仅有一根在 12 ,k k内 图 象 充 要 条 件 1 2 12 2 f k f k b k k a 1 2 3 ()0 ()0 ()0 f k f k f k 12 f k f k 或 1 12 1 ()0 22 f k k k b k a 或 2 12 2 ()0 22 f k k k b k a k k k 2 k 1 k 2 k 1 k 3 k 2 k 1 k

反函数定义

反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A 中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的且具有唯一性 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'。 反函数说明 ⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。

二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->? ??>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->? ??>?? ()0

二次函数根分布经典练习题及解析

二次函数根的分布经典练习题及解析 1若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是() A(-∞,2] B [-2,2] C(-2,2] D(-∞,-2) 2设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为() A 正数 B 负数 C 非负数 D 正数、负数和零都有可能 3已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________ 4二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)0且a ≠1) (1)令t=a x ,求y =f (x )的表达式; (2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值 6如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求 m 的取值范围 7二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足 m r m q m p ++++12=0,其中m >0,求证 (1)pf ( 1 +m m )<0; (2)方程f (x )=0在(0,1)内恒有解

8一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元 (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案 1解析当a -2=0即a =2时,不等式为-4<0,恒成立∴a =2,当a -2≠0时,则a 满足 ? ? ?0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0 答案A 3解析只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <2 3或-2 1<p <1∴p ∈(-3,2 3) 答案(-3,2 3) 4解析由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

(版)导数题型归类讲:交点与根的分布

2015版导数题型归类 第二讲 交点与根的分布 一、学习目标 1.交点问题转化为函数的最值问题 2.根的分布利用数形结合转化为基本的不等式问题 二、重难点 重点:交点问题 难点:交点问题 三、引入 我们知道导数可以用于研究切线、单调性、极值、最值问题,那么: 已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点,若直线y b =与函数()y f x =的图象有3个交点,则b 的取值范围为 . 它是哪一类啦? 四、过程 【知识点一】交点(零点或其变形) 两个函数的图像有交点也就是方程组有解,但是对于超越函数我们往往解不出,那么转化为一个函数,再利用图像研究其极值和最值问题成为了一种思路。 例题1.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c = . A .-2或2 B .-9或3 C .-1或1 D .-3或1 例题2.(交点个数与根的分布)已知x=3是函数f(x)=aln(x+1)+2 x -10x 的一个极值点。 1)求a; 2)求函数的单调区间; 3)若直线y=b 与函数y=f(x)的图像有三个交点,求b 的取值范围.

【巩固练习】 1.若函数x e y x a 4)1(+=-有大于零的极值点,则a 的范围为_______. 2.(2011年福建)已知a,b 为常数,且0≠a ,函数x ax b ax x f ln )(++-=,2)(=e f 1)求实数b; 2)求函数的单调区间 3)当a=1时,是否同时存在实数m 和M (m

反函数怎么表示【整理反函数数学教案】

反函数怎么表示【整理反函数数学教案】 反函数数学教案数学教案【数学教案】教学目标1.使学生了解 反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生 用辩证的观点观察、分析解决问题的能力。 教学重点1.反函数的概念;2.反函数的求法。 教学难点反函数的概念。 教学方法师生共同讨论教具装备幻灯片2张第一张:反函数的定义、记法、习惯记法。(记作A);第二张:本课时作业中的预习 内容及提纲。 教学过程(I)讲授新课(检查预习情况)师:这节课我们来学 习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:(略)(学生回答 之后,打出幻灯片A)。 师:反函数的定义着重强调两点:(1)根据y=f(x)中x与y的 关系,用y把x表示出来,得到x=φ(y);(2)对于y在c中的 任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。 师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前 者中的x与后者中的x都属于同一个集合,y也是如此),但地位 不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,

即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是 后者中的y,前者中的y是后者中的x。)由此,请同学们谈一下, 函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在 什么关系呢?生:(学生作答,教师板书)函数的定义域,值域分 别是它的反函数的值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:(1)由y=f(x)解出x=f–1(y),即把x用y表示出;(2)将 x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1(II)课堂练习课本P68练习1、2、3、4。 (III)课时小结本节课我们学习了反函数的概念,从中知道了 怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤, 大家要熟练掌握。 (IV)课后作业一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计课题:求反函数的方法步骤:定义:(幻灯片)注意:小结一一映射确定的函数才有反函数函数与它的反函数定义域、值 域的关系。

