当前位置:文档之家› 几种蓄电池简单比较.

几种蓄电池简单比较.

几种蓄电池简单比较.

第十四节几种蓄电池简单比较

和锌银电池一样,镍镉蓄电池放电电压稳定,大电流放电时电压也较稳定,并且放电电流大小对容量的影响较小。

表3-1蓄电池性能比较

铅酸蓄电池常见故障分析及处理方法

铅酸蓄电池常见故障分析及处理方法 常见故障不良现象故障产生的原因故障的处理方法 蓄电池充电不足1.静止电压低 2.密度低,充电结束后达不 到规定要求 3.工作时间短 4.工作时仪表显示容量下降 快 1.充电器电压、电流设置 过低 2.初充电不足 3.充电机故障 1.调整,检修充电 器 2.蓄电池补充充电 3.严重时需更换新 电池 蓄电池过充电1.注液盖篓色泽变黄,变红 2.外壳变形 3.隔板炭化、变形 4.正极腐蚀、断裂 5.极柱橡胶套管上升、老 化、开裂 6.经常补水,充电时电解液 浑浊 1.充电器电压,电流设置 过高 2.充电时间过长 3.频繁充电 4.放电量小而充电量大 5.充电机故障 1.调整,检修充电 器 2.调整充电制度 3.严重时需更换新 电池

铅酸蓄电池热失控故障分析 当电池处于充电状态时,电池温度发生一种积累性的增强作用。当增温过程的热量积累到一定程度,电池端电压会突然出现降低,迫使电流骤然增大,电池温度高升而损坏蓄电池的现象称之为热失控。 1.故障现象 充电时特别到了末期,充电器不转绿灯,同时电池严重发热,如果测量充电电流会发现电流很高可达到2A或2A以上。发热严重时,析气压力过高,会导致电池壳受热变形,直至电池报废。 2.故障产生原因 ⑴电池失水 失水后,蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变得很差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽散热,如散热小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过“通道”,在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的“热失控”。最

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

蓄电池容量测试操作说明

1准备工作: 1.1工具准备 1.2资料准备 检修票,通信电源蓄电池组维护测试记录表(半年), 1.3注意事项 放电仪的选用: 注意蓄电池放电仪型号选用,48V蓄电池放电仪(型号:IDCE-4815CT)只能用48V蓄电池测试,UPS蓄电池放电仪(型号:IDCE-6006CT)只能用于UPS蓄电池测试。切勿混用。 2操作步骤: 2.1手续办理: 2.1.1信息确认: 把测试事宜及内容告知管理处相关人员,了解测试站点近期市电供电情况,是否存在市电供电异常,确认测试站点当日及第二日市电供电正常,才进行测试,否则,不得进行测试。 2.1.2资料报备: (1)填写检修申请票,并由管理处相关人员签字确认,完成维护报备工作;

(2)通知网管中心,测试前将测试内容和涉及的设备向网管中心值班人员报备。 2.2检查记录: 2.2.1设备检查 (1)设备检查记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及开关电源的其它设置参数,检查蓄电池组的现有容量是否100%。 (2)检查所有的电池端子是否处于拧紧状态 (3)检查电池是否有漏液、酸雾等异常。 2.2.2仪器检查 按照设备清单清点配件是否齐全, 面板介绍 2.3开机与参数设置 2.3.1开机 UPS电源系统: 1)断开待测电池组断路器(注意:严禁两个断路器同时断开),如下图:

2)接交流电源,打开仪表上的市电开关,正常开机 40V蓄电池: 1)断开开关电源柜内的待测电池组熔断丝(注意:两组熔断丝严禁同时断开) 2)把正负极电缆接入仪器正负极接口,另一端与蓄电池正负极相连,然后先打开仪表 市电开关,再合上F1空开,仪表正常开机。(拆下的电池线铜鼻子做好绝缘保护)

