Thermal graft copolymerization of 4-vinyl pyridine on polyimide
- 格式:pdf
- 大小:163.66 KB
- 文档页数:5
林业工程学报,2021,6(1):1-12JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202003005收稿日期:2020-03-03㊀㊀㊀㊀修回日期:2020-05-09基金项目:国家自然科学基金(31971611);北京市自然科学基金(6182031);北京林业大学杰出青年人才培育计划(2019JQ03017)㊂作者简介:彭锋,男,教授,研究方向为生物质多糖高值化利用㊂E⁃mail:fengpeng@bjfu.edu.cn木聚糖衍生物及膜材料研究进展彭锋,饶俊(北京林业大学林木分子设计育种高精尖创新中心,林木生物质化学北京市重点实验室,北京100083)摘㊀要:木聚糖作为阔叶木和禾本科植物半纤维素的主要成分,因其来源广㊁可再生㊁可降解等特点,近年来成为备受关注的功能天然高分子㊂木聚糖基膜材料因气体阻隔性能优异㊁生物相容性好㊁环境友好等特性,在造纸㊁食品包装㊁涂层㊁生物医药材料领域展现出巨大的应用潜力㊂但是木聚糖具有水溶性和成膜性较差㊁膜材料极易吸湿和力学强度低等缺陷,极大地限制了其规模化㊁商业化应用,因此,如何改善这些缺陷将是木聚糖研究与应用的热点和难点㊂木聚糖通过化学改性可赋予其刺激响应性㊁离子性㊁热塑性等新的特性,增加木聚糖的溶解性㊁疏水性和改善其可加工性能,是实现木聚糖在功能材料制备与应用的重要途径㊂笔者总结了近年来木聚糖醚化㊁酯化㊁氧化和接枝共聚改性的研究进展,探讨了反应条件对木聚糖衍生物取代度㊁产率和性能的影响;总结了近年来木聚糖基膜材料的制备策略与应用,如通过内增塑㊁外增塑㊁聚合物增强等实现了木聚糖基膜材料的高效制备,并探讨了其在应用过程中的优势及缺陷,为木聚糖今后研究和应用提供新的方法和思路㊂关键词:木聚糖;化学改性;醚化;酯化;膜材料;阻隔性能中图分类号:TQ31㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:2096-1359(2021)01-0001-12Researchprogressonxylanderivativesandxylan⁃basedfilmsPENGFeng,RAOJun(AdvancedInnovationCenterofTreeMolecularDesignandBreeding,BeijingKeyLaboratoryofLignocellulosicChemistry,BeijingForestryUniversity,Beijing100083,China)Abstract:Asthemaintypeofhemicellulosesofhardwoodandgramineaeplants,xylanreceivedmuchattentionasafunctionalnaturalpolymermaterialinrecentyearsduetoitslowcost,renewableanddegradablecharacteristics.Itisnotonlythemaincomponentofhemicellulosesinhardwoodandgramineousplants,butalsothemaincomponentofnon⁃cellulosepolysaccharideinplantcellwalls.Xylanisformedbyamainchainofβ⁃(1,4)⁃linkedxylopyranoseu⁃nits,whichcanbesubstitutedattheC⁃2and/orC⁃3positionsby4⁃O⁃methylglucuronicacid(MeGlcA)groups,ara⁃binose,andO⁃acetylgroups.O⁃acetyl⁃4⁃O⁃methylglucuronoxylan,arabino⁃4⁃O⁃methylglucuronoxylan,andarabinox⁃ylansarethemostcommonxylans.Xylancanbeobtainedfromlignocellulosicbiomassbythealkaliextraction,andtheacetylgroupswillberemovedundertheconditions.Thehydroxylgroupsofxylancanbemodifiedforpreparingthexylanderivatives.Xylan⁃basedfilmshaveshowngreatapplicationpotentialinpapermaking,foodpackaging,coat⁃ing,andbiomedicalmaterialsduetotheirexcellentgasbarrierproperty,goodbiocompatibility,andbiodegradability.However,thecommercialapplicationscaleofthefilmsislimitedduetotheirpoordissolving,poorfilm⁃forming,ex⁃trememoisture⁃absorbing,andpoormechanicalproperty.Therefore,themethodtoovercomethesedefectswillbethehotspotanddifficultyofthexylanresearchandapplication.Chemicalmodificationofxylanimpartsittonewcharac⁃teristics,suchasstimulationresponse,ionicproperty,thermo⁃plasticity,andimprovementofthesolubility,hydro⁃phobicproperties,andprocessingperformance.Itisanimportantwaytorealizethepreparationandapplicationofxy⁃laninfunctionalmaterials.Inthispaper,theresearchprogressofetherification,esterification,oxidation,andgraftcopolymerizationofxylanisintroduced.Theeffectsofreactionconditionsonthedegreeofsubstitution,yieldandper⁃formanceofxylanderivativesarediscussed.Theetherificationreactionofxylanistousevariousetherifyingagentssuchashalogenatedcompounds,epoxycompoundsandolefinicmonomerstoreactwithxylaninanalkalineenviron⁃ment.Theesterificationmodificationofxylanreferstothecorrespondingesterifiedderivativesofxylanformedbythereactionofhydroxylgrouponthemolecularchainofxylanreactswithanacid.Graftcopolymerizationofxylanin⁃volvestheintroductionofpolymerswithspecificfunctionsontothexylanbackbone.Inaddition,thepreparationstrate⁃林业工程学报第6卷giesandapplicationsofxylan⁃basedfilmsarereviewed.Theefficientpreparationmethods,suchasinternalplasticiza⁃tion,externalplasticization,polymerreinforcement,areusedforachievingthexylan⁃basedfilms.Theadvantagesanddrawbacksofxylanintheapplicationprocessarediscussed,whichcanprovidenewdesignideasanddirectionsfortheresearchandapplicationofxylaninthefuture.Keywords:xylan;chemicalmodification;etherification;esterification;films;barrierproperty㊀㊀随着全球化石能源的日益短缺和环境污染问题的加剧,特别是近年来海洋生物体中微塑料的发现以及全球气候变暖,对发展和利用可持续㊁可再生㊁环境友好的新能源与材料的需求日益增加㊂因此,发展高效㊁可持续的清洁能源与材料是解决这一问题的重要途径,其中对生物质能和生物质基功能材料的研究已成为国内外的热点领域㊂近年来,基于农林生物质原料分离提取技术的迅速发展,使农林生物质原料在生物质能和功能材料上的应用表现出巨大的潜力,尤其是在生物乙醇㊁柔性电子器件㊁超吸附材料㊁生物医药以及包装涂层等领域已实现了高附加值利用㊂半纤维素含量在木质纤维生物质中占25% 35%,其结构与纤维素均一聚糖的直链结构不同,是由不同的单糖基以多种连接方式形成的具有复杂结构的聚糖,是一群复合聚糖的总称㊂根据其原料的来源不同,半纤维素的结构和含量也有明显差异㊂阔叶木半纤维素主要由葡萄糖醛酸木聚糖㊁葡甘露聚糖和木葡聚糖组成;针叶木半纤维素主要由半乳葡甘露聚糖㊁木聚糖和阿拉伯糖半乳聚糖组成;而禾本科植物半纤维素主要由阿拉伯糖葡萄糖醛酸木聚糖和β⁃(1,3)(1,4)⁃葡聚糖组成㊂木聚糖是广泛存在于植物细胞壁的天然聚多糖,不仅是阔叶木和禾本科植物半纤维素的主要成分,也是植物细胞壁中非纤维素聚多糖的主要组成部分㊂木聚糖主链是由D⁃吡喃型木糖基以β⁃(1,4)⁃糖苷键连接而成,侧链主要包括阿拉伯糖㊁4⁃O⁃甲基葡萄糖醛酸和O⁃乙酰基㊂根据侧链糖单元的不同,木聚糖主要分为聚⁃O⁃乙酰基⁃4⁃O⁃甲基葡萄糖醛酸基木糖㊁聚⁃阿拉伯糖⁃4⁃O⁃甲基葡萄糖醛酸基木糖和聚阿拉伯木糖㊂木聚糖膜具有独特的理化特性(良好生物相容性㊁生物可降解性和气体阻隔性),使其在药物缓释㊁包装材料㊁涂层和造纸添加剂等领域具有重要的应用价值㊂木聚糖分子链含有大量的羟基,导致其分子内和分子间具有强的氢键相互作用,使其在常见溶剂中只能润涨而难以溶解,限制了其可加工性;同时导致了其极易吸湿的特性,造成木聚糖基膜材料的力学性能大幅下降而限制了其应用㊂然而,由于木聚糖分子中大量羟基的存在,可对其进行化学改性赋予木聚糖特有的性能,如刺激响应性㊁电导性㊁疏水性㊁热塑性以及良好的加工性,从而克服木聚糖在实际应用中的缺陷㊂此外,在木聚糖基膜材料的制备过程中通常会引入塑化剂㊁聚合物和无机填料以改善膜材料的成膜性㊁疏水性㊁力学性能和热稳定性㊂如何将来源广㊁可再生㊁生物相容性好的木聚糖转化为功能材料,实现其高值化㊁规模化的应用,是今后研究的热点和难点㊂1㊀木聚糖的化学改性1.1㊀木聚糖的醚化改性木聚糖的羟基可与烷基