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

函数图像+反函数+基本初等函数(讲义+例题)

精心整理 函数图像+反函数+基本初等函数 一、函数图像:注意数形结合 (1)平移:??????→?=个单位向右平移a x f y )()(a x f y -=;)(x f y =??????→?个单位向上平移b .)(b x f y += (2)对称:)(x f y =?????→?轴对称关于 x )(x f y -=;)(x f y =?????→?轴对称关于y )(x f y -=; )(x f y =?????→?关于原点对称 )(x f y --=. *若有等式)()(x a f x a f -=+成立,那么函数关于a x =对称; a 2 (3|).(|x f 习题习题2.函数1 1--=x y 的图象是(B ) 习题3.已知)(x f 是偶函数,则)2(+x f 的图像关于)2是偶函数,则函数)(x f 的图像关于____2x =_____二、反函数 (1)互为反函数的两个函数y =f (x )与y 直线(2(3(b )把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ). (c )求出并说明反函数的定义域〔即函数y =f (x )的值域〕. 习题4.函数y =-1 1+x (x ≠-1)的反函数是(A ) A.y =-x 1-1(x ≠0)B.y =-x 1+1(x ≠0)C.y =-x +1(x ∈R ) D.y =-x -1(x ∈R )

习题5..函数y =log 2(x +1)+1(x >0)的反函数为(A ) A.y =2x -1-1(x >1) B.y =2x -1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0) 习题6.函数f (x )=-12+x (x ≥-2 1)的反函数(D ) A.在[-21,+∞)上为增函数 B.在[-2 1,+∞)上为减函数 C.在(-∞,0]上为增函数 D.在(-∞,0]上为减函数 习题(4习题习题(1a.c.时函数为增函数, e.0∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (2)对数函数:)1,0(log ≠>=a a x y a 且

第一册反函数

第一册反函数 教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况) 师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y); (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y 是函数值;后者y是自变量,x是函数值。) 在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y 是后者中的x。) 由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢? 生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的’值域、定义域。 师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。 从反函数的概念我们还可以知道,求函数的反函数的方法步骤为: (1)由y=f(x)解出x=f–1(y),即把x用y表示出; (2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。 (3)指出反函数的定义域。 下面请同学自看例1 (II)课堂练习课本P68练习1、2、3、4。 (III)课时小结 本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。 (IV)课后作业 一、课本P69习题2.41、2。 二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。 板书设计

反函数的存在性及求法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1反函数的定义及其性质 (1) 1.1反函数的定义 (1) 1.2反函数的性质 (2) 1.2.1反函数的简单性质 (2) 1.2.2关于反函数图像的性质 (3) 1.2.3反函数的连续性与可微性 (5) 2反函数存在性的判定 (6) 2.1反函数存在性判定(一) (6) 2.1反函数存在性判定(二) (6) 3反函数的求法 (8) 3.1反函数的一般求法 (8) 3.2几类特殊函数的反函数的求解 (9) 3.2.1周期函数的反函数 (9) 3.2.2分段函数的反函数 (11) 3.2.3复合函数的反函数 (12) 参考文献 (14) 致谢 (14)