高中常见原电池电极反应式

高中常见的原电池电极反应式 一、一次电池(列物质,标得失选离子,配电荷巧用水,配个数) 1、伏打电池:(负极—Zn,正极—Cu,电解液—H2SO4) 负极:Zn–2e-==Zn2+正极:2H++2e-==H2↑ 总反应离子方程式Zn + 2H+ == H2↑+ Zn2+ 2、铁碳电池(析氢腐蚀):(负极—Fe,正极—C,电解液——酸性) 负极:Fe–2e-==Fe2+正极:2H++2e-==H2↑ 总反应离子方程式Fe+2H+==H2↑+Fe2+ 3、铁碳电池(吸氧腐蚀):(负极—Fe,正极—C,电解液——中性或碱性) 负极:2Fe–4e-==2Fe2+正极:O2+2H2O+4e-==4- OH 总反应化学方程式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)3 ;2Fe(OH)3==Fe2O3 +3 H2O (铁锈的生成过程) ? 4.铝镍电池:(负极—Al,正极—Ni,电解液——NaCl溶液) 负极:4Al–12e-==4Al3+正极:3O2+6H2O+12e-==12- OH 总反应化学方程式:4Al+3O2+6H2O==4Al(OH)3 (海洋灯标电池) 5、铝–空气–海水(负极--铝,正极--石墨、铂网等能导电的惰性材料,电解液--海水) 负极:4Al-12e-==4Al3+ 正极:3O2+6H2O+12e-==12OH- 总反应式为:4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面)(海洋灯标电池) 6、普通锌锰干电池:(负极——Zn,正极——碳棒,电解液——NH4Cl糊状物) 负极:Zn–2e-==Zn2+正极:2MnO2+2NH4++2e-==Mn2O3 +2NH3+H2O 总反应化学方程式:Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3+H2O 7、碱性锌锰干电池:(负极——Zn,正极——碳棒,电解液KOH糊状物) 。 负极:Zn + 2OH– 2e-== Zn(OH)2正极:2MnO2 + 2H2O + 2e-==2MnO(OH) +2OH- 总反应化学方程式:Zn +2MnO2 +2H2O == Zn(OH)2 + MnO(OH) 8、银锌电池:(负极——Zn,正极--Ag2O,电解液NaOH ) 负极:Zn+2OH-–2e-== ZnO+H2O 正极:Ag2O + H2O + 2e-== 2Ag + 2OH- 总反应化学方程式:Zn + Ag2O == ZnO + 2Ag 9、镁铝电池:(负极--Al,正极--Mg,电解液KOH) 负极(Al):2Al + 8OH-+6e-=2AlO2-+4H2O 正极(Mg):6H2O + 6e-=3H2↑+6OH– 总反应化学方程式:2Al + 2OH-+ 2H2O =2AlO2-+ 3H2↑

蓄电池常见故障预防及其判断方法

蓄电池常见故障预防及其判断方法 蓄电池是工程机械及载重运输汽车上的电源设备,若出现故障,将直接影响到机械的运行。 1 蓄电池常见故障及预防 1.1 极板硫化 极板硫化是在极板上生成白色粗晶粒的现象,这种白色的粗晶粒就是所谓的硫酸铅,这是在蓄电池上最常见的现象,极板硫化产生的粗晶粒硫酸铅导电性能很差,晶粒粗,体积大,正常充电很难还原成活性物质,阻碍了电解液的渗透和扩散,使蓄电池的内阻显著增大。发动机启动放电时因内阻大而电压急剧下降,不能持续供给启动电流。那么,造成极板硫化的原因是什么呢?蓄电池长期充电不足或放电后不及时充电是PbSo4发生再结晶的根本原因。正常放电时极板上生成的硫酸铅晶粒较小,导电性能相对较好,充电时能够还原成二氧化铅和铅;但蓄电池长期充电不足或放电后不及时充电就会使硫酸铅从电解液中析出并再次结晶成更大晶粒的PbSo 4附在极板表面;蓄电池液面过低,机械行驶过程中由于电解液上下波动,极板露出液面部分与空气接触而被强烈氧化,从而使极板上部产生硫化;电解液密度过高,电解液不纯和气温变化剧烈等是促使硫化形成的外部原因。 预防对策:避免硫化的主要措施是保持蓄电池经常处于充足电状态,蓄电池在机械上虽能充电,但只能保证基本充足,因此应该每1-2个月送充电间彻底充足电。对于放完电的蓄电池,应在24小时内送充电间充电。对于已经硫化的蓄电池,如不严重,可采用去硫充电法进行充电予以排除(去硫充电可查阅有关手册,这里故不赘述)。 1.2 活性物质脱落 活性物质脱落主要是正极板上的活性物质脱落,它是蓄电池过早损坏的主要原因。导致活性物质脱落的原因有:充电电流过大,过充电时间过长,低温大电流放电等。过充电会电解水,并产生大量氢气和氧气,当氢氧从负正极板孔隙向外冲出时,就会导致活性物质二氧化铅脱落。 预防对策:在实际充电过程中,当蓄电池基本充足电时,应将充电电流减少一半。 1.3 自行放电 蓄电池在无负载状态下,电量自行消失的现象称为自行放电,简称自放电。蓄电池自放电是不可避免的,对于充足电的蓄电池,在30天内若每昼夜容量降低不超过2%,则为正常放电。导致蓄电池自行放电的主要原因是使用因素,如电解液含杂质过多,电解液密度偏高,电池表面不清洁等。 预防对策:避免产生自放电措施:1)配制电解液使用符合国际GB4564-84规定的蓄电池专用硫酸和规定的蒸馏水;2)配制电解液所用器皿必须是耐酸材料做成的,配好的电解液应妥善保存;3)蓄电池加液孔螺塞要盖好,以免掺入杂质。其表面的酸泥等脏物,要用清水擦洗干净,并保持

