当前位置:文档之家› 高考物理二轮考点典型例题解析专题辅导7

高考物理二轮考点典型例题解析专题辅导7

高考物理二轮考点典型例题解析专题辅导7

[高三]高考二轮复习-07稳恒电流

稳恒电流典型例题解析(一)

稳恒电流这一章的特点是知识点多,实验多,联系实际的问题多。欧姆定律、电阻定律、电路中的能量守恒定律是本章的基本规律。从近年来高考的命题来看,有如下的内容或题型出现的频度较高,值得注意。

(1)电路的简化:对于一个复杂的电路,画出等效电路图,是一项基本功,也是电路分析和计算的基础。

(2)动态直流电路的分析:电路中某些元件(如滑线变阻器的阻值)的变化,会引起电流、电压、电阻、电功率等相关物理量的变化,解决这类问题涉及到的知识点多,同时还要掌握一定的思维方法,在近几年高考中已多次出现。

(3)非纯电阻电路的分析与计算。非纯电阻电路是指电路含有电动机、电解槽等装置,这些装置的共同特点是可以将电能转化为机械能、化学能等其他形式的能量。这是近几年高考命题的一个冷点,但有可能成为今年高考的热点。

(4)稳态、动态阻容电路的分析与计算。此类问题往往较难,但却是高考考查的重点,几乎是年年必考。由于此类问题能够考查考生理论联系实际的能力,对灵活运用知识的能力要求较高,所以可能成为近几年考查重点。

二. 夯实基础知识

(一)电流的形成、电流强度。

1. 电流的形成:电荷定向移动形成电流(注意它和热运动的区别)。

2. 形成电流条件:(1)存在自由电荷;(2)存在电势差(导体两端存在电热差)。

3. 电流强度:I=q/t(如果是正、负离子同时定向移动形成电流,q应是两种电荷量和)

4. 注意:I有大小,有方向,但属于标量(运算法则不符合平行四边形定则),电流传导速率就是电场传导速率不等于电荷定向移动的速率(电场传导速率等于光速)。

(二)部分电路欧姆定律。

1. 公式I=U/R,U=IR,R=U/I。

2. 含义:R一定时,I∝U,I一定时,U∝R;U一定时,I∝l/R。(注意:R与U、I无关)

3. 适用范围:纯电阻用电器(例如:适用于金属、液体导电,不适用于气体导电)。

4. 图象表示:在R一定的情况下,I正比于U,所以I-U图线、U-I图线是过原点的直线,且R=U/I,

所以在I-U图线中,R=cotθ=1/k斜率,斜率越大,R越小;在U-I图线中,R=tanθ=k斜率,斜率越大,R越大。

注意:(1)应用公式I=U/R时,各量的对应关系,公式中的I、U、R是表示同一部分电路的电流强度、电压和电阻,切不可将不同部分的电流强度、电压和电阻代入公式。(2)I、U、R各物理量的单位均取国际单位,I(A)、U(V)、R(Ω);(3)当R一定时,I∝U;I一定时,U∝R;U一定时,I∝1/R,但R与I、U无关。

(三)电阻定律

1. 公式:R=ρL/S(注意:对某一导体,L变化时S也变化,L·S=V恒定)

2. 电阻率:ρ=RS/L,与物体的长度L、横截面积S无关,和物体的材料、温度有关,有些材料的电阻率随温度的升高而增大,有此材料的电阻率随温度的升高而减小,也有些材料的电阻率几乎不受温度的影响,如锰铜和康铜,常用来做标准电阻,当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象。

(四)电功、电功率、电热。

1. 电功:电流做的总功或输送的总电能为W=qU=IUt,如果是纯电阻电路还可写成W=U2t/R=I2Rt

2. 电热:Q=I2Rt,如果是纯电阻电路还可写成Q=IUt=U2t/R

3. 电功和电热关系:

(1)纯电阻电路,电功等于电热;(2)非纯电阻电路,电功大于电热,即

UIt=Q+E其它能。

4. 电功率:P=W/t=IU,如果是纯电阻电路还可写成P=I2R=U2/R。

5. 额定功率:即是用电器正常工作时的功率,当用电器两端电压达到额定电压U m时,电流达到额定电流I m,电功率也达到额定功率P m,且P m=I m U m,如果是纯电阻电器还可写成P m=U2m/R=I2m R(Pm、U m、I m、R四个量中只要知两个量,其它两个量一定能计算出)。

(五)简单串、并、混联电路及滑线变阻器电路

1. 串联电路

(1)两个基本特点:①U=U1+U2+U3+……,②I=I1+I2+I3……

(2)三个重要性质:

①R=R1+R2+R3+…;②U/R=U1/R1=U2/R2=U3/R3;③P/R=P1/R1=P2/R2=……=P n /R n=I2

2. 并联电路

(1)两个基本特点:①U=U1=U2=U3=……;②I=I1+I2+I3……

(2)三个重要性质:①1/R=1/R1+1/R2+1/R3+……,②IR=I1R1=I2R2=I3R3=……I n R n=U;

③P·R=P1·R1=P2·R2=P3·R3=……=P n·R n=U2。

其中应熟记:n个相同电阻R并联,总电阻R总=R/n;两个电阻R1、R2并联,总电阻R总=R1R2/(R1+R2),并联电路总电阻小于任一支路电阻;某一支路电阻变大(其它支路电阻不变),总电阻必变大,反之变小;并联支路增多,总电阻变小,反之增大。

(六)闭合电路欧姆定律

1. 三种表达式:(1)I=E/(R+r);(2)E=U外+U内;(3)U端=E-Ir

2. 路端电压U和外电阻R外关系:R外增大,U端变大,当R外=∞(断路)时,U端=E(最大);R外减小时,U外变小,当R外=0(短路)时,U端=0(最小)。

3. 总电流I和外电阻R外关系:R外增大,I变小,当R外=∞时,I=0;R外减小时,I变大,当R外=0时,I=E/r(最大)。(电源被短路,是不允许的)

4. 几种功率:电源总功率P总=E·I(消耗功率);输出功率P输出=U端I(外电路功率);电源损耗功率P内损=I2r(内电路功率);线路损耗功率P线损=I2R线。

【典型例题】

问题1:会对电路进行简化。

对一个复杂的电路,画出等效电路图,是一项基本功,也是电路分析和计算的基础。在复杂电路中,当导体间串、并联的组合关系不很规则时,要进行电路的简化,简化电路方法较多,这里介绍两种常用的方法:(1)分支法;(2)等势法。

(1)分支法:以图1(甲)为例:

R2

图1甲

第一支线:以A经电阻R1到B(原则上以最简便直观的支路为第一支线)。

第二支线:以A经由电阻R2到C到B。

第三支线:以A经电阻R3到D再经R4到B。

以上三支线并联,且C、D间接有S,简化图如图1(乙)所示。

图1乙

(2)等势法:以图2为例。

R

3

图2

设电势A 高B 低,由A 点开始,与A 点等势的点没有,由此向下到C 点,E 点与C 点等势,再向下到D 点,F 、B 点与D 点等势,其关系依次由图3所示。

图3

1

A 点等势

2

1

与C 点等势

2

1

与D 点等势

(3)注意:① 对于复杂电路的简化可交替用分支法和等势法; 理想的电流表可视作短路;③ 理想的电压表和电容器可视作断路;④ 两等势点间的电阻可省去或视作短路。

问题2:会分析动态电路的有关问题

电路中局部的变化会引起整个电路电流、电压、电功率的变化,“牵一发而动全身”是电路问题的一个特点。处理这类问题常规思维过程是:首先对电路进行分析,然后从阻值变化的部分入手,由串、并联规律判断电路总电阻变化情况(若只有有效工作的一个电阻阻值变化,则不管它处于哪一支路,电路总电阻一定跟随该电阻变化规律而变),再由全电路欧姆定律判断电路总电流、路端电压变化情况,最后再根据电路特点和电路中电压、电流分配原则判断各部分电流、电压、电功率的变化情况。

为了快速而准确求解这类问题,同学们要熟记滑线变阻器常见三种接法的特点: 第一种:如图4所示的限流式接法。R AB 随pb 间的电阻增大而增大。

图4

第二种:如图5所示分压电路,电路总电阻R AB 等于AP 段并联电阻R aP 与PB 段电阻R bP 的串联。当P 由a 滑至b 时,虽然R ap 与R pb 变化相反,但电路的总电阻R AB 持续减小;若P 点反向移动,则R AB 持续增大。证明如下:

A

B

图5

ap ap

ap ap

ap AB R R R R R R R R R R R 1

1)(2

12211+-

=-++=

所以当R ap 增大时,R AB 减小;当R ap 减小时,R AB 增大。滑动头P 在a 点时,R AB 取最大值R 2;

滑动头P 在b 点时,R AB 取最小值

2

12

1R R R R + 。

第三种:如图6所示并联式电路。由于两并联支路的电阻之和为定值,则两支路的并联电阻随两支路阻值之差的增大而减小;随两支路阻值之差的减小而增大,且支路阻值相差最小时有最大值,相差最大时有最小值。证明如下:

图6

令两支路的阻值被分为R a 、R b ,且R a +R b =R 0,其中R 0为定值。

则0

2

2

00//4)(R R R R R R R R R R R R b a b a b a b a --=

=+=

可见,R //的确随R a 与R b 之差的增大而减小,随差的减小而增大,且当相差最小时,R //有最大值,相差最大时,R //有最小值。

此外,若两支路阻值相差可小至零,则R //有最大值R 0/4。

[例1] 如图6所示,R 1=4Ω,R 2=5Ω,R 3=7Ω,求P 由a 至b 移动过程中,总电阻R AB 如何变化?