化试剂反应生成木聚糖醚化衍生物,根据不同醚化产物使用不同的醚化试剂,如卤代物㊁环氧化合物及烯类单体(图1)㊂对木聚糖进行醚化改性可以改善木聚糖的水溶性㊁疏水性和表面活性等㊂木聚糖的醚化改性需要在强碱环境下使羟基去质子化,再与醚化试剂进行反应㊂在此过程中会导致木聚糖发生一定程度的降解,这也是木聚糖醚化过程中的主要弊端㊂为了减小醚化过程中木聚糖的降解对产物性能的影响,醚化反应一般在非均相体系中进行㊂木聚糖的醚化衍生物在制药㊁造纸助剂㊁热塑性材料㊁食品添加剂㊁造纸助剂和涂层等领域具有很大的应用潜力㊂图1㊀木聚糖醚化改性路径Fig.1㊀Reactionpathsforthepreparationofxylanderivativesviaetherification木聚糖羧甲基化是将阴离子引入木聚糖分子链的重要途径,不仅改善了其水溶性,也使其具有阴离子特性㊂Petzold等[1-2]对不同原料提取的木聚糖进行羧甲基改性,通过优化反应条件,制备出取代度为1.65的羧甲基木聚糖㊂此外,探讨了不同非均相体系(如NaOH/乙醇㊁NaOH/异丙醇)对2㊀第1期彭锋,等:木聚糖衍生物及膜材料研究进展取代度的影响㊂Alekhina等[3]在前人研究基础上优化了醚化反应条件,制备出了高取代度的羧甲基木聚糖㊂Peng等[4]在非均相体系(NaOH/乙醇)中借助微波辅助合成了羧甲基木聚糖,再将羧甲基木聚糖在微波辅助下与季铵化试剂反应生成两性木聚糖衍生物,与传统的加热法相比,微波辅助能在短时间内实现醚化产物的合成,且取代度能达到0.9㊂木聚糖的季铵化改性是赋予木聚糖阳离子特性的主要途径㊂季铵化改性之后的木聚糖不仅具有更好的水溶性,还可以与具有阴离子特性的高分子聚合物进行复合实现功能材料的制备㊂Ebringerová等[5]以3⁃氯⁃2⁃羟丙基三甲基氯化铵为醚化试剂在碱性环境(NaOH/H2O)下对木聚糖进行季铵化改性㊂结果表明,在最优反应条件下可以制备出取代度为0.51的季铵化木聚糖㊂Schwikal等[6]通过优化反应条件,在NaOH/1,2⁃二甲氧基乙烷体系中以2,3⁃环氧丙基三甲基氯化铵为季铵化试剂对木聚糖进行醚化改性,制备出高取代度(1.6)的季铵化木聚糖㊂Postma等[7]和Kong等[8]以季铵化木聚糖为造纸助剂,系统地研究了季铵化木聚糖对纸张性能的影响㊂结果表明,与阳离子淀粉助剂相比,添加季铵化木聚糖对纸张的抗张强度㊁耐撕裂度㊁耐破度和耐折度提升效果更为明显㊂在木聚糖分子链上引入苯环或烷基长链可以有效地改善木聚糖的疏水性㊂Ren等[9]系统分析了不同反应条件对苄基化木聚糖取代度和产率的影响,在最佳反应条件下制备出了取代度为0.35的苄基化木聚糖,该苄基化木聚糖在二甲基亚砜(DMSO)试剂中表现出良好的溶解性㊂与未改性的木聚糖相比,苯环的引入导致了苄基化木聚糖的热稳定性提升㊂Laine等[10]通过烷基化反应将烷基长链引入木聚糖,实现了木聚糖膜材料由亲水性向疏水性的转变㊂相对于传统的改性方法,木聚糖醚化改性的新方法涉及功能聚合物的设计与合成,如将含有不饱和碳碳双键或三键的功能单体引入到木聚糖形成前驱体,然后在催化剂的作用下引发功能单体聚合制备木聚糖基功能高分子聚合物㊂Peng等[11]利用开环反应将甲基丙烯酸缩水甘油醚接枝到木聚糖分子链,分析了不同反应条件对取代度㊁产率以及产物结构性能的影响㊂结果表明,醚化试剂与木聚糖的物质的量之比为9ʒ5,催化剂二甲氨基吡啶(DMAP)的用量为木聚糖质量的20%,在40ħ条件下反应36h即可制备出取代度为0.94的木聚糖醚化物㊂流变测试的结果表明,该木聚糖醚化物溶液呈现出剪切变稀的特性,且溶液的弹性模量随着取代度的提高而增加㊂Svärd等[12]首先通过开环反应将甲基丙烯酸缩水甘油醚引入到木聚糖分子链㊂然后,在催化剂的作用下与丙烯酸十八酯聚合生成相应的木聚糖醚化物㊂改性后的木聚糖基膜材料表现出良好的疏水性能和力学性能,接触角和断裂应变分别达到90ʎ和600%㊂因此,醚化改性可以赋予木聚糖离子特性,提升其溶解性和疏水性等,为木聚糖在聚合电解质㊁食品㊁造纸㊁包装材料㊁涂层和生物医药等领域的应用提供了保障,尤其是在先进功能材料(药物载体㊁超吸附和分离材料)上的制备与应用㊂木聚糖醚化衍生物的结构与反应条件见表1㊂表1㊀木聚糖醚化产物的结构及反应条件Table1㊀Thereactionconditionandstructureofxylanderivativesviaetherification编号产物结构反应条件参考文献1氢氧化钾/水氢氧化钠/丙酮[13-14]2氢氧化钠/水过硫酸钾/水醋酸/水[15]3氢氧化钠/水[10,16]4氢氧化钠/异丙醇[17]5氢氧化钠/1,2⁃二甲氧基乙烷氢氧化钠/水[6-7]6氢氧化钠/水氢氧化钠/乙醇氢氧化钠/异丙醇[1-4,18]3林业工程学报第6卷表1(续)编号产物结构反应条件参考文献7氢氧化钠/水[19]8氢氧化钠/水二甲基亚砜/4⁃二甲氨基吡啶[11-12]9二甲基亚砜/18⁃冠醚⁃6[9]10氢氧化钠/水[20-21]1.2㊀木聚糖的酯化改性木聚糖酯化改性一般是指木聚糖分子链上的羟基与酸反应生成相应的木聚糖酯化衍生物,以提高木聚糖的疏水性㊁热塑性和可加工性㊂酰基卤化物㊁酸酐和羧酸等均可与糖单元C2和C3位置上的羟基发生亲核取代反应,生成相应的木聚糖酯化衍生物㊂典型的木聚糖酯化改性如图2所示㊂首先是利用三乙胺(TEA)㊁DMAP㊁吡啶和氢氧化钠等对木聚糖的羟基进行活化,然后活化的羟基与酰基卤㊁酸酐和硫酸盐等反应生成木聚糖酯化衍生物㊂图2㊀木聚糖酯化反应路径Fig.2㊀Reactionpathsforthepreparationofxylanderivativesviaesterification木聚糖酯化改性涉及均相体系和非均相体系㊂因为木聚糖在一般溶剂中只能分散,难以溶解,早期的酯化改性主要是在非均相体系中进行的㊂1948年,Carson等[22]以甲酰胺溶液为溶剂,吡啶为催化剂,使用不同的酸酐和酰氯对不同原料的木聚糖进行酯化改性,制备出木聚糖丁酸酯㊁木聚糖月桂酸酯㊁木聚糖豆蔻酸酯和棕榈酸酯等㊂Sun等[23]以氢氧化钠为催化剂在水溶液中用琥珀酸对木聚糖进行酯化改性,系统地研究了不同反应条件对取代度和产率的影响㊂木聚糖琥珀酸酯在非均相体系的取代度仅为0.017 0.210,产率为40% 46%㊂研究者们发现在非均相体系中对木聚糖进行酯化改性时所需的反应条件均较苛刻,取代度和产率较低且产物性能较差㊂在均相体系下酯化改性可实现木聚糖酯化衍生物取代度㊁产率和结构的可控,因此,对均相体系的研究是木聚糖酯化改性的主要方向㊂常见的木聚糖酯化均相体系有二甲基甲酰胺(DMF)㊁N,N⁃二甲基乙酰胺/氯化锂(DMAc/LiCl)㊁二甲基亚砜/氯化锂(DMSO/LiCl)㊁二甲基亚砜/四氢呋喃(DMSO/THF)和各种离子液体如氯化1⁃丁基⁃3⁃甲基咪唑([Bmim]Cl)等㊂Daus等[24]先将木聚糖溶解在DMF中形成均相体系,用SO3/吡啶(Py)或SO3/DMF2种磺化体系对不同原料的木聚糖进行磺化反应生成木聚糖磺酸酯㊂结果表明,均相体系中木聚糖磺酸酯的取代度高达1.9㊂张雪琴[25]在二甲基亚砜/N⁃甲基咪唑(DMSO/NMI)均相体系中不添加任何催化剂的情况下,实现了木聚糖酯化衍生物的高效㊁高取代度和高产率的合成,木聚糖酯化物的取代度和产率分别为1.98%和86.88%,酯化改性之后木聚糖在DMSO㊁DMF和CHCl3的溶解度大幅提升㊂Wrigstedt等[26]在DMAc/LiCl均相体系中合成了木聚糖羟基肉桂酸酯,分析了不同反应条件与取代度和产率的关系,在最佳反应条件下木聚糖酯化物的取代度和产率分别为0.39%和65.8%,且该木聚糖酯化衍生物表现出一定的抗氧化性,在抗氧化剂领域具有一定的应用潜力㊂2007年,Ren等[27]第一次在离子液体中对半纤维素进行了均相酯化改性,在离子液体[Bmim]Cl中探究了不同反应条件对酰化半纤维素的产率和取代度的影响㊂半纤维素酯化物的最大取代度为1.53,改性后半纤维素的疏水性和热稳定性均得到了一定的提升㊂随后,Stepan等[28]分别在2种不同离子液体1⁃乙基⁃3⁃甲基咪唑磷酸二甲酯盐([emim][Me2PO4])和1,5⁃二氮杂双环[4.3.0]⁃5⁃壬烯醋酸盐([DBNH]OAc)中,实现了木聚糖快速乙酰化生成相应的高分子量木聚糖乙酸酯,反应时间可缩短至5min,取代度为1.96,且在三氯甲烷中具有良好的溶解性㊂Gericke等[29]用氯甲酸苯作酯化试剂分别在N⁃甲基咪唑/氯化锂(NMI/LiCl)和[Bmim]Cl4㊀第1期彭锋,等:木聚糖衍生物及膜材料研究进展体系中通过吡啶催化形成木聚糖碳酸酯,结果表明,在[Bmim]Cl/吡啶体系中酯化剂与木聚糖的物质的量之比为4ʒ1,反应时间为24h,木聚糖碳酸酯的取代度高达1.92,且在DMSO㊁DMF㊁DMAc和丙酮中具有很好的溶解性㊂此外,该木聚糖碳酸酯可以自组装形成直径100nm左右的纳米颗粒,在药物缓释和靶向治疗等领域表现出一定的应用潜力㊂木聚糖酯化改性另一途径是利用N,N⁃羰基二咪唑(CDI)先对酯化试剂进行活化,然后再和木聚糖的羟基进行酯化反应㊂Fu等[30]以木聚糖和硬脂酸为原料,用CDI对硬脂酸进行活化后,在二甲基亚砜/四丁基氟化铵体系中对木聚糖进行酯化,制备出取代度在0.34 1.54的木聚糖硬脂酸酯,并以酯化产物为原料通过透析法制备出pH响应型载药纳米粒子(215nm),该粒子对酮洛芬的最大负载量为64%,释放效果受环境pH影响,在pH11.0和2.0的环境中最大释放量分别为43.6%和53.8%㊂Daus等[31]先将布洛芬在DMSO分散溶解,加入CDI进行活化,然后和木聚糖在80ħ反应24h制备出取代度为1.24的木聚糖酯化衍生物㊂该木聚糖酯化物可以自组装形成直径为160 470nm的纳米微球,在药物缓释等领域具有很大的应用潜力㊂Kumar等[32]先将5⁃氨基水杨酸溶解分散在DMF中,在加入一定量的CDI进行活化,然后将一定量的木聚糖/DMSO溶液逐滴加入活化后的5⁃氨基水杨酸溶液进行酯化反应㊂该木聚糖酯化物的产率为95.37%,同样可自组装形成直径50nm左右的颗粒,体外药物释放的结果表明,该纳米颗粒可用于持续的靶向药物释放,释放速率与pH密切相关㊂因此,木聚糖酯化改性赋予了木聚糖新的功能特性,改善了其亲水性㊁成膜性和溶解性能,使其在功能材料(膜㊁纳米颗粒㊁凝胶等)上的制备成为可能,扩展了木聚糖的应用范围,特别是用于生产食品工业中的生物降解塑料㊁树脂㊁薄膜等㊂木聚糖酯化衍生物的结构及反应条件见表2㊂表2㊀木聚糖酯化产物的结构及反应条件Table2㊀Thereactionconditionandstructureofxylanderivativesviaesterification编号产物结构反应条件参考文献1甲酰胺/吡啶氯化1⁃丁基⁃3⁃甲基咪唑[22,27-28]2二甲基甲酰胺/氯化锂二甲基亚砜/N⁃甲基咪唑[25,33]3二甲基甲酰胺/氯化锂/4⁃二甲氨基吡啶[34]4二甲基甲酰胺/氯化锂/4⁃二甲氨基吡啶[35-36]5氯化1⁃丁基⁃3⁃甲基咪唑氢氧化钠/水[23,37]6二甲基甲酰胺/氯化锂/三氧化硫⁃吡啶三氧化硫⁃二甲基甲酰胺[24,38]7二甲基甲酰胺/氯化锂/4⁃二甲氨基吡啶/微波[39]8N⁃甲基吡咯烷酮/氯化锂/吡啶氯化1⁃丁基⁃3⁃甲基咪唑[29,40]5林业工程学报第6卷1.3㊀木聚糖的氧化改性木聚糖的氧化改性是将羧基和醛基化学反应活性基团引入木聚糖的主要途径㊂木聚糖的氧化产物取决于氧化剂的类型以及氧化条件㊂用于木聚糖氧化改性的常见氧化体系有高碘酸