蓄电池的基本知识大全

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

汽车蓄电池容量的检测方法详解

汽车蓄电池容量的检测方法详解 汽车蓄电池是汽车启动时的唯一电源,在汽车发电机不工作时,它可以在一段时间内向汽车的用电设备供电(1~2h);在发电机正常发电时,它将发电机供给用电器后多余的电能转化成化学能储存起来,供下次启动或其它用电。 蓄电池的工作能力随其规格型号不同而不同,也随其生产的年代、厂家牌号有较大区别。同一个蓄电池,由于不同的使用维护水平,其剩余的工作力也不同。加上蓄电池自身的自行放电,极板硫化等不可避免的因素作用,也会使蓄电池的工作能力逐渐削弱以至报废。因此,在必要时对蓄电池的工作能力进行检测就成为汽车维护与保养的重要工作之一。 一、蓄电池的容量指标及其测定 蓄电池的工作能力用“容量”来衡量,它是在规定的端电压范围内,蓄电池对负载供给一定电流所能持续的时间(t),即衡量蓄电池电能做功的能力A=UIt(瓦秒)。在实际运用中,蓄电池的容量指标Q常用安培小时(Ah)来表示: Q=I·t(A·h) I—放电电流(A);t—放电时间(h) 由于电流单位安培(A)=库伦/秒,所以容量的单位安培小时(Ah)=库伦/秒×3600秒=3600库伦(3.6kC)。 库伦是电荷量单位,1库伦=6.24×1018(624亿亿)个电子所带的电量,所以容量与电池的物质量(正负极板数、总面积、电解液密度)有关。对于标准正、负极板组而言,每片正极板的额定容量为15Ah,每个单格电池中负极板数总是比正极板多1片,因此可以算出一定容量的单格电池中正负极板的准确片数,如3-QA-60Ah蓄电池,其额定容量为60Ah,正极板数=60(Ah)/15(Ah)=4;负极板数=4+1=5。如果蓄电池的额定容量不是15Ah 的整数倍数,则极板的尺寸、厚度及材料就会有所区别。 蓄电池的常用容量指标有“额定容量”、“储备容量”和“启动容量”三种。 1. 额定容量 根据GB5008-91规定,额定容量是:将充足电的新蓄电池在电解液温度为25±5℃条件下以20h率的放电电流(即0.05Q20)连续放电至单格电池平均电压降到1.75V时输出的电量。

几种常见的“燃料电池”的电极反应式的书写(精)

几种常见的“燃料电池”的电极反应式的书写 燃料电池是原电池中一种比较特殊的电池,它与原电池形成条件有一点相悖,就是不一定两极是两根活动性不同的电极,也可以用相同的两根电极。燃料电池有很多,下面主要介绍几种常见的燃料电池,希望达到举一反三的目的。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入O2, 总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2+ 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以:负极的电极反应式为:H2 –2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH- ,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2- ,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+=== H2O,因此

正极的电极反应式为:O2 + 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2- ,2O2- + 4H+ === 2H2O 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e-=== 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH === 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32- + 6H2O 2. 酸性电解质(H2SO4溶液为例) 总反应: 2CH4O + 3O2 === 2CO2 + 4H2O 正极的电极反应式为:3O2+12e-+12H+ === 6H2O 负极的电极反应式为:2CH4O-12e-+2H2O === 12H++ 2CO2 说明:乙醇燃料电池与甲醇燃料电池原理基本相同 三、甲烷燃料电池 甲烷燃料电池以多孔镍板为两极,电解质溶液为KOH,生成的CO2还要与KOH反应生成K2CO3,所以总反应为:CH4 + 2KOH+ 2O2 === K2CO3 + 3H2O。

蓄电池常见的故障

蓄电池常见的故障 一、故障现象:极板硫酸盐化电池失效,充电时电压很快上升,温度上升快;放电时电压下降快,容量小。故障原因:极板硫酸盐化检测维修:蓄电池产生不可逆硫酸盐化时,应根据其程度的轻重进行修复,对电池修复时可以选择蓄电池脉冲修复仪”。对电池进行修复。二、故障现象:电池充不进电。故障原因:1、电池连线故障2、充电器故障3、严重硫化4、电池严重失水检测维修:1、检查电池连线是否连接良好2、对电池和充电器进行检测,需要修复的电池进行修复。3、对失水电池和使用超过12个月的电池进行补水。 三、故障现象:电池漏液。故障原因:1、上盖与底槽之间密封不好或因碰撞,封口胶开裂造成漏液;2、帽阀渗酸漏液;3、接线端处渗酸漏液;4、其他部位出现渗酸漏液。检测维修:先做外观检查,找出渗酸漏液部位。取开盖片看帽阀周围有无渗酸漏液痕迹,再打开帽阀观察电池内部有无流动的电解液。完成了上述工作之后,若仍未发现异常,应做气密性测试(放入水中充气加压,观察电池有无气泡产生并冒出,有气泡则说明有渗酸漏液)。最后在充电过程中,观察有无流动的电解液产生,如果有则说明是生产的原因。在充电过程中如有流动的电解液应将其抽尽。四、故障现象:电池变形。故障原因:1、电池内有短路现象2、热失控3、