图6

分析与解:依据上述并联式电路的特点,则立刻可知:P 调至R aP =4Ω时,R ABmax =4Ω, P 调至a 点时,R ABmin =3Ω,且P 从a 调至b 时,R AB 先增大后减小。

[例2] 如图7所示,电灯A 标有“10V ,10W ”,电灯B 标有“8V ,20W ”,滑动变阻器的总电阻为6Ω,当滑动触头由a 端向b 端滑动的过程中(不考虑电灯电阻的变化)

A. 安培表示数一直减小,伏特表示数一直增大;

B. 安培表示数一直增大,伏特表示数一直减小

C. 安培表示数先增大后减小,伏特表示数先减小后增大

D. 安培表示数先减小后增大,伏特表示数先增大后减小。

图7

分析与解:可以求得电灯A 的电阻R A =10Ω,电灯B 的电阻R B =3.2Ω,因为

ab

B A R R R +> ,

所以,当滑动触头由a 向b 端滑动的过程中,总电阻一直减小。即B 选项正确。

[例3] 如图8所示,由于某一电阻断路,致使电压表和电流表的示数均比该电阻未断时要大,则这个断路的电阻可能是( )

A. R 1

B. R 2

C. R 3

D. R 4

3

图8

分析与解:此类问题的常规解法是逐个分析进行判断。

若R1断路→R总变大→I总变小→U端变大→I2变大,即电流表示数变大,U端变大,I4变大→U4变大,所以选项A正确。

若R2断路,电流表示数为零,则B错

若R3断路,电压表示数为零,则C错

若R4断路→R总变大→I总变小→U端变大,即电流表和R2串联后两端电压变大,则电流表示数变大;R4断路后,则电压表的内阻大,所以R3所在支路近似断路,则电压表示数此时也变大,即D正确。所以答案AD。

[例4] 如图9所示电路,电源的电动势为E,内阻为r,R0为固定电阻,R为滑动变阻器。在变阻器的滑片由a端移向b端的过程中,电容器C所带的电量()

A. 逐渐增加

B. 逐渐减小

C. 先增加后减小

D. 先减少后增加

分析与解:由上述结论可知,在滑动变阻器的滑片由a端移向b端的过程中,图9所示电路的外电阻逐渐减小,根据闭合电路的欧姆定律可知:通过电源的电流I逐渐增大,路端电压=逐渐减小,加在电容器C上的电压逐渐减小,C为固定电容器,其所带电量逐渐减U-

E

Ir

少,所以只有选项B正确。

问题3:会求解三种功率的有关问题。

[例5] 如图10所示,电路中电池的电动势E=5V,内电阻r=10Ω,固定电阻R=90Ω,R0是可变电阻,在R0从零增加到400Ω的过程中,求:

(1)可变电阻R0上消耗功率最大的条件和最大热功率

(2)电池的电阻r和固定电阻R上消耗的最小热功率之和

图10

分析与解:

(1)可变电阻R0上消耗的热功率:

400

)

100

(

25

2

2

+

-

=

=

R

R

R

I

P

100

=

Ω

-

R

时,P0最大,其最大值:

W

W

P

16

1

400

25

=

=

(2)当电流最小时,电阻r和R消耗的热功率最小,此时R0应调到最大400Ω,内阻r和固定

电阻R上消耗的最小热功率之和为

W

r

R

r

R

R

E

P01

.0

)

(

)

(2

=

+

+

+

=

本题关键:写出P0、P小表达式,进行数学变换。一定要养成先写表达式,再求极值的良好解题习惯,否则就容易出错,请同学们做一做例6。

[例6] 有四个电源,电动势均相等,内电阻分别为1Ω、2Ω、4Ω、8Ω,现从中选择一个阻值为2Ω的电阻供电,欲使电阻获得的电功率最大,则所选电源的内电阻为

A. 1Ω

B. 2Ω

C. 4Ω

D. 8Ω

正确答案为A。你做对了吗?