盐㊁H2O2/磺化酞菁铁(H2O2/FePcS)㊁HIO4/NaClO2㊁特异性氧化酶/NaClO2㊁NaNO2/H3PO4等㊂Matsumura等[41-42]的研究表明了HIO4/NaClO2体系在氧化过程中先在木聚糖的结构单元生成醛基,再通过Na⁃ClO2进一步氧化生成羧基㊂此外,Matsumura等[42]还利用特异性氧化酶/NaClO2体系对木聚糖进行氧化改性研究发现氧化过程中特异性酶可以将木聚糖结构单元上的羟基氧化生成醛基,在NaClO2的作用下进一步氧化生成羧基㊂Andersson等[43]利用NaNO2/H3PO4体系,采用一步法将羧基引入到木聚糖分子链中㊂氧化剂主要和糖单元C2㊁C3的邻位羟基反应生成相应的羧基,但是在氧化过程中木聚糖降解严重,分子链结构被破坏,限制了氧化产物的进一步应用㊂Börjesson等[44]和Amer等[45]的研究表明,高碘酸盐(高碘酸钠)是氧化木聚糖的理想氧化剂,主要是因为其选择性氧化邻位羟基(糖单元C2㊁C3邻位羟基)生成邻位醛基,在氧化过程中可以最大程度的保留木聚糖的分子链结构㊂Renault等[46]利用H2O2/FePcS体系氧化淀粉的经验,成功地在木聚糖的糖单元上同时引入了羧基和醛基㊂羧基和醛基的引入使木聚糖具有更高的化学反应活性,使其可以与富含氨基㊁羟基等聚合物进行组装实现木聚糖在功能材料方面的应用㊂木聚糖氧化衍生物的结构及反应条件见表3㊂表3㊀木聚糖氧化产物结构及反应条件Table3㊀Thereactionconditionandstructureofxylanderivativesviaoxidation编号产物结构反应条件参考文献1高碘酸/亚氯酸钠氢氧化钠/过氧化氢[41,47]2高碘酸钠[44-45]3过氧化氢/四磺酸基铁酞菁[46]1.4㊀木聚糖的接枝共聚改性木聚糖的接枝共聚改性是将具有特定功能的支链聚合物引入到木聚糖主链上㊂具体的实施方法有偶合接枝法和引发接枝法:偶合接枝法是将功能单体进行预聚合,然后通过预聚物的末端功能基团㊁偶联剂或交联剂与木聚糖分子链的活性基团反应形成木聚糖接枝聚合物;引发接枝法是先在木聚糖分子链上形成活性聚合中心,然后与功能单体进行可控的自由基聚合形成木聚糖接枝共聚物㊂常见的单体有丙烯酸㊁丙烯酰胺㊁甲基丙烯酸缩水甘油醚以及用于开环接枝聚合的丙交酯㊁己内酯等㊂木聚糖接枝共聚改性的早期研究主要是以苯乙烯㊁甲基丙烯酸甲酯㊁丙烯腈等功能单体通过硝酸铈铵㊁Fe2+/H2O2㊁过硫酸铵⁃硫代硫酸钠等引发体系与木聚糖或甲基化的木聚糖合成的木聚糖接枝共聚物[48-49]㊂然而,这些接枝共聚的方法存在诸多缺陷,如在反应过程中木聚糖降解严重,接枝率㊁产率和产物分子量无法得到有效控制㊂为了克服上述接枝共聚方法的缺点,实现木聚糖接枝共聚物高效㊁可靠的合成,研究者们开发了开环聚合和可控自由基聚合等聚合方法用于高效合成木聚糖接枝共聚物㊂Persson等[50]利用辛酸亚锡催化体系将L⁃丙交酯(PLA)通过开环聚合成功制备出木聚糖接枝共聚物(木聚糖⁃g⁃PLA)㊂结果表明,木聚糖分子链上的羟基取代度在0.7 1.7,且每个取代侧链含有1.2 2.5个PLA单元㊂与未改性的木聚糖相比,木聚糖⁃g⁃PLA具有优异的成膜性能,且膜材料具有较好的力学性能㊂Zhang等[51]和Farhat等[52]则以ε⁃己内酯为功能单体通过开环聚合制备出木聚糖接枝共聚物(木聚糖⁃g⁃PCL)㊂木聚糖⁃g⁃PCL共聚物表现出典型的热塑性,生物降解率高达95.3% 99.7%㊂木聚糖⁃g⁃PCL共聚物在环境友好㊁生物可降解的生物塑料产业具有较大的应有潜力㊂Peng等[53]和Wang等[54]合成了阳离子型的木聚糖接枝2⁃甲基丙烯酰氧基乙基三甲基氯化铵共聚物(木聚糖⁃METAC)和阴离子型的羧甲基木聚糖接枝环氧丙烷共聚物(CMX⁃g⁃PPO)㊂木聚糖⁃METAC共聚物在纺织絮凝剂具有潜在的6㊀第1期彭锋,等:木聚糖衍生物及膜材料研究进展应用,CMX⁃g⁃PPO共聚物因其具有良好的成膜性能㊁气体阻隔性能和力学性能,在食品包装和涂层材料上具有一定的应用价值㊂木聚糖接枝共聚物的结构与反应条件见表4㊂表4㊀典型的木聚糖接枝共聚物的结构及反应条件Table4㊀Thereactionconditionandstructureofxylanderivativesviagraftcopolymerization编号产物结构反应条件参考文献1硝酸铈铵Fe2+/过氧化氢/水[49,55]2异辛酸亚锡三氮杂双环癸稀脒/二甲基亚砜[56-57]3三氮杂双环癸稀脒/二甲基亚砜4⁃二甲氨基吡啶/氯化1⁃烯丙基⁃3⁃甲基咪唑[51-52,58]4硝酸铈铵/水[59]5溴化铜/五甲基二乙烯三胺/二甲基甲酰胺[60]6硝酸铈铵/硝酸/水[55]7过硫酸钾/水[54]8三异丙醇铝/氢氧化钠/异丙醇[53]9硫酸铜/抗坏血酸[61]2㊀木聚糖基膜材料的制备与应用目前广泛使用的包装材料主要是石油基聚乙烯㊁聚氯乙烯等膜材料㊂石油基膜材料在自然环境中很难被降解,所造成的白色污染给环境和生物链安全带来了极大的危害㊂同时,随着石油资源的日益消耗,最终将面临资源短缺问题㊂为了应对日益严重的环境污染和资源短缺等挑战,由可再生㊁可生物降解和来源广的生物质原料制备功能膜材料的研究受到了人们的广泛关注,其中木聚糖膜材料由于其良好的可再生性㊁可生物降解㊁阻氧性能受到人们的青睐,在食品㊁包装㊁农业㊁医药等领域有着极大的应用潜力㊂木聚糖由于分子内和分子间存在较强的氢键作用,导致了木聚糖膜材料在干燥过程中出现了内应力分布不均匀而开裂,很难获得连续致密的膜材料㊂因此,在木聚糖膜材料制备过程中提出了多种方法,如内增塑(化学改性)㊁外增塑(小分子塑化剂)㊁聚合物及无机填料增强等用以增加木聚糖的成膜性能㊁力学性能㊁疏水性以及阻隔性能㊂典型的木聚糖膜材料的主要组分㊁力学性能和阻隔性能见表5㊂7林业工程学报第6卷表5㊀木聚糖基膜材料的力学性能及阻隔性能Table5㊀Themechanicalpropertiesandoxygenpermeabilityofxylan⁃basedfilms编号主要组分拉伸应力/MPa断裂应变/%水蒸气透过率/(g㊃mm㊃m-2㊃d-1㊃kPa-1)氧气透过率/(cm3㊃μm㊃m-2㊃d-1㊃kPa-1)参考文献1阿拉伯木聚糖+山梨醇㊁甘油5.0 27.04.0 10.51.10 41.003.000 7.400[63]2阿拉伯葡萄糖醛酸木聚糖+山梨醇26.0 57.02.7 4.3-0.120 0.170[64]3葡萄糖醛酸木聚糖+木糖醇㊁山梨醇4.0 42.02.0 13.0-0.210[65]4拉伯木聚糖+细菌纳米纤维素32.0 68.02.1 8.1--[66]5木聚糖+磺化纤维素纳米晶---0.180[67]6羧甲基木聚糖+羧甲基纤维素5.0 58.03.0 8.019.00 38.006.000 23.000[3]7木聚糖+壳聚糖56.0 71.01.7 4.4-7.300 9.450[68]84⁃O⁃甲基葡萄糖醛酸木聚糖+壳聚糖+甘油10.0 23.12.6 12.2-0.010 0.265[69]9木聚糖+聚乙烯醇+TiO219.7 30.7170.0 327.02.99 5.33-[70]10阿拉伯木聚糖+乙二醇/甘油/山梨醇9.7 60.75.5 12.12.16 4.84-[71]11木聚糖+纤维素纳米纤维+山梨醇11.9 39.51.4 3.4--[72]12木聚糖接枝聚环氧丙烷+壳聚糖3.2 27.82.0 17.2--[53]13木聚糖+聚乙烯醇+柠檬酸7.6 49.35.8 249.02.03 2.55-[73]14木聚糖+纤维素纳米纤维+甘油㊁山梨醇㊁乙酸乙酯18.0 83.00.6 12.30.28 9.070.048 206.000[74]15木聚糖+聚乙烯醇+ZnO㊁SiO220.4 22.5200.0 260.02.85 3.625.000 6.800[76]㊀注: - 表示没有相关数据㊂2.1㊀内增塑内增塑主要涉及木聚糖的化学改性如醚化㊁酯化㊁接枝共聚等,化学改性赋予了木聚糖离子性和塑性,改善了木聚糖的溶解性㊁成膜性㊁疏水性和可加工性等,从而制备出性能优异的木聚糖膜材料㊂Fundador等[34]在均相体系通过酯化改性制备出含有不同长度烷基侧链的木聚糖酯化物㊂氯仿是该木聚糖酯化物的良溶剂,采用流延成膜的方法制备出了连续致密的木聚糖膜材料㊂随着烷基侧链的长度的增加,膜材料的疏水性能有明显的提升,最大接触角为99ʎ㊂膜材料的断裂应力和应变分别为29MPa和44%;断裂应力和模量随着烷基侧链长度的增加而降低,断裂应变随着烷基侧链长度的增加而增加㊂这主要是因为烷基侧链长度的增加降低了相邻木聚糖主链的结合强度,而侧链在相邻木聚糖主链之间充当了增韧剂,使膜材料表现出一定的柔韧性㊂Laine等[10]通过醚化反应将烷基长链引入到木聚糖主链上,大幅提升了木聚糖膜材料的疏水性能,木聚糖膜材料的最大接触角为112ʎ,实现了木聚糖膜材料由亲水性向疏水性的转变㊂该木聚糖膜材料的阻隔性能要优于商用的聚对苯二甲酸乙二醇酯,其氧气透过率和水蒸气透过率分别为37cm3㊃μm/(m2㊃d㊃kPa)和12g㊃mm/(m2㊃d㊃kPa)㊂优异的阻隔性能使其在食品包装和涂层等领域具有一定的应用前景㊂接枝共聚改性也是将烷基长链引入木聚糖的重要途径㊂Zhang等[51]研究了3种均相体系(DMF/LiCl㊁DMAc/LiCl㊁N⁃甲基吡咯烷酮/LiCl)下合成木聚糖接枝共聚物的最佳反应条件,以及不同接枝共聚物对膜材料性能的影响㊂结果表明,随着烷基侧链长度的增加,膜材料的断裂应力和杨氏模量下降,而断裂应变会大幅增加㊂该木聚糖衍生物膜材料的热稳定性也会随着烷基侧链长度的增加而增加㊂Šimkovic等[76]对木聚糖进行酯化改性制备出不同取代度的木聚糖硫酸酯化物,结果表明,取代度越高其木聚糖硫酸酯化物的分子量越低㊂通过流延法制备的木聚糖膜材料的力学性能随着取代度的增加而降低,主要是因为分子量的降低直8。
功 能 高 分 子 学 报Journ al of Functional Polymers Vol.24No.12011年3月收稿日期:2010 09 17基金项目:山西省国际科技合作项目(2007081029;2009081046)作者简介:刘治国(1986 ),男,天津人,硕士生,主要研究方向:生态环境材料。
E mail:ailuo_bae@通讯联系人:贾虎生,E m ail:jia_hu sheng@ 纤维素与己内酰胺的接枝共聚反应刘治国, 高晓月, 王淑花, 贾虎生(太原理工大学材料科学与工程学院,太原030024)摘 要: 以过硫酸铵和过硫酸钾为引发剂,在碱性环境下进行纤维素与己内酰胺的接枝共聚反应。
采用红外光谱仪(FT IR)、扫描电子显微镜(SEM )及X 射线衍射仪(XRD)对接枝共聚物的分子结构、表观形貌和结晶性进行了表征。
通过单因素实验重点考察了单体用量、引发剂浓度、反应温度和反应时间等对接枝共聚物接枝率的影响。
结果表明:以3g 纤维素为原料,当单体与原料质量比为1 1、引发剂浓度为0.2mo l/L 、反应温度30 C 、反应时间75min 时,接枝率最高可达57%。
由XRD 衍射图谱可知,接枝反应发生在纤维素的无定形区,没有破坏原纤维素的结晶结构。