充电器过充4、电池严重硫化,内阻增大、发热。检测维修:1、在保证不漏液的前提下为电池补液,以延长或避免“热失控”的产生。2、、避免产生内部短路或微短路,及带有微短路倾向。3、使用过程中应防止过放电的发生,做到足电存放。4、利用检测修复设备对充电器进行检测。5、在高温下充电,必须保证蓄电池散热良好。应采取降温措施或减短充电时间的方法,否则应停止充电。五、故障现象:新电池装车、起动时仪表电压降得快。故障原因:1、仪表故障2、连线未接好3、控制器或电机故障4、电池欠压或出现故障。检测维修:1、检查仪表显示电压与电池容量是否相符。2、检查蓄电池连接线是否可靠,有无短路和连接不可靠等。有则排除之。3、利用派特系列检测修复设备对控制器、电机进行检测。4、检查蓄电池容量是否偏低,若是偏低,应对电池进行充放电或与厂家更换。六、故障现象:电池使用一段时间后,整组电池中只有1块或2块电池损坏,其他电池完好。故障原因:电池荷电不一致,充电时造成某些电池过充电引起损坏。荷电不一致的原因,可能有短路单格存在,也可能用户将电池试验放电或自放电等。检测维修:打开电池盒,分别对单块电池进行放电检测,可以修复的电池进行修复,对无法修复的电池给予报废处理,并找一块容量相当的电池顶替。七、故障现象:给电池充电时电池发热,充电器总不变灯。故障原因:1、电池失水2、充电器故障。检

蓄电池容量计算

6.5.1 直流电源 直流系统额定电压采用DC 220V。 蓄电池容量按电气负荷2小时,通信负荷4小时,根据《电力工程直流系统设计技术规程》、《电力用直流和交流一体化不间断电源设备》有关条文,每组蓄电池计算如下: 6.5.1.1 蓄电池个数选择 选用阀控式密封铅酸蓄电池: 单体蓄电池的浮充电压取:Uf=2.23V (参照新规程6.1.2) 按正常浮充电运行时保证直流母线电压为额定电压的105%计算(参照新规程6.1.1及3.2.2),选择每组蓄电池 n=1.05×220/2.23≈104 只(参照新规程B.1-1) 单体蓄电池均充电压:Uc=1.1×220/104≈2.34V (参照新规程6.1.4及3.2.3第1条) 单体蓄电池放电末期终止电压:Um=0.875×220/104=1.85V(参照新规程6.1.3及3.2.4)(参照新规程B.1-2)

容量选择:(参照新规程B.2.3.2及表B2.1.2,阶梯计算法) 1)按第一阶段放电计算:(参照新规程表B.3-3,查容量换算系数) t=1min,Kc=1.24 C C1=K K I1/ K C=1.4×148.64/1.24=119.9Ah 2)按第二阶段放电计算: t1=120min,Kc1=0.344;t2=119min,Kc2=0.345(表B.3-3,无119min参数,采用插值法计算容量换算系数) C C2=K K [I1/ K C1+(I2-I1)/ K C2] =1.4×[148.64/0.344+(121.36-148.64)/0.345]=494.23Ah 3)按第三阶段放电计算: t1=240min,Kc1=0.214;t2=239min,Kc2=0.215;t3=119min,Kc3=0.345 C C2=K K [I1/ K C1+(I2-I1)/ K C2+(I3-I2)/ K C3] =1.4×[148.64/0.214+(121.36-148.64)/0.215+(10.91-121.36)/0.345]=346.6Ah 4)随机负荷 C R=I R/K CR=4.55/1.34=3.4Ah 叠加后可得C=494.23+3.4=497.63Ah 按标称容量,蓄电池容量选择500Ah。 6.5.1.3 充电装置选择:(参照新规程附录C) 1、满足浮充电要求:充电装置额定电流Ir =0.01×50+80.45=80.95A 2、满足初充电要求:充电装置额定电流Ir =1.1×50=55A 3、满足均衡充电要求:充电装置额定电流Ir =1.1×50+80.45=135.45A 4、装置输出电压:Ur=104×2.4=249.6V 单个模块额定电流:Im=40A(参照新规程表C.1.3,选择40A,并应满足C2.2条要求) 基本模块数量n1=135.45/40≈3.4个 每组高频开关充电模块:5个(220kV参照新规程C2.1.1,500kV参照

常见原电池方程式

1.电化腐蚀:发生原电池反应,有电流产生 (1)吸氧腐蚀 负极:Fe-2e-==Fe2+ 正极:O2+4e-+2H2O==4OH- 总式:2Fe+O2+2H2O==2Fe(OH)2 4Fe(OH)2+O2+2H2O==4Fe(OH)32Fe(OH)3==Fe2O3+3H2O (2)析氢腐蚀:CO 2+H2O H2CO3H++HCO3- 负极:Fe -2e-==Fe2+ 正极:2H+ + 2e-==H2↑ 总式:Fe + 2CO2 + 2H2O = Fe(HCO3)2 + H2↑ Fe(HCO3)2水解、空气氧化、风吹日晒得Fe2O3。 常见原电池 (1)一次电池 ①碱性锌锰电池 构成:负极是锌,正极是MnO2,正极是KOH 工作原理:负极Zn+2OH—-2e-=Zn(OH)2;正极:2MnO2+2H2O+2e-=2MnOOH+2OH- 总反应式:Zn+2MnO2+2H2O=2MnOOH+Zn(OH)2 特点:比能量较高,储存时间较长,可适用于大电流和连续放电。 ②钮扣式电池(银锌电池) 锌银电池的负极是Zn,正极是Ag20,电解质是KOH,总反应方程式:Zn+Ag20=2Ag+ZnO 特点:此种电池比能量大,电压稳定,储存时间长,适宜小电流连续放电。 ③锂电池 锂电池用金属锂作负极,石墨作正极,电解质溶液由四氯化铝锂(LiAlCl4)溶解在亚硫酰氯(SOC12)中组成。 锂电池的主要反应为:负极:8Li-8e—=8Li+;正极:3SOC12+8e—=SO32-+2S+6Cl— 总反应式为:8Li+3SOC12=6LiCl+Li2SO3+2S 特点:锂电池是一种高能电池,质量轻、电压稳定、工作效率高和贮存寿命长的优点。 (2)二次电池 ①铅蓄电池:

蓄电池维护中常用的几种测试方法

蓄电池维护中常用的几种测试方法 为确保VRLA的可靠使用,延长使用寿命,在蓄电池维护中都会对蓄电池进行一定的测试,以下介绍几种常见的测试方法。 1、电压测量法 通过万用表测试单节电池电压,寻找落后电池。 优点:方法简单 缺点:准确性差,浮充状态,落后电池的电压和正常电压差别不大,基本上无规律可循。 2、核对放电法 1利用实际负载进行核对放电。 2利用传统电阻箱、水阻或PWM假负载进行放电测试。 优点: 测试准确可靠。依然是不可替代的常用检测方法。 缺点: 1、核对放电时间长,蓄电池需要脱离系统,风险大。 2、需要人工操作。 3、机房必须具备主备电池的条件。 4、只能整组测试,不能单节测试。 5、频繁测试将导致蓄电池硫酸盐化,损害蓄电池寿命。

6、只适合定期维护,不适合日常维护。 3、在线快速容量测试法(电池在线测试仪、巡检仪 通过巡检测试仪对单节电池进行在线测试。 优点: 操作简单,风险小,可快速查找落后电池。 缺点: 1精度差,只能定性判断好坏,无法准确测算好坏程度及容量指标。 2要求较高的机房测试环境,但大部分机房实际很难满足要求。 4、电导(内阻测试法 在蓄电池两端加已知频率和振幅的交流电压信号,测量出与电压同相位的交流电流值,其比例即为电导,一般测量频率为30HZ,根据不同容量的电池频率进行调整。电池容量越小,电池电阻越大,电导值越小。 优点:测试方法简单,可准确查出完全失效电池。 缺点:很难准确测量蓄电池容量,大量试验表明,只有电池容量降低到50%后,电导才有较大变化,40%以下,电导有明显变化。因此此方法只能确定电池的好与坏,很难准确测出实际指标。

最全面铅酸蓄电池常见故障和机理分析快点动力

最全面铅酸蓄电池常见故障和机理分析 快点动力新能源 1、反极的现象及原因 铅酸蓄电池的反极系指蓄电池的正负极发生了改变,反极现象反映在两个方面,一是由于铅蓄电池在装配组装时某单格电池极群组接反或整个电池极群组接反。这种情况下会出现铅酸蓄电池灌完酸用电压表测量端电压时其端电压值小于各单体蓄电池额定电压之和的现象或出现端电压为负的现象。另一方面是铅蓄电池在容量放电时在多个串联使用中,由于某个蓄电池(或某单体蓄电池)容量较低或完全丧失容量。在放电时这个电池很快被放完电被其它电池进行反充电,使原来的负极变成正极,原来的正极变成负极,端电压出现负值的现象。 对于前一种反极故障,在测量蓄电池端电压时(多个单体电池组成的蓄电池)都可发现,若有一个单体电池反极,不仅失去该电池的2 V电压,而且还要增加2 V反电压,端电压要降低4V左右。例如,对于额定电压为12 V的电池,如测量其端电压为8 V左右,说明有1个单格电池反极。如测量其端电压为4 V左右说明有2个单格反极,如测量其端电压为-4 V左右说明有4个单格反极,如测量其端电压为-12 V说明6个单格均反极。 对于后一种反极故障,其端电压值(负值)随放电情况而不同。一般在检测时,对于这种情况要及时将蓄电池从放电线路中摘除下来,以免对蓄电池有所损坏。 2、短路现象及原因 铅酸蓄电池的短路是指铅酸蓄电池内部正负极群相连。铅酸蓄电池短路现象主要表现在以下几个方面: (1)开路电压低,闭路电压(放电)很快达到终止电压。 (2)大电流放电时,端电压迅速下降到零。 (3)开路时,电解液密度很低,在低温环境中电解液会出现结冰现象。 (4)充电时,电压上升很慢,始终保持低值(有时降为零)。 (5)充电时,电解液温度上升很高很快。 (6)充电时,电解液密度上升很慢或几乎无变化。 (7)充电时不冒气泡或冒气出现很晚。 造成铅酸蓄电池内部短路的原因主要有以下几个方面: (1)隔板质量不好或缺损,使极板活性物质穿过,致使正、负极板虚接触或直接接触。 (2)隔板窜位致使正负极板相连。 (3)极板上活性物质膨胀脱落,因脱落的活性物质沉积过多,致使正、负极板下部边缘或侧面边缘与沉积物相互接触而造成正负极板相连。 (4)导电物体落入电池内造成正、负极板相连。 (5)焊接极群时形成的“铅流”未除尽,或装配时有“铅豆”在正负极板间存在,在充放电过程中损坏隔板造成正负极板相连。 3、极板硫酸化现象及原因 极板硫酸化系是在极板上生成白色坚硬的硫酸铅结晶,充电时又非常难于转化为活性物质的硫酸铅。铅酸酸蓄电池极板硫酸化后主要有以下几种现象。