[例7] 有四盏灯,接入如图11中,L1和L2都标有“220V、100W”字样,L3和L4都标有“220V、40W”字样,把电路接通后,最暗的灯将是

A. L1

B. L2

C. L3

D. L4

分析与解:正确答案是C ,由它们的额定电压、额定功率可判断出: R 1=R 2R 1>R 23并

∴ P 4>P 1>(P 2+P 3)(串联电路P ∝R ,而P 3

问题4:会解非理想电表的读数问题

同学们在求非理想电压表或非理想电流表的读数时,只要将电压表看作电阻R V ,求出R V 两端的电压就是电压表的示数;将电流表看作电阻R A ,求出通过R A 的电流就是电流表的示数。 [例8] 三个完全相同的电压表如图12所示接入电路中,已知V 1表读数为8V ,V 3表的读数为5V ,那么V 2表读数为 。

图12

分析与解:设三个完全相同的电压表的电阻均为R ,通过

的电流分别为I 1、I 2、

I 3,而由并联电路的规律有:I 1=I 2+I 3,所以有R U 1 =R U 2 +R U 3

,即有

U 1=U 2+U 3

所以,3

12U U U -= =3V 。

[例9] 阻值较大的电阻R 1和R 2串联后,接入电压U 恒定的电路,如图13所示,现用同一电压表依次测量R 1与R 2的电压,测量值分别为U 1与U 2,已知电压表内阻与R 1、R 2相差不大,则( )

A. U 1+U 2=U

B. U 1+U 2

C. U 1/U 2=R 1/R 2

D. U 1/U 2≠R 1/R 2

图13

分析与解:正确答案是B 、C ,电压表是个特殊的“电阻”,第一它的电阻R v 阻值较大;第二该“电阻”的电压是已知的,可以从表盘上读出,当把电压表与R 1并联后,就等于给R 1并联上一

个电阻R v ,使得电压表所测的电压U 1是并联电阻的电压,由于

1

11R R R R R V

V

<+ ,所以U 1小于R 1

电压的真实值,同理测量值U 2也小于R 2电压的真实值,因此U 1+U 2

判断选项C 、D 的正确与否不能仅凭简单地定性推理,要通过计算后获得。 电压表与R 1并联后,变成R 并与R 2串联,有:

U

R R R R R R R R R R R R R U

R R R R U V

V V

V

V V V

212112

11111++=+++=

同理:

U

R R R R R R R R U V

V V

212122++=

可知U 1/U 2=R 1/R 2 ,选项C 正确。

根据本题的结论可设计一个测量电阻的方法。

[例10] 如图14所示,电阻R 1、R 2并联后接入电流恒定为I 的电路。现用同一电流表依次测量通过R 1、R 2的电流,测量值分别为I 1、I 2,则I 1/I 2=R 2/R 1。即:电流一定时,并联的两电阻被同一电流表测量的电流值与电阻成反比。

图14

证明:当电流表电阻值R A 小到可以忽略时,上述结论显然成立;当R A 不可忽略时,用电流表测量哪一个电阻的电流时,就等于给这一电阻串联了一个电阻R A ,使得电流表所测的电流是

串联R A 后的电流。因此,当电流表与R 1串联后,电路变成电阻(R 1+R A )与R 2并联,故有:

I

R R R R I A

++=

212

1 ,同理

I

R R R R I A

++=

211

2 ,

从而有

1

2

21R R I I =

问题5:会解含容电路

含容电路问题是高考中的一个热点问题,在高考试题中多次出现。同学们要注意复习。 1. 求电路稳定后电容器所带的电量

求解这类问题关键要知道:电路稳定后,电容器是断路的,同它串联的电阻均可视为短路,电容器两端的电压等于同它并联电路两端的电压。

[例11] 在图15所示的电路中,已知电容C=2μF ,电源电动势E=12V ,内电阻不计,

=

4321:::R R R R 1∶2∶6∶3,则电容器极板a 所带的电量为( )

A. -8×10-6C

B. 4×10-6C

C. -4×10-6C

D. 8×10-6

C

F

图15

分析与解:电路稳定后,电容C 作为断路看待,电路等价于R 1和R 2串联,R 3和R 4串联。由串联电路的特点得:

2

11R R E

R U AB += ,

V

R R E

R U AB 42

11=+=

同理可得

V

R R E

R U AD 84

33=+=

故电容C 两端的电压为:

V

U U U U U AB AD D B ab 4=-=-=

电容器极板a 所带的电量为:C

CU Q ab a 6108-?== 。

即D 选项正确。

2. 求通过某定值电阻的总电量 [例12] 图16中E=10V ,

1

R =4Ω,

2R

=6Ω,C=30μF ,电池内阻可忽略。

(1)闭合电键K ,求稳定后通过

1R

的电流; (2)然后将电键K 断开,求这以后流过

1R

的总电量。

图16

分析与解:

(1)闭合电键K ,稳定后通过R 1的电流为:A

R R E

I 12

1=+=

,电容器上电压为I

2R

,储存的电量为

Q 1=CIR 2=1.8

C 4

10-? (2)电键K 断开后,待稳定后,电容器上电压为E ,储存的电量为:Q 2=CE=C 4

103-?

流过R 1的总电量为C Q Q Q 4

12102.1-?=-=?