关键词: 纤维素;接枝共聚;己内酰胺中图分类号: TQ35 文献标志码: A 文章编号: 1008 9357(2011)01 0076 06Graft Copolymerization of Caprolactam on CelluloseLIU Zhi guo, GAO Xiao y ue, WANG Shu hua, JIA H u sheng(Colleg e of M aterials Science and Engineering ,T aiyuan U niv ersity o f Technolog y,Taiyuan 030024,China)Abstract: The copo lymerization of caprolactam (CPL )o nto cellulose using po tassium persulfate and amm onium persulfate as reaction initiator w as studied.T he molecular structure,m orpho logy and cr ystal linity of gr aft copo lymer w ere char acterized using infrared spectrom eter (FT IR),scanning electron micro scope (SEM)and X r ay diffracto meter (XRD).Effects of various reaction parameters o n g rafting ratio,such as mass of monom er,concentratio n o f initiator,reaction tim e and reaction temperature w ere evalua ted.Results sho w that the optimum conditio ns are as follo w s:the mass ratio of monomer to cellulose 1 1,initiator concentration 0.2m ol/L,reaction temper ature 30 C,reaction time 75min.The grafting ratio r eached 57%under the optim um co nditions.T he g rafting o ccurs m ainly on the sur face and w ithin the amorphous r eg io n of the cellulose,and the cr ystallinity is no t destro yed.Key w ords: cellulose;graft co po lymerizatio n;caprolactam目前,全球性环境污染问题的日益加剧和自然资源过度消耗对可持续发展造成很大威胁,纤维素作为地球上可再生的有机天然高分子资源已得到越来越多的重视。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 3 期四种烷基咪唑磷酸酯离子液体的热力学性质刘泽鹏,曾纪珺,唐晓博,赵波,韩升,廖袁淏,张伟(西安近代化学研究所氟氮化工资源高效开发与利用国家重点实验室,陕西 西安 710065)摘要:针对烷基咪唑磷酸酯离子液体的热物性数据较少的问题,本文在常压下测定了1-乙基-3-甲基咪唑磷酸二氢盐([EMIM][DHP])、1-乙基-3-甲基咪唑磷酸二甲酯盐([EMIM][DMP])、1-乙基-3-甲基咪唑磷酸二乙酯盐([EMIM][DEP])、1-丁基-3-甲基咪唑磷酸二丁酯盐([BMIM][DBP])四种烷基咪唑磷酸酯离子液体的密度、黏度(293.15~353.15K )和电导率(293.15~343.15K ),并且测定了四种离子液体的热稳定性。
结果表明,离子液体的密度、黏度随温度的升高而减小,而电导率随温度的升高而增大。
采用自然对数方程关联四种离子液体的密度,根据实验值计算到了离子液体体积性质;采用VFT 方程关联离子液体黏度和电导率,其中密度与电导率的实验值与模型相关系数R 2达到0.9999,黏度相关系数R 2达到0.99999,实验测定的数据与模型一致;四种离子液体的热稳定性相近,分解温度均在271.9~278.6℃范围内;瓦尔登规则分析表明,四种烷基咪唑磷酸酯离子液体符合Walden 规则,而[EMIM][DMP]和[EMIM][DEP]被归类为“good ionic liquids ”。
关键词:烷基咪唑磷酸酯离子液体;密度;黏度;电导率;热稳定性中图分类号:TQ013.1 文献标志码:A 文章编号:1000-6613(2024)03-1484-08Thermodynamic properties of four alkyl imidazolium phosphate ionicliquidsLIU Zepeng ,ZENG Jijun ,TANG Xiaobo ,ZHAO Bo ,HAN Sheng ,LIAO Yuanhao ,ZHANG Wei(State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi ’an Modern Chemistry Research Institute, Xi ’an 710065,Shaanxi, China)Abstract: The density, viscosity, and conductivity of 1-ethyl-3-methylimidazolium dihydrogen-phosphate ([EMIM][DHP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]) and 1-butyl-3-methylimidazolium dibutyl-phosphate ([BMIM][DBP]) ionic liquids were measured in the temperature range of 293.15K to 353.15K under ambient conditions. Some important volumetric properties, including the isobaric thermal expansion coefficients, molecular volume, standard entropy and lattice potential energy were calculated from the experimental density values. The thermal gravimetric analysis was performed in the temperature range of 35℃ to 700℃, resulting in thermal decomposition temperatures up to 271.9—278.6℃. The Walden rule analysis demonstrated that four phosphate ionic liquids complied with the Walden rule well, while [EMIM][DMP] and [EMIM][DEP] were classified as “good ionic liquids ”.Keywords: alkyl imidazolium phosphate ionic liquids; density; viscosity; conductivity; thermal stability研究开发DOI :10.16085/j.issn.1000-6613.2023-1722收稿日期:2023-09-28;修改稿日期:2023-12-05。
高分子物理名词解释Θ溶剂(Θ solvent):链段-溶剂相互吸引刚好抵消链段间空间排斥的溶剂,形成高分子溶液时观察不到远程作用,该溶剂中的高分子链的行为同无扰链2.7Θ温度(Θ temperature):溶剂表现出Θ溶剂性质的温度2.7Argon理论(Argon theory):一种银纹扩展过程的模型,描述了分子链被伸展将聚合物材料空化的过程5.3Avrami方程(Avrami equation):描述物质结晶转化率与时间关系的方程:--α,α为转化率,K与n称Avrami常数(Avrami constants) 4.8 =Kt1n)ex p(Bingham流体(Bingham liquid):此类流体具有一个屈服应力σy,应力低于σy时不产生形变,当应力大于σy时才发生流动,应力高于σy的部分与应变速率呈线性关系3.13 Boltzmann叠加原理(Blotzmann superposition principle):Boltzmann提出的粘弹性原理:认为样品在不同时刻对应力或应变的响应各自独立并可线性叠加 3.8Bravais晶格(Bravais lattice):结构单元在空间的排列方式4.1Burger's模型(Burger's model):由一个Maxwell模型和一个Kelvin模型串联构成的粘弹性模型3.7Cauchy应变(Cauchy strain):拉伸引起的相对于样品初始长度的形变分数,又称工程应变3.16Charpy冲击测试(Charpy impact test):样品以简支梁形式放置的冲击强度测试,测量样品单位截面积的冲击能5.4Considère构图(Considère construction):以真应力对工程应作图以判定细颈稳定性的方法5.2Eyring模型(Eyring model):一种描述材料形变过程的分子模型,认为形变是结构单元越过能垒的跳跃式运动5.2Flory-Huggins参数(Flory-Huggins interaction parameter):描述聚合物链段与溶剂分子间相互作用的参数,常用χ表示,物理意义为一个溶质分子被放入溶剂中作用能变化与动能之比2.11.2Flory构图(Flory construction):保持固定拉伸比所需的力f对实验温度作图得到,由截距确定内能对拉伸力的贡献,由斜率确定熵对拉伸力的贡献2.16.2Flory特征比(characteristic ratio):无扰链均方末端距与自由连接链均方末端距的比值2.4 Griffith理论(Griffith theory):一种描述材料断裂机理的理论,认为断裂是吸收外界能量产生新表面的过程5.4Hencky应变(Hencky strain):拉伸引起的相对于样品形变分数积分,又称真应变3.16 Hermans取向因子(Hermans orientation factor):描述结构单元取向程度的参数,是结构单元与参考方向夹角余弦均方值的函数4.8, 4.10Hoffman-Weeks作图法(Hoffman-Weeks plot):一种确定平衡熔点的方法。
ARGET ATRP法合成聚氯乙烯接枝丙烯酸丁酯共聚物刘克勇;包永忠【摘要】以不稳定氯含量高的聚氯乙烯(U-PVC)和氯乙烯-溴代异丁酸烯丙酯共聚物(PVC-co-ABrMP)为大分子引发剂,使用电子转移催化再生原子转移自由基聚合(ARGET ATRP)进行丙烯酸丁酯(BA)的溶液接枝共聚。
在固定CuCl2:三(2-吡啶甲基)胺:辛酸亚锡(摩尔比)时,当CuCl2用量(相对于氯乙烯链节数)小于0.1%时,BA转化率随CuCl2用量增加而明显增加;辛酸亚锡与CuCl2摩尔比大于50时,辛酸亚锡用量对聚合速率的影响较小;相同催化体系用量下,采用PVC-co-ABrMP为引发剂,可获得更高的BA转化率。