蓄电池型号含义

汽车用铅蓄电池的型号都是按照一定标准来命名的,在国内市场上使用的蓄电池型号主要是按照国家标准以及日本标准、德国标准和美国标准等命名的。 一、国家标准蓄电池 以型号为6-QAW-54a的蓄电池为例,说明如下: 1. 6表示由6个单格电池组成,每个单格电池电压为2V,即额定电压为12V; 2. Q表示蓄电池的用途,Q为汽车启动用蓄电池、M为摩托车用蓄电池、JC为船舶用蓄电池、HK为航空用蓄电池、D表示电动车用蓄电池、F表示阀控型蓄电池; 3. A和W表示蓄电池的类型,A表示干荷型蓄电池,W表示免维护型蓄电池,若不标表示普通型蓄电池; 4. 54表示蓄电池的额定容量为54Ah(充足电的蓄电池,在常温以20h率放电电流放电20h 蓄电池对外输出的电量); 5. 角标a表示对原产品的第一次改进,名称后加角标b表示第二次改进,依次类推。 注:①型号后加D表示低温启动性能好,如6-QA-110D。 ②型号后加HD表示高抗振型。 ③型号后加DF表示低温反装,如6-QA-165DF。 二、日本JIS标准蓄电池 在1979年时,日本标准蓄电池型号用日本Nippon的N为代表,后面的数字是电池槽的大小,用接近蓄电池额定容量来表示,如NS40ZL: 1. N表示日本JIS标准; 2. S表示小型化,即实际容量比40 Ah小,为36Ah; 3. Z表示同一尺寸下具有较好启动放电性能,S表示极桩端子比同容量蓄电池要粗,如NS60SL; 注:一般来说蓄电池的正极和负极有不同的直径,以避免将蓄电池极性接反。锥形端子的直径如表1所示。 三、德国DIN标准蓄电池 以型号为544 34的蓄电池为例,说明如下: 1.开头5表示蓄电池额定容量在100Ah以下;开头6表示蓄电池容量在100Ah与200Ah 之间;开头7表示蓄电池额定容量在200Ah以上。例如544 34蓄电池额定容量为44Ah;610 17MF蓄电池额定容量为110 Ah;700 27蓄电池额定容量为200 Ah。 2.容量后两位数字表示蓄电池尺寸组号。举几个例子,如表4所示。 3.MF表示免维护型。 四、美国BCI标准蓄电池 以型号为58 430(12V 430A 80min)的蓄电池为例,说明如下: 1.58表示蓄电池尺寸组号,如表5所示。 2.430表示冷启动电流为430A。 3.80min表示蓄电池储备容量为80min。 注:①冷启动电流(CCA):在-17.8℃和-28.9℃条件下,可获得的某特定意义下的最小电流。这个指标把蓄电池的启动能力与发动机的排量、压缩比、温度、启动时间、发动机和电气系统的技术状态以及启动和点火的最低使用电压这些重要的变量联系起来。它是指充满电的12V蓄电池在30s内,其端电压下降到7.2V时,蓄电池所能供给的最小电流,冷启动额定值给出的是总电流值。 ②储备容量(RC):汽车在充电系统不工作的情况下,在夜间靠蓄电池点火和提供最低限度的电路负载所能运行的大约时间,可具体表述为:完全充足电的12V蓄电池,在25&pluxxxn;2℃的条件下,以25A恒流放电至蓄电池端电压下降到10.5&pluxxxn;0.05V时

变电站蓄电池容量计算书

变电站蓄电池容量计算书

————————————————————————————————作者: ————————————————————————————————日期:

附件:蓄电池容量计算 一、站内负荷统计 1、保护、控制、监控系统负荷统计: 序号设备单位数量直流负荷(W) 1 110kV线路保护测控屏面 4 4×2×50=400 2 110kV母联保护测控屏面12×50=100 3110kV母线保护屏面 1 1×50=50 4 主变保护屏面 2 2×5×50=500 5 主变测控屏面 2 2×4×50=400 6 公用测控屏面 1 3×50=150 7 110kV母线测控屏面 1 1×50=100 8 35kV及10kV母线测控屏面 1 2×50=100 9 故障录波屏面12×50=100 10 时钟同步屏面 1 2×50=100 11 远动通信装置屏面16×50=300 12 35kV保护测控设备台88×50=400 13 10kV保护测控设备台17 17×50=850

14其他500 总计4050 2、直流负荷统计: 序号 负荷 名称装置 容量 kW 负荷 系数 计算电流 经常负荷 电流 A 事故放电时间及放电电流A 初期持续h 随机 0~1min 1~30min 30~60min 60~120min 5s Ijc I1 I2 I3 I4 Ichm 1 保护/控制/ 监控系统 4.05 0.6 11.05 √√√√√ 2 断路器跳闸8√ 3 断路器自投 2 √ 4 恢复供电断路 器合闸 5√5 DC/DC变 换装置 3.840.8 13.96 √√√√√ 6 UPS电源负荷 3 0.6 8.18 √√√√ 7合计25.01 43.1933.1933.19 33.19 5