[例13] 在如图17所示的电路中,电源的电动势V E 0.3= ,内阻

,10R ;0.11Ω=Ω=电阻r Ω=Ω=Ω=35R ,30R ,10R 432 ;电容器的电容F C μ100=

,电

容器原来不带电。求接通电键K 后流过R 4的总电量。

E , 3

图17

分析与解:由电阻的串并联公式,得闭合电路的总电阻为:

r

R R R R R R R ++++=

3

21321)

(

由欧姆定律得,通过电源的电流

R E I =

电源的端电压Ir E U -= ,电阻R 3两端的电压

U

R R R U 3

23

3+=

通过R 4的总电量就是电容器的电量Q=CU 3,

由以上各式并代入数据解得C Q 4

100.2-?=

[例14] 图18中电源电动势E=10V ,C 1=C 2=30μF ,R 1=4.0Ω, R 2=6.0Ω,电源内阻可忽略。先闭合电键K ,待电路稳定后,再将K 断开,则断开K 后流过电阻R 1的电量为 。

图18

分析与解:当K 闭合,待电路稳定后,电容C 1和C 2分别充得的电量为:

C

R R EC

R Q 42

1210108.1-?=+=

Q 20=0

当K 断开,待电路稳定后,电容C 1和C 2分别充得的电量为:

Q 1=C 1E=C 4103-? ,Q 2=C 2E=

C 4

103-? 故断开K 后流过电阻R 1的电量为:

C

Q Q Q Q Q 4201021102.4)()(-?=+-+=?

问题6:会解电容与电场知识的综合问题

1. 讨论平行板电容器内部场强的变化,从而判定带电粒子的运动情况。

对于正对面积为S ,间距为d 的平行板电容器C ,当它两极板间的电压为U 时,则其内部的场强E=U/d ;若电容器容纳电量Q ,则其内部场强E=4πKQ/(ε·S )。

据E=U/d 和E=4πKQ/(ε·S )很容易讨论E 的变化情况。根据场强的变化情况就可以分析电容器中带电粒子的受力情况,从而判定带电粒子的运动情况。

[例15] 一平行板电容器C ,极板是水平放置的,它和三个可变电阻及电源联接成如图19所示的电路。今有一质量为m 的带电油滴悬浮在两极板之间静止不动。要使油滴上升,可采用的办法是( )

A. 增大R 1

B. 增大R 2

C. 增大R 3

D. 减小R 2

图19

分析与解:要使油滴上升,必须使向上的电场力增大,因油滴的带电量是不变的,故只有增大场强E,又因E=U/d,而d不变,故只有增大加在电容器两极板间的电压U,即增大R3或减小R2。即CD选项正确。

[例16] 一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电量很小)固定在P点,如图20所示,以E表示两极板间的场强,U表示电容器的电压,W表示正电荷在P 点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则()

A. U变小,E不变

B. E变大,W变大

C. U变小,W不变

D. U不变,W不变

分析与解:因为电容极板所带电量不变,且正对面积S也不变,据E=4πKQ/(ε·S)

可知E也是不变。据U=Ed,因d减小,故U减小。因P点的电势没有发生变化,故W不变。

故A、C二选项正确。

[例17] 在如图21电路中,电键K1、K2、K3、K4均闭合,C是极板水平放置的平行板电容器,板间悬浮着一油滴P,断开哪一个电键后P会向下运动()

A. K1

B. K2

C. K3

D. K4

图21

分析与解:同理分析断开电键K 3后P 会向下运动,即C 正确。

[例18] 如图22所示电路,电键K 原来是闭合的,当R 1、R 2的滑片刚好处于各自的中点位置时,悬在空气平板电容器C 两水平极板间的带电尘埃P 恰好处于静止状态。要使尘埃P 加速向上运动的方法是( )

A. 把R 1的滑片向上移动

B. 把R 2的滑片向上移动

C. 把R 2的滑片向下移动

D. 把电键K 断开

图22

分析与解:同理分析断开电键K 和把R 2的滑片向下移动后P 会向上加速运动,即C 、D 正确。

[例19] 两块大小、形状完全相同的金属平板平行放置,构成一平行板电容器,与它相连接的电路如图23所示,接通开关K ,电源即给电容器充电( )

A. 保持K

接通,减小两极板间的距离,则两极板间电场的电场强度减小 B. 保持K 接通,在两极板间插入一块介质,则极板上的电量增大 C. 断开K ,减小两极板间的距离,则两极板间的电势差减小

D. 断开K ,在两极板间插入一块介质,则两极板间的电势差增大

图23

E

分析与解:保持K 接通,两极板间的电压不变,据E=U/d 知当减小两极板间的距离d 时,则两极板间电场的电场强度增大,即A 选项错;保持K 接通,两极板间的电压不变,据Q=CU=εSU/(4πkd )知当在两极板间插入一块介质,则极板上的电量增大,即B 选正确;断开K ,电容器所带电量一定,据E=4πKQ/(ε ·S )和U=Ed 可知当减小两极板间的距离,则两极板间的电势差减小, 即C 选正确;断开K ,电容器所带电量一定,据E=4πKQ/(ε·S )和U=Ed 可知当在两极板间插入一块介质,则两极板间的电势差减小,即D 选正确。