通过PVC-co-ABrMP酯基水解得到PBA支链,其分子量分布指数为1.29,符合“活性”自由基聚合的特征。
接枝PBA对PVC有明显的内增塑效果,PBA摩尔分数为32.75%的PVC-g-BA的玻璃化温度为8.34℃。
%The grafting copolymerization of butyl acrylate (BA) onto poly(vinyl chloride) (PVC) was conducted through the method of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP), using PVC with higher labile chlorine content (U-PVC) and vinyl chloride/allyl 2-bromo-2-methylpropionate random copolymer (PVC-co-ABrMP) as an initiator. The polymerization conversion of BA was obviously increased as CuCl2 concentration (basedon number of vinyl chloride unit) increased when CuCl2 concentration was lower than 0.1%. The increase of BA polymerization rate was not obvious when Sn(EH)2/CuCl2 molar ratio exceeded 50. The greater BA polymerization rate and PBA grafting degree were achieved when PVC-co-ABrMP was used as the initiator with the same catalyst. The side PBAchains were cleaved from the ester group of PVC-co-ABrMP and the molecular weight distribution index of PBA was 1.29, verifying the “living”nature of this graft copolymerization. The gr afted PBA showed good internal plasticization effect on PVC, and the glass temperature of PVC-g-BA copolymer with 32.75%(mol) PBA was reduced to 8.34℃.【期刊名称】《化工学报》【年(卷),期】2014(000)008【总页数】7页(P3261-3267)【关键词】聚合;反应动力学;催化剂;聚氯乙烯;丙烯酸丁酯;接枝【作者】刘克勇;包永忠【作者单位】浙江大学化学工程与生物工程学系,化学工程联合国家重点实验室,浙江杭州 310027;浙江大学化学工程与生物工程学系,化学工程联合国家重点实验室,浙江杭州 310027【正文语种】中文【中图分类】TQ325.3以聚氯乙烯(PVC)为基体接枝软单体是合成增塑效果稳定的软质PVC的重要方法[1]。
聚四氟乙烯接枝GMA的反应研究张冬娜;寇开昌;侯梅;高攀;吴广磊【摘要】使用叔丁基锂(t-BuLi)与乙二胺(EDA)的混合溶液活化聚四氟乙烯(PTFE),并在活化的PTFE上接枝甲基丙烯酸缩水甘油酯(GMA).使用傅立叶红外吸收光谱(FTIR)对活化与接枝后的PTFE进行了分析,结果表明:本工艺成功将GMA接枝到PTFE上.通过扫描电子显微镜(SEM)观察了接枝表面,使用TGA法测定接枝聚合物的接枝率达到5.83%.最后研究了接枝反应时间和温度对PTFE-g-GMA接枝率的影响.结果表明,接枝率随着反应时间的延长逐渐增加,反应时间超过8h后基本恒定;在70℃反应时接枝率出现最大值.%Polytetrafluoroethylene ( PTFE) was activated with the mixture solution of tert-Butyllithium (t-BuLi) and ethylenediamine ( EDA) , and grafted GMA onto the PTFE. The chemical structure of activated and grafted PTFE was analyzed by using FTIR. It shows that GMA was successfully grafted onto the PTFE. SEM was used to observe the surface morphology of grafted PTFE. The grafting ratio of 5. 83% was achieved, which was measured by TGA. The effect of reaction time and temperature for the grafting ratio was studied finally. The grafting ratiowas increased with the elongation of reactive time, and basically constant after 8h. The grafting ratio reaches its maximum when the reaction temperature is 70℃.【期刊名称】《航空材料学报》【年(卷),期】2012(032)004【总页数】5页(P70-74)【关键词】聚四氟乙烯;甲基丙烯酸缩水甘油酯;接枝;接枝率【作者】张冬娜;寇开昌;侯梅;高攀;吴广磊【作者单位】西北工业大学理学院,西安710129;西北工业大学理学院,西安710129;西北工业大学理学院,西安710129;西北工业大学理学院,西安710129;西北工业大学理学院,西安710129【正文语种】中文【中图分类】T0325.4聚四氟乙烯(PTFE)具有优异的耐热、耐寒、耐化学药品性及自润滑性,并具有特殊的电性能、表面特性和低摩擦系数等特点,已广泛应用于国防、军工、航空航天、汽车、石油化工等许多领域[1,2]。
第38卷第2期2008年4月 日用化学工业China Surfactant Detergent &Cos metics Vol .38No .2Ap ril 2008收稿日期:2007-10-18;修回日期:2007-12-27作者简介:龚 蔚(1983-),男(汉),湖南人,硕士研究生,E -mail:gong wei401@1631com 。
木质素的化学改性方法及其在油田中的运用龚 蔚,蒲万芬,金发扬,彭陶钧(西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500)摘要:简要介绍了木质素资源的利用及木质素的化学结构特点;综述了目前木质素的磺化、硫化、氧化、接枝共聚、缩合、交联等化学改性方法和以木质素为原料制备的钻井液、油井水泥外加剂、稠油降黏剂及调剖堵水剂、水处理等方面的油田化学品的研究进展。
综合分析表明,改性后的木质素相对分子质量提高,水溶性、表面活性增强。
并从木质素的化学结构特点提出了木质素改性研究的发展方向。
关键词:木质素化学改性;油田化学品;应用中图分类号:T Q423 文献标识码:A 文章编号:1001-1803(2008)02-0117-04Chem i cal modi fi cati on of li gn i n and its utili zati n g i n oilfi eldG ONGW ei,PU W an -fen,J IN Fa -yang,PENG Tao -jun(State Key Laborat ory of O il and Gas Reservoir Geol ogy and Exp l oitati on,South west Petr oleu m University,Chengdou 610500,China )Abstract:The utilizati on and che m ical compositi on of lignin were briefly intr oduced .The p r ogress inche m ical modificati on of lignin including sulf onati on,sulfur treat m ent,graft copoly merizati on with acryla m ide,condensati on and cr oss linking,as well as the app licati on of the modified lignin in p reparati on of oilfield che m icals,such as oil well drilling fluids,oil well ce ment additives,thick oil viscosity reductants,water bl ocking agent for p r ofile contr ol,water treat m ent agents et al were revie wed .After che m ical modificati on,the molecular weigh of the lignin is upgraded while the water s olubility and surface activity were enhanced .The future devel opment f or modificati on of lignin based on the characteristics of its che m ical structure was p r oposed .Key words:che m ical modificati on of lignin;oilfield che m icals;app licati on 木质素是一种高分子有机物,大量存在于木材、竹、草等造纸原料中。