常见的11种类型原电池教学提纲

11种类型原电池(电极反应及易错点) 离子共存是高中化学中一个高频考点,虽然难度不高,但是每年都会考,同学们应该要注意!应该对比掌握11种原电池原电池电极反应式的书写格式:电极名称(电极材料):氧化还原反应的半反应(氧化还原类型) 1、铜锌非氧化性强酸溶液的原电池(伏打电池)(电极材料:铜片和锌片,电解质溶液:稀硫酸) (1)氧化还原反应的离子方程式:zn+2h+ = zn2+ + h2↑ (2)电极反应式及其意义 正极(cu):2h+ +2e-=h2↑(还原反应);负极(zn):zn -2e-=zn2+ (氧化反应)。意义:在标准状况下,正极每析出2.24升氢气,负极质量就减小6.5克。 (3)微粒移动方向: ①在外电路:电流由铜片经用电器流向锌片,电子由锌片经用电器流向铜片。 ②在内电路:so(运载电荷)向锌片移动,h+ (参与电极反应)向铜片移动的电子放出氢气。 2、铜锌强碱溶液的原电池(电极材料:铜片和锌片,电解质溶液:氢氧化钠溶液) (1)氧化还原反应的离子方程式:zn +2oh- =zno22- + h2 ↑ (2)电极反应式及其意义 ①正极(cu):2h+ +2e-=h2↑(还原反应);修正为:2h2o+2e- =h2 ↑+2oh- ②负极(zn):zn -2e-=zn2+ (氧化反应);修正为:zn +4oh--2e-=zno +2h2o 意义:在标准状况下,正极每析出2.24升氢气,负极质量就减小6.5克。 (3)微粒移动方向: ①在外电路:电流由铜片经用电器流向锌片,电子由锌片经用电器流向铜片。 ②在内电路:oh-(参与溶液反应)向锌片移动遇到zn2+发生反应产生zno22- ,na+(运载电荷)向正极移动。 3、铝铜非氧化性强酸溶液的原电池(电极材料:铜和铝;电解质溶液:稀硫酸。) (1)氧化还原反应的离子方程式:2al+6h+ = 2al3+ + 3h2↑ (2)电极反应式及其意义 正极(cu):6h+ +6e- =3h2↑(还原反应);负极(al):2al -6e-=2al3+ (氧化反应)。 意义:在标准状况下,正极每析出6.72升氢气,负极质量就减小5.4克。 (3)微粒移动方向: ①在外电路:电流由铜片经用电器流向铝片,电子由铝片经用电器流向铜片。 ②在内电路:so(运载电荷)向铝片移动,h+ (参与电极反应)向铜片移动得电子放出氢气。 4、铜铝强碱溶液的原电池(电极材料:铜片和铝片,电解质溶液:氢氧化钠溶液) (1)氧化还原反应的离子方程式:2al +2oh- +2h2o=2alo2- + 3h2 ↑ (2)电极反应式及其意义 ①正极(cu):6h+ +6e-=3h2↑(还原反应);修正为:6h2o+6e- =3h2 ↑+6oh-

蓄电池维护中的常见问题

蓄电池日常维护及常见问题汇总 1、什么叫放电深度?放电深度为20%表示什么意思? 答:电池的放电深度指放电时电池所放出容量的程度,一般用百分数表示。20%表示电池放出的容量达到电池额定容量的20%,此时电池还剩有80%的容量。 2、VRLA(阀控式密封铅酸)蓄电池和传统的开口式铅酸电池比较有哪些优点?答:1)不需要加酸、加水及调整酸比重等维护工作; 2)密封结构,不会漏酸,也无酸雾排出; 3)电解液不流动,可以立放或卧放安装; 4)不需要专用电池室,可以和其他设备组合在一起使用,占地面积小。 3、影响质阀控式蓄电池运行质量的有那些因素? 答:阀控式蓄电池运行的质量是由三个方面决定的:一是产品质量,二是安装质量,三是运行维护质量。这三个方面应该说都是十分重要的。特别是产品质量,这是保持阀控式铅酸蓄电池有较好运行质量的关键。产品质量与蓄电池生产过程中的各个环节,即从制造铅粉到封装入库的每道工序都有关联。因此,要对板栅的厚度、重量,铅膏的配方,隔板的透气性,安全阀的技术设计,电解液的灌装方式及对电解液注入量的控制、合成的方式,壳体材料及壳盖与极桩、壳盖与壳体间的密封等诸方面、诸环节进行严格的把关。 对于安装质量,也包括储存、安装、容量实验等多个方面。这些方面均会直接影响阀控式蓄电池日后的运行和维护工作,因此在搬运储存的过程中应注意不要发生碰撞,在安装过程中要注意汇接条与电池极桩之间的吻合,小心将不平的极桩整平。在紧固极桩时,所用的力量既不能太大也不能太小。如太大,会使极桩内的铜套溢扣,力量太小又会造成汇流条与极桩接触不良,因此安装中最好采用厂家提供的有过力脱扣的扳手,或按照厂家提供的参考公斤力,使用相应的公斤的扳手。在安装中还注意以下方面:一、要使蓄电池与直流屏之间各组蓄电池正极与正极、负极与负极的长短尽量一致,以在大电流放电时保持电池组间的运行平衡;二、要使电池组的正、负极汇流板与电池汇流条间的连接牢固可靠;三、在安装后,千万不要忘记给电池补充充电。 对于维护质量,也是确保阀控式蓄电池正常运行的一个重要方面。如果维护质量较高,就能使阀控式蓄电池发挥最大的效能和延长使用的寿命。因此基站维护人员要在充分理解阀控式蓄电池产品说明书所提出的各项要求的前提下从事维护工作,并在维护工作中弄清以下几方面的关系和问题; (1)温度与容量的关系 以GNB电池(阀控式蓄电池)在互联网上给出的大致标准是:25℃时,蓄电池的容量为100%;在25℃以下时,每升高10℃蓄电池的容量会减少一半。 阀控式蓄电池的容量是随着温度的变化而变化的,维护人员必须认真做到机房空调正常运转,要控制好蓄电池的温度使其保持在22℃~25℃以内。 (2)充电、放电与寿命、容量的关系 a.充电与寿命的关系 对阀控式铅酸蓄电池的维护需要建立精确的充电制度并加以实施,才能使该蓄电池达到最优的性能和最长的使用寿命,国内外大量研究的结果表明,充电方式决定了蓄电池使用的寿命,有一些蓄电池与其说是使用坏的,不如说是充电方式不妥被损坏的。在这方便,国内有许多蓄电池生产厂家和科研院所或学校都做过类似的实验。例如有一个单位,将蓄电池分成了两组进行实验,一组采用普通恒压限流方