2. 结合电荷守恒定律求解有关电容问题。

[例20] 在如图24所示的电路中,电容器A 的电容C A =30μF ,电容器B 的电容C B =10μF.在电键K 1、K 2都是断开的情况下,分别给电容器A 、B 充电。充电后,M 点的电势比N 点高5V ,O 点的电势

比P 点低5V 。然后把K 1、K 2都接通,接通后M 点的电势比N 点高。

A. 10V

B. 2.5V

C. 2.5V

D. 4.0V

图24

分析与解:当K 1、K 2都断开时,给电容器A 、B 充得的电量分别为:

C U C Q MN A A 4105.1-?== ,上极板带正电;而C U C Q OP B B 4105.0-?== ,且上极板带负电。当K 1、K 2都接通后,设M 点的电势比N 点高U ,则据电荷守恒定律可得:

C Q Q U C U C B A B A 4101-?=-=+ ,所以U=2.5V

问题7:关于RC 电路中暂态电流的分析

在含容电路中的电流稳定以后,电容充有一定的电量,与电容串联的电阻中没有电流通过。但当电路中某电阻或电压发生变化时,会导致电容的充电或放电,形成暂态电流。如何分析暂态电流?我们可以先确定初始稳态电容所带的电量,再确定当电路中某电阻或电压发生变化时引起电容所带的电量变化情况,从而分析暂态电流。这类问题在近几年高考试题中多次出现,同学们在高三复习时应引起重视。

[例21] 图25所示是一个由电池、电阻R 与平行板电容器组成的串联电路,在增大电容器两极板间距离的过程中,以下说法正确的是( )

A. 电阻R 中没有电流

B. 电容器的电容变小

C. 电阻R 中有从a 流向b 的电流

D. 电阻R 中有从b 流向a 的电流

图25

分析与解:当电路稳定后,没有电流通过电阻R ,但当在增大电容器两极板间距离的过程中,电容器的电容量减小而电容器电压不变,所以电容器所带电量会不断减小,即电容放电形成放电电流,BC 二选项正确。

问题8:会解非纯电阻电路问题

非纯电阻电路是指电路含有电动机、电解槽等装置,这些装置的共同特点是可以将电能转化为机械能、化学能等其他形式的能量。

[例22] 直流电动机线圈的电阻很小,起动电流很大,这对电动机本身和接在同一电源上的其他电器都产生不良的后果。为了减小电动机起动时的电流,需要给电动机串联一个起动电阻R ,如图26所示。电动机起动后再将R 逐渐减小。如果电源电压U=220V ,电动机的线圈电阻r 0=2Ω,那么,

(1)不串联电阻R 时的起动电流是多大?

(2)为了使起动电流减小为20A ,起动电阻应为多大?

图26

分析与解: (1)起动时电动机还没有转动,电机等效为一个纯电阻,所以不串联R 时的起动电流为:A A r U I 11022200=== (2)为了使起动电流为20A ,电路的总电阻应为Ω=Ω==1120220I U R 总

故起动电阻应为

Ω

=

Ω

-

=

-

=9

)2

11

(

r

R

R

[例23] 如图27所示,电阻R1=20Ω,电动机绕线电阻R2=10Ω,当电键S断开时,电流表的示数是I1=0.5A,当电键合上后,电动机转动起来,电路两端的电压不变,电流表的示数I和电路消耗的电功率P应是()

A. I=1.5A

B. I<1.5A

C. P=15W

D. P<15W

分析与解:当电键S断开时,电动机没有通电,欧姆定律成立,所以电路两端的电压U=I1R1=10V;当电键合上后,电动机转动起来,电路两端的电压U=10V,通过电动机的电流应满足UI2>I22R2,所以I2<1A。所以电流表的示I<1.5A,电路消耗的电功率P<15W,即BD正确。

[例24] 某一用直流电动机提升重物的装置,如图28所示,重物的质量m=50kg,电源电动势E=110V,不计电源电阻及各处摩擦,当电动机以V=0.90m/s的恒定速度向上提升重物

时,电路中的电流强度I=5A,由此可知,电动机线圈的电阻R是多少?(g=10m/s2)

分析与解:在图28的物理过程中,电源工作将其他形式的能转化电能输入电路,电流通过

电机将电能转化为机械能输出,由能量守恒定律可得

mgVt

Rt

I

EIt+

=2

解得电动机线圈的电阻R=92Ω。

【模拟试题】

1. 在截面积为S的粗细均匀的铜导体中流过恒定电流I,铜的电阻率为ρ,电子电量为e,则电子在铜导体中运行时受到的电场作用力为()