函数的反函数的存在性及其求法 数学与应用数学专业薛云 指导老师武秀美 摘要反函数是数学中的一个重要概念,文章分三部分阐述了反函数的概念、存在条件及其求法.首先,文章从不同角度给出了反函数的定义;其次,文章详细阐述了反函数的存在条件,从图像、定义及单调性等多方面加以论述;最后,文章给出了反函数的求法一般的步骤,并在此基础上介绍了一些特殊函数的反函数的求法. 关键词反函数周期函数反函数存在性定理 The Existence and Solution of Inverse Function of Functions Student majoring in Mathematics and applied mathematics Xue Yun Tutor Wu Xiumei Abstract The inverse function is an important concept in mathematics. This article has three parts about the concept of inverse function, the condition of existence of inverse function and the solution of inverse function. First, it gives the definition of inverse function, secondly, it gives the conditions of existence of inverse function and descries this aspects from image, definition and monotonicity. Finally, it gives the method of solution of inverse function and introduces the solution of the inverse function of some special functions. Key words Inverse function Periodic function Existence theorem of inverse function 引言函数是数学中的一个基本概念,对函数的性质、图像及其相关问题的研究自然地引发了对函数的反函数的探讨;同时在生活中,函数的反函数也占有较为重要的地位,但是反函数的定义很抽象,难于理解,中学数学中有一些基本的反函数的知识,在现有的数学分析和高等数学教科书中,也都有对反函数的简要介绍,但都不做重点讲述,这使对反函数的系统理解和应用更加不利.这篇文章在总结前例的基础上,对反函数的定义、性质、图像、存在性、求法等进行了详细地讨论. 1 反函数的定义及其性质 1.1 反函数的定义 定义]1[1一般地,式子) y=表示y是自变量x的函数,设它的定义域为A,值 (x f 域为C.从式子) (x =.如果对于y在C中的任何 (y x? f y=中解出x,得到式子) 一个值,通过式子) =,x在A中都有唯一确定的值和它对应,那么式子 x? (y

统计学常用分布及其分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

二次函数根的分布专题

一元二次方程根的分布 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ?? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,0212 1221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k 分布 设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。则一元二次方k 1x 2x k k k k 2k 1k 2 k 1 k 3 k 2 k 1 k

反函数的基本知识点

1 反函数的基本知识点 一.定义:设式子)(x f y = 表示y 是x 的函数,定义域为A ,值域为C ,从式子)(x f y =中解出x , 得到式子)(y x ?=,如果对于y 在C 中的任何一个值,通过式子)(y x ?=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ?=就表示x 是y 的函数(y 是自变量),这样的函数,叫做)(x f y =的反函数 ,记作)(1y f x -=,即()y f y x 1)(-==?,一般习惯上对调()y f x 1-=中的字母y x ,,把它改写成)(1x f y -=。 (1).反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; (2).原函数的定义域、值域分别是反函数的值域、定义域, ()图象在点图象上)在(点几何语言: )(),(,)()(11x f y a b P x f y b a P a b f b a f --='?==?= (3).()y f x =与1()y f x -=的图象关于y x =对称. 二.求反函数的一般步骤 (1) 确定原函数的值域,也就是反函数的定义域 (2) 由)(x f y =的解析式求出)(y x ?= (3) 将y x ,对换,得反函数的一般表达式)(1x f y -=,标上反函数的 定义域(反函数的定义域不能由反函数的解析式求得) 分段函数的反函数可以分别求出各段函数的反函数后再合成。 三.掌握下列一些结论

2 (1) 单调函数?一一对应?有反函数 (2) 周期函数不存在反函数 (3) 若一个奇函数有反函数,则反函数也必为奇函数 (4) 证明)(x f y = 的图象关于直线x y =对称,只需证)(x f y =的反函数和)(x f y =相同。

函数反函数 教案

函数反函数教案 教案示例 反函数 教学目标 使学生了解反函数的概念,初步掌握求反函数的方法. 通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力. 通过反函数的学习,帮助学生树立辨证唯物主义的世界观. 教学重点,难点 重点是反函数概念的形成与认识. 难点是掌握求反函数的方法. 教学用具 投影仪 教学方法 自主学习与启发结合法 教学过程 揭示课题 今天我们将学习函数中一个重要的概念----反函数. 反函数(板书) (一)反函数的概念(板书) 二.讲解新课 教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以 根据函数的定义在的允许取值范围内的任一值,按照法则