International Journal of Adhesion&Adhesives22(2002)471–475Thermal graft copolymerization of4-vinyl pyridine on polyimideto improve adhesion to copperM.B.Chan-Park a,*,S.S.Tan ba School of Mechanical and Production Engineering,Nanyang Technological University,50Nanyang Avenue,Singapore639798,Singaporeb Megachem Pte Ltd.,132Pioneer Road,Jurong Town,Singapore639588,SingaporeAccepted15June2002AbstractThe surface of poly½N;N0-(oxydiphenylene)pyromellitimide]film,Kapton s HN,was modified to improve its adhesion to copper metal.The polyimide surface was argon plasma activated and then exposed to air.A nitrogen-containing monomer,4-vinyl pyridine,was then polymerized at elevated temperature under constant pressure between the argon plasma activated polyimidefilm and copper foil without any added photoinitiator.Optimization of the argon pretreatment time,curing temperature and curing duration resulted in almost doubling of the single lapshear strength.It is p ostulated that failure occurred mainly between the polyimide and the poly(4-vinyl pyridine).r2002Elsevier Science Ltd.All rights reserved.Keywords:B.Plasma;Polyimide;Adhesion;Graft1.IntroductionPolyimides(PI)are widely used in the microelec-tronics packaging industry,especially in printed circuitboards(PCBs),because of their superior mechanicalproperties,high-temperature resistance,solvent resis-tance and low dielectric resistance[1–3].Copper is usedas the metal in PCBs due to its excellent conductivityand low electromigration property.In makingflexiblePCBs,copper is coated onto polyimides by physicalvapor deposition techniques such as vacuum evapora-tion,metal sputtering or ion sputtering,etc.orlaminated over the copper.The polyimide-copperlaminate so formed has poor adhesion strength,whichis a key issue to be solved currently.A great deal ofeffort has been devoted to the surface modification ofpolyimides for improvement of their adhesion to metals[4–9].Chou and Tang[10]investigated the cause of pooradhesion between polyimide and copper.They postu-lated that a metal–oxygen–carbon complex was formedat the polyimidefilm/metal interface in the metallizationprocess and this complex dictated the adhesion strength.The reactivity of copper metal in the formation of thecomplex is lower than that of chromium and titaniummetals.This conclusion suggests the importance of aspecial functional group that can strongly interact withcopper metal.Xue et al.[11]reported that the imino groups ofbenzimidazole interacted with copper metal at zerooxidation state to form a complex.Lee et al.[12]evaluated the simultaneous passivation and adhesion byincorporating triazole or imidazole functional groupinto the polyimide to improve lamination with copper.Ranby et al.[13,14]demonstrated that initiator-pro-moted surface graft copolymerization,when carried outat the surface between two contacting polymerfilms,was accompanied by the simultaneous lamination of thepolymerfilms.Kang et al.[8,9]showed that theadhesion of polyimides and copper was improved byargon plasma activated thermal copolymerization of1-vinyl imidazole(VIDZ)on PIfilm with simultaneouslamination.The imino groups of the grafted VIDZpolymer form charge-transfer complexes with coppermetal,thus enhancing the adhesion strength.Yang et al.[15]have also recently shown that a poly(4-vinylpyridine)layer formed by argon plasma activated UVcopolymerization on PI improved adhesion of copper toPI.The copper was deposited by electroless plating.*Corresponding author.Tel.:+65-6790-6064;fax:+65-6791-1859.E-mail address:mbechan@.sg(M.B.Chan-Park).0143-7496/02/$-see front matter r2002Elsevier Science Ltd.All rights reserved.PII:S0143-7496(02)00057-XIn this paper,we explore the effectiveness of thermal graft copolymerization of 4-vinyl pyridine on polyimide film with simultaneous lamination to copper foils.We thermally graft,rather than UV graft the 4-vinyl pyridine monomer onto the argon plasma activated surface.We laminate rather than electroless plate the copper.The simultaneous copolymerization and lami-nation offer a convenient method to make the PI/Cu laminate.2.Materials and methodsThe polyimide (PI)film used in the present study was poly ½N ;N 0-(oxydiphenylene)pyromellitimide]with the chemical structures shown in Fig.1(a).It was obtained from Dupont Singapore as Kapton s HN in sheets with thickness of 50m m :The copper used was Olin alloy C7025(96.2%copper)supplied as foils with thickness of 150m m by Olin Corporation.The monomer,4-vinyl pyridine (4VP)with the chemical structure shown in Fig.1(b),was bought from Fluka and used as received.The polyimide sheets were cut into strips of 15Â6mm using a sharpknife.The sp ecimens were cleaned with distilled water in an ultrasonic bath for 1min :They were then rinsed with large amounts of distilled water followed by acetone before being dried in a vacuum oven for 5min :These were then ready for use.Copper foils were cut into strips of 15Â4mm using a sharp knife.The surface of the copper foil was cleaned with a mixture of aqueous 0:1M HCl =0:1M H 2SO 4=0:1M HNO 3in an ultrasonic bath for 1min :The foils were then rinsed thoroughly with distilled water followed by acetone.The copper speci-mens were then dried in a vacuum oven for 5min :These were then ready for use.The plasma graft polymerization of 4-vinyl pyridine at the Kapton s HN film surface was