A. 0

B. Iρe/S

C. IS/ρ e

D. Ie /ρS

2. 电饭锅工作时有两种状态:一种是锅内水烧开前的加热状态,另一种是锅内水烧开后保温状态,如图1所示是电饭锅电路原理示意图,S是用感温材料制造的开关。下列说法中正确的是()

A. 其中R2是供加热用的电阻丝

B. 当开关S接通时电饭锅为加热状态,S断开时为保温状态

C. 要使R2在保温状态时的功率为加热状态的一半,R1/R2应为2∶1

D. 要使R2在保温状态时的功率为加热状态的一半,R1/R2应为(2-1)∶1

图1

3. 如图2所示的电路中,平行板电容器的极板水平放置,板间有一质量为m的带电油滴悬浮在两板间静止不动,要使油滴向下运动,下列所采用的办法可行的是

A. 将R1的阻值调大

B. 将R1的阻值调小

C. 将R2的阻值调大

D. 将R3的阻值调大

图2

4. 如图3所示的电路中,当开关K闭合时,A点和B点的电势变化情况是

A. V A和V B都升高

B. V A和V B都降低

C. V A降低,V B升高

D. V B降低,V A升高

图3

5. 用万用表测直流电压U和测电阻R时,若红表笔插入万用表的正(+)插孔,则

A. 测电压时电流从红表笔流入万用表;测电阻时电流从红表笔流出万用表

B. 测电压、测电阻时电流均从红表笔流入万用表

C. 测电压、测电阻时电流均从红表笔流出万用表

D. 测电压时电流从红表笔流出万用表,测电阻时电流从红表笔流入万用表

6. 在图4所示的电路中,电源电动势V E 6= ,内阻r=1Ω,电阻R 1=3Ω,R 2=2Ω,电容器的电容C=0.5μF ,开关K 是闭合的,现将开关K 断开,则断开K 后电源释放的电能为

A. 1.2? 10-5J

B. 1.8? 10-5J

C. 6? 10-

6J D. 无法确定

2

r ,ε图4

7. 如图5所示电路,P 位于滑线变阻器的中点,当在ab 加上60V 电压时,接在cd 间的伏特表示数为20V ,如果在cd 间加上60V 的电压,将同样的伏特表接在ab 间时的示数为( )

A. 120V

B. 60V

C. 30V

D. 20V

8. 在图6所示的电路中,电源电动势E 和内电阻r 为定值, R 1为滑动阻器,R 2和R 3为定值电阻。当R 1的滑动触头P 从左向右移动时,伏特表V 1和V 2的示数的增量分别为ΔU 1和ΔU 2,对ΔU 1和ΔU 2有 A. 1U ? >2U ? B. 1U ? =2U ? C. ΔU 1>0,ΔU 2 <0 D. ΔU 2>0,ΔU 1 <0

9. 如图7所示电路中,电流表A 1与A 2均为相同的安培表,当电路两端接入某一恒定电压的电源时,A 1的示数为3mA ,A 2的示数为2mA 。现将A 2改接在R 2所在支路上,如图中虚线所示,再接入原来的恒定电压电源,那么,关于A 1与A 2示数情况,以下说法正确的应是( )

A. 电流表A 1示数必增大,电流表A 2示数必增大

B. 电流表A 1示数必增大,电流表A 2示数必减小

高考物理经典专题:时间与空间

高考物理经典专题:时间与空间 力与运动 思想方法提炼 一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变. (2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W 3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析. (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向. 二、中学物理中常见的几种力 三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上——匀变速直线运动 F与v不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动 F=-kx——简谐振动 四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高考物理必考考点题型

高考物理必考考点题型公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考物理必考考点题型 必考一、描述运动的基本概念 【典题1】2010年11月22日晚刘翔以13秒48的预赛第一成绩轻松跑进决赛,如图所示,也是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在110米中的( ) A.某时刻的瞬时速度大 B.撞线时的瞬时速度大 C.平均速度大 D.起跑时的加速度大 必考二、受力分析、物体的平衡 【典题2】如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A、B分别穿在两个杆上,两球之间有一根轻绳连接两球,现在用力将B球缓慢拉动,直到轻绳被拉直时,测出拉力F=10N则此时关于两个小球受到的力的说法正确的是() A、小球A受到重力、杆对A的弹力、绳子的张力 B、小球A受到的杆的弹力大小为20N C、此时绳子与穿有A球的杆垂直,绳子张力大小为203 3 N D、小球B受到杆的弹力大小为203 3 N 必考三、x-t与v-t图象 【典题3】图示为某质点做直线运动的v-t图象,关于这个质点在4s内的运动情况,下列说法中正确的是() A、质点始终向同一方向运动 B、4s末质点离出发点最远 F θ A B t v/(m 1234 2 1 - - O