都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”) 学生解释后教师指出不管从哪个角度,它都是一个函数,即有反 函数,而且把这个函数称为的反函数.那么这个反函数的解析式是什么呢? 由学生回答出应为 .教师再提出它作为函数是没有问题的,但不太符合我们的表示习惯,按习惯用表示自变量,用表示因变量,故 它又可以改写成 ,改动之后带来一个新问题: 和是同一函数吗? 由学生讨论,并说明理由,要求学生能从函数三要素的角度去认识,并给出解释,让学生真正承认它们是同一函数.并把叫做的反函数.继而再提出: 有反函数吗?是哪个函数? 学生很快会意识到是的反函数,教师可再引申为 与是互为反函数的.然后利用问题再引申:是不是所有的函 数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个 (可画图辅助说明,当时,对应 ),不能构成函数,说明此函数没有反函数. 通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容. 反函数的定义:(板书)(用投影仪打出反函数的定义) 为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得 ,再判断它是个函数,最后改写为 .给出定义后,再对概念作点深入研究. 2.对概念得理解(板书)

二次函数中根的分布问题

一元二次方程 02=++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况)

k k k

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下) 需满足的条件是

(1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 1? 若()0f m =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n , 可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。如方程()2 220 mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由2 13m <<得 2 23 m <<即为所求; 2? 方程有且只有一根,且这个根在区间()n m ,内,即0?=,此时由0?=可以求出参数的值,然后再将参数 的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程 24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。分析:①由()()300f f -< 即 ()()141530m m ++<得出15314m -<<-;②由0?=即()2164260m m -+=得出1m =-或3 2m =,当 1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m = 时,根()33,0x =?-,故3 2 m =不满足题意;综上分析,得出15 314 m -<<-或1m =-

高中数学《反函数》教案

课 题:2.4.1 反函数(一) 教学目的:掌握反函数的概念和表示法,会求一个函数的反函数 教学重点:反函数的定义和求法 教学难点:反函数的定义和求法 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教材分析: 反函数是数学中的一个很重要的概念,它是我们以后进一步研究具体函数类即五大类基本初等函数的一个不可缺少的重要组成部分 反函数是函数中的一个特殊现象,对反函数概念的讨论研究是对函数概念和函数性质在认识上的进一步深化和提高反函数概念的建立,关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识 本节是反函数的第一节课围绕如何理解反函数概念这个重难点展开 由于函数是一种对应关系,这个概念本身不好理解,而反函数又是函数中的一种特殊现象,它是两个函数之间的关系所以弄清函数与其反函数的关系,是正确理解反函数概念必不可少的重要环节教学设计中,通过对具体例子的求解,不但使学生掌握求反函数的方法步骤,并有意识地阐明函数与反函数的关系深化了对概念的理解和掌握 教学过程: 一、复习引入: 我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s=vt,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即v s t = ,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0. 又如,在函数62+=x y 中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R. 我们从函数62+=x y 中解出x ,就可以得到式子32 -=y x . 这样,对于y 在R 中任何一个值,通过式子32 -= y x ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R. 综合上述,我们由函数s=vt 得出了函数v s t = ;由函数62+=x y 得出

二次函数零点分布

一元二次函数零点分布(二次方程根的分布) 教学目标 学会如何通过研究函数的图像,确定二次函数在给定区间上的零点分布。 教学重点 根据函数的图像确定二次函数在给定区间上的零点分布。 教学难点 体会影响二次函数在给定区间上的零点分布的要素。 教学过程 一、探究二次函数零点分布的要素 1、 回想:方程0)3(2 =+-+a x a x 有两个正根,两个负根,一个正根一个负根。 2、 思考:函数2)3()(2 +-+=x a x x f 有两个零点,21,x x ,且()+∞∈,0,21x x 。 若将条件改成()+∞∈,1-,21x x ,又该满足什么条件。 3.探究:二次函数零点分布的要素 二、例题讲解 例1 函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且()+∞∈,0,21x x ,求a 范围 【练习1】例1中条件改成()0,,21∞-∈x x

例2函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围 【总结】一元二次函数两个零点均在一个区 间,如()()),(,,,,-b a m m +∞∞ 。这类问题要 考虑哪些因素。 【练习2】12)(2 ++-=ax x x f 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围 【变式1】练习2中条件改成()1,1-,21∈x x 【变式2】12)(2 ++=ax ax x f 的两个零点()1,1-,21∈x x ,求a 范围

例3函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且0,021>

相关主题
文本预览
相关文档 最新文档