carried out in two steps:hydroperoxide generation followed by thermal grafting.The Kapton s HN strips were pretreated with argon before thermal graft copolymerization.The argon plasma pretreatment was carried out in an Anatech SP-100plasma system,equipped with a cylindrical quartz reactor chamber.The glow discharge was produced at a plasma power of 35W and an argon pressure of 0:6Torr :The duration of the glow discharge pretreat-ment was set at between 0and 60s :The plasma-pretreated films were subsequently exposed to the atmosphere for between 5min to nearly 3h for the generation of surface peroxide and hydroxyl peroxide species [16].Strips of copper measuring 15Â4mm and Kapton s HN measuring 15Â6mm were overlapped by 1–2mm as shown in Fig.2.A small quantity of pure 4VP monomer was introduced between the Kapton s HN film and the copper foil at the overlap.Thermal graft copolymerization with concurrent lamination to copper was achieved by heating the PI/4VP/copper assembly under a constant small load of about 5kg =cm 2:The samples were introduced into the oven after the preset curing temperature was reached.The curing tempera-tures investigated were 251C ;1001C ;1101C ;1201C ;1301C and 1501C while the curing time and plasma time were kept constant at 2h and 10s ;respectively.In another set of experiments,the curing time was varied from 1to 5h while keeping the curing temperature at 1201C and plasma time at 10s ;respectively.After the predetermined curing time,the samples were left in the oven to cool slowly.The single lapshear strength was measured with a Zwick 1445Universal Testing Machine with a load cell of 2kN :All measurements were performed at a crosshead speed of 10mm =min :X-ray photoelectron spectroscopy (XPS)measure-ments were carried out on a VG ESCALAB 2201-Xl spectrometer with a non-monochromatized Mg K a X-ray source (1253:6eV photon).The Kapton s HN film and Cu foil were mounted on the standard sample studs by means of double-sided adhesive tape.They were positioned at a take-off angle of 901with respect to the detector.The X-ray source was operated at a reduced power of 300W (15kV and 20mA).The operating pressure in the analysis chamber was main-tained at 1Â10À9Torr or lower during the measure-ments.All binding energies (BEs)were referenced to the C 1s neutral carbon peak at 284:6eV ;in order to compensate for the effects of charging.3.Results and discussionFig.3shows the single lapshear strength of the PI/4VP/Cu assembly,with thermal grafting andlaminationFig.1.Chemical structures of (a)poly ½N ;N 0-(oxydiphenylene)pyr-omellitimide]and (b)4-vinylpyridine.Fig.2.Sample preparation for single lap shear test.M.B.Chan-Park,S.S.Tan /International Journal of Adhesion &Adhesives 22(2002)471–475472carried out at 1201C for 2h ;as a function of the Ar plasma treatment time of the PI film.With no plasma treatment,a lapshear strength of 4:67N =mm 2was observed.A maximum lapshear adhesion strength of 8:01N =mm 2was obtained for the bond with 30s of Ar plasma pretreatment time of PI.An increase in the Ar plasma pretreatment time beyond 30s did not result in further increase in the lapshear adhesion strength.The presence of a finite adhesion between the untreated PI film and Cu indicates that poly(4VP)homopolymer at the joint also contributed to the observed adhesion.Fig.4summarizes the dependence of the lap shear adhesion strength of PI/4VP/Cu assemblies on the curing temperature of the thermal graft copolymeriza-tion/lamination;the Ar plasma pretreatment time was kept at 10s and the thermal grafting/lamination time at 2h :It appears that higher temperatures of up to 1501C results in increased lapshear adhesion strength.The lap shear strength increased from 5:95N =mm 2at 251C to 8:01N =mm 2at 1501C :In other studies using 1-vinyl imidazole (VIDZ)[8],an optimum lamination tempera-ture of about 1201C for 4h resulted in maximum T-peel strength of the PI/VIDZ/Cu assembly.Beyond this optimum temperature,degradation of the poly(VIDZ)occurred.This is not the case here:the curing temperature of 1501C for 2h did not cause any degradation.Increase in lamination temperature in-creases the degree of conversion resulting in highermolecular weight poly(4VP)and also increased diffusion of 4VP monomer into PI.The latter will result in an interpenetrating network of poly(4VP)and PI.Finally,Fig.5shows the effect of thermal grafting/lamination time on the observed lapshear adhesion strength of the PI/4VP/Cu assemblies;the Ar plasma pretreatment time of the PI films was kept at 10s and the lamination carried out at 1201C :There is only a small increase in lapshear strength with increase in duration of the thermal grafting/lamination time.From the above,a set of bondings was done at the optimized plasma duration of 30s :The thermal grafting/lamination was done at 1401C for 4h :The shear strength achieved was 8:50N =mm 2which was significantly