电池常见的5种故障判断

电池常见的5种故障判断 电动车用蓄电池制造水平参差不齐,蓄电池质量、性能区别也相当大。与蓄电池配合的设备质量好坏也不同程度地影响蓄电池的性能。使用条件的千差万别,也造成电动车性能的差异,在用户看来都可能理解成为蓄电池的质量问题。在电动车主要部件中,蓄电池的故障率较高,以下列举了一些典型的故障现象,介绍其检查处理方法。 一、电池极板硫酸盐化 1、故障现象 极板硫酸盐化也叫电池硫化是铅酸蓄电池最常见的故障,许多蓄电池失效也是因这一故障而发生的。极板硫酸盐化主要表现为:充电时电压很快上升,过早析出气体,温度上升快;放电时电压下降快,容量小。 2、故障的检查和处理 产生极板硫酸盐化原因归结如下: (1)存放时间过长,自放电率高,未对其进行维护充电。 (2)放电后未对其进行及时充电。 (3)长时间处于欠充电状态。 (4)过放电。 (5)干涸或加入的电解液浓度过高。 蓄电池产生硫酸盐化时,应根据其程度的轻重进行修复。 硫化较重者,需要对电池进行正负脉冲充放电,才能恢复正常。 具体方法为:先对蓄电池补加入纯水或密度为1.05g/cm3稀硫酸到富液状态,再用正负脉冲充电器对其进行充电激活,首次充电要充足12个小时以上,充满后把电放掉,再充,累计充电时间要达到24个小时以上,这是电池修理店的常用方法。 家庭使用者,可以加水后用正负脉冲充电器充电,像平常充电一样。 硫化较轻者,请直接使用正负脉冲充电器除硫。

二、电池充不进电 1、故障现象 首先检查充电回路的连接是否可靠,检查连线与插头接触是否完好,认真检查插座和插头是否有“打火”烧弧现象,有无线路损伤断线等。 检查充电器有无损坏,充电参数是否符合要求。 查看电池内部是否有干涸现象,即电池是否缺液严重。 还应检查极板是否存在硫酸盐化。极板的硫酸盐化,可通过充放电测量其端电压的变化来判定。在充电时,电池的电压上升特别快,某些单格电压特别高,超出正常值很多;放电时电压下降特别快,电池不存电或存电很少。出现上述情况,可判断电池出现硫酸盐化。 2、故障的检查和处理 先将充电回路连接牢固,充电器不正常的应更换。干涸的电池应补加纯水或1.050的硫酸,进行维护充电、放电恢复电池容量。如果发现有硫酸盐化,应使用正负脉冲充电激活恢复容量。干涸的电池加液后的维护充电,应控制最大电流1.8A,充电10-15小时,三只电池的电压均在13.4V/只以上为好。如果电池之间电压差别超过0.3V,说明电池已经出现不同步的硫酸盐化。对于发生硫酸盐化的电池,需要更换整组电池或使用正负脉冲激活电池。 三、新电池电压降得快 1、故障现象 新电池装车、起动时电压降得快。 2、故障的检查和处理 检查仪表显示电压与电池容量是否相符。 仪表显示的电压与电池容量关系不符合上表时,应要求厂家调整。 检查蓄电池连接线是否可靠,有无短路和连接不可靠等。有则排除之。 检查电动车起动和运行电流是否过大,若是过大(起动电流在15A以上,运行时的电流6A以上)应调整控制器限流值或对电机进行检查修理。 检查蓄电池容量是否偏低,若是偏低,应对电池使用正负脉冲充放电。

相关主题
文本预览
相关文档 最新文档