improved over the value of 4:67N =mm 2with unoptimized conditions.The failure mode of this PI/4VP/Cu assembly with high shear strength was briefly investigated by XPS.Table 1summarizes the atomic composition of the surface of the layers peeled off from lap joint.For both the PI film side layer and copper metal side layer peeled off from the lapjoint,small amounts of cop p er were detected indicating some cohesive failure within the copper.Diffusion of copper into the polymer as observed by others using a higher lamination tempera-ture of 4001C [17]is unlikely here since the bonding temperature used was only 1401C :The amount of copper detected on the PI side is small (the sensitivity factor of Cu2p3peak is 15.87times larger than that of C1speak).Table 1Atomic composition of the parts peeled off from the adhesive joint between the graft-polymerized Kapton film and copper metalAtomic composition at failure surface N/CO/C Copper side 0.190.16Polyimide side0.090.14Pure kapton (reference)0.090.23Pure poly(4VP)(reference)0.14M.B.Chan-Park,S.S.Tan /International Journal of Adhesion &Adhesives 22(2002)471–475473Some N-containing organics appear to be left on the copper side indicating either cohesive failure within PI or adhesive failure within the poly(4VP);organic contamination rarely contains nitrogen.The N/C and O/C atomic ratios at the surfaces of the peeled-off layers can be used to determine the failure mode[17].The Kaptonfilm should have N/C and O/C atomic ratios of 0.091and0.227and the grafted poly(4VP)0.14and0, respectively.The N/C and O/C ratios of the organics on the PIfilm side layer appear closer to those of pure PI.The N/C ratio of the organics left on the copperfilm is closer to that of poly(4VP).The higher O/C value of the organics on the Cufilm could be due to contaminant.It is postulated that the failure is partially within the copper but mostly at the interface of PI and poly(4VP). Ideally,Ar plasma treatment of PI results in the generation of radicals on the surface with the subse-quent exposure to air resulting in the formation of various oxygen-containing species,such as peroxides and hydroperoxides[18].The peroxide species canbeutilized to initiate the surface free-radical thermal polymerization of4-vinyl pyridine[15].Plasma treat-ment can also result in the cleavage of the imide linkages and this will give rise to the formation of carboxyl and secondary amine groups[18].Kang and co-workers[15] observed that only small amount surface grafting of4VP took place on the argon plasma treated polyimide.This coincides with our observation that the failure of the PI/ 4VP/Cu assembly is at the PI and poly(4VP)interface. This also indicates that the interaction of4VP with copper is strong.Fig.6.4.ConclusionsImproved adhesion between a polyimidefilm and copper foil can be achieved by direct thermal graft copolymerization of4-vinyl pyridine onto PIfilm with simultaneous lamination to the copper foil under atmospheric conditions and in the absence of a polymerization initiator.The adhesion strengths are enhanced by argon plasma pretreatment of the PIfilm prior to grafting and lamination.The single lap shear strength of the copper to polyimide bond with poly(4-vinyl pyridine)as the adhesive was increased from4.67 to8:50N=mm2using the optimized condition of argon plasma pretreatment time of30s;curing temperature of 1401C and curing time of4h:The failure mode is postulated to be partially in the copper but mainly between the polyimide and the poly(4VP).References[1]Ferger C.In:Doane DA,Franzon PD,editors.Multichipmoduletechnologies and alternatives.New York:Van Nostrand Rein-hold;1993.p.311.[2]Mittal KL,editor.Polyimides:synthesis,characterization andapplications,vols.1and2.New York:Plenum Press;1984. [3]Matienzo LJ,Unertl WN.In:Ghosh MK,Mittal KL,editors.Polyimides:fundamentals and applications.New York:Marcel Dekker;1996.p.629.[4]Ghosh I,Konar J,Bhowmich A.J Adhes Sci Technol1997;40:877.[5]Vorobyova T.J Adhes Sci Technol1997;11:167.[6]Flitsch R,Shih D.J Adhes Sci Technol1997;10:1241.[7]Chang G,Jung S,Lee Y,Choi I,Whang C,Woo J,Lee YJ.J Appl Phys1997;81:135.[8]Ang AKS,Kang ET,Neoh KG,Tan KL,Cui CQ,Lim TB.J Adhes Sci Technol1998;8:889.[9]Ang AKS,Kang ET,Neoh KG,Tan KL,Cui CQ,Lim TB.Polymer2000;41:489–98.[10]Chou NJ,Tang CH.J Vac Sci Technol1984;A2:751.[11]Xue G,Shi G,Ding J,Chang W,Chen R.J Adhes Sci Technol1990;4:723.[12]Lee KW,Walker GF,Viehbeck A.J Adhes Sci Technol1995;8:1125.[13]Yang WT,Ranby B.J Appl Polym Sci1996;62:545.[14]Ranby B.J Adhes Sci Technol1990;9:599.[15]Yang GH,Kang ET,Neoh KG,Zhang Y,Tan KL.ColloidPolym Sci2001;279:745–53.[16]Suzuki M,Kashida A,Iwata H,Ikada Y.Macromolecules1986;19:1804.[17]Inagaki N,Tasaka S,Masumoto M.Macromolecules1996;29:1642–8.[18]Inagaki N,Tasaka S,Hibi K.J Polym Sci Polym Chem Ed1992;30:1425.M.B.Chan-Park,S.S.Tan/International Journal of Adhesion&Adhesives22(2002)471–475475。