C 、加速度大小不变,方向与初速度方向相同 D 、4s 内通过的路程为4m ,而位移为0 必考四、匀变速直线运动的规律与运用 【典题4】生活离不开交通,发达的交通给社会带来了极大的便利,但是,一系列的交通问题也伴随而来,全世界每秒钟就有十几万人死于交通事故,直接造成的经济损失上亿元。某驾驶员以30m/s 的速度匀速行驶,发现前方70m 处前方车辆突然停止,如果驾驶员看到前方车辆停止时的反应时间为,该汽车是否会有安全问题已知该车刹车的最大加速度为 . 必考五、重力作用下的直线运动 【典题5】某人站在十层楼的平台边缘处,以0v =20m/s 的初速度竖直向上抛出一石子,求抛出后石子距抛出点15m 处所需的时间(不计空气阻力,取g=10 m/s 2). 必考六、牛顿第二定律 【典题6】如图所示,三物体A 、B 、C 均静止,轻绳两端 分别与A 、C 两物体相连接且伸直,m A =3kg ,m B =2kg ,m C = 1kg ,物体A 、B 、C 间的动摩擦因数均为μ=,地面光滑,轻绳与滑轮间的摩擦可忽略不计。若要用力将B 物体拉动,则作用在B 物体上水平向左的拉力最小值为(最大静摩擦力等于滑动摩擦力,取g =10m/s 2)( ) A .3N B .5N C .8N D .6N 【典题7】如图所示,一质量为m 的物块A 与直立轻 弹簧的上端连接,弹簧的下端固定在地面上,一质量也为m 的物块B 叠放在A 的上面,A 、B 处于静止状态。若A 、B 粘连在一起,用一竖直向上的拉力缓慢上提B ,当 F A B C A B

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高考物理必考考点题型(2020年九月整理).doc

高考物理必考考点题型 必考一、描述运动的基本概念 【典题1】2010年11月22日晚刘翔以13秒48的预赛第一成绩轻松跑进决赛,如图所示,也是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在110米中的( ) A.某时刻的瞬时速度大 B.撞线时的瞬时速度大 C.平均速度大 D.起跑时的加速度大 必考二、受力分析、物体的平衡 【典题2】如图所示,光滑的夹角为θ=30°的三角杆水平放置,两小球A 、 B 分别穿在两个杆上,两球之间有一根轻绳连接两球,现在用力将B 球缓慢拉动,直到轻绳被拉直时,测出拉力F =10N 则此时关于两个小球受到的力的说法正确的是( ) A 、小球A 受到重力、杆对A 的弹力、绳子的张力 B 、小球A 受到的杆的弹力大小为20N C 、此时绳子与穿有A 球的杆垂直,绳子张力大小为203 3 N D 、小球B 受到杆的弹力大小为2033N 必考三、x -t 与v -t 图象 【典题3】图示为某质点做直线运动的v -t 图象,关于这个质点在4s 内的运动情况,下列说法中正确的是( ) A 、质点始终向同一方向运动 B 、4s 末质点离出发点最远 C 、加速度大小不变,方向与初速度方向相同 D 、4s 内通过的路程为4m ,而位移为0 必考四、匀变速直线运动的规律与运用 【典题4】生活离不开交通,发达的交通给社会带来了极大的便利,但是,一系列的交通问题也伴随而来,全世界每秒钟就有十几万人死于交通事故,直接造成的经济损失上亿元。某驾驶员以30m/s 的速度匀速行驶,发现前方70m 处前方车辆突然停止,如果驾驶员看到前方车辆停止时的反应时间为0.5s ,该汽车是否会有安全问题?已知该车刹车的最大加速度为 . 必考五、重力作用下的直线运动 【典题5】某人站在十层楼的平台边缘处,以0v =20m/s 的初速度竖直向上抛出一石子,求抛出后石子距抛出点15m 处所需的时间(不计空气阻力,取g=10 m/s 2 ). F θ A B t /s v /(m·s -2) 1 2 3 4 2 1 -2 -1 O

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试直线运动 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高考物理分值分布分析

高考物理分值分布分析 1、考点分值情况分析: (1)力学部分: 09年必考力学部分:38分,占物理总分34.5% 10年,必考力学部分42分,占物理总分的38.2%。 11年必考力学部分:47分,占物理总分42.7% 12年必考力学部分:38分,占物理总分34.5% 13年必考力学部分:50分,占物理总分45.5% 14年必考力学部分:49分,占物理总分44.5% (2)电磁部分: 09年必考电磁学部分: 57分,占物理总分51.8% 10年,电学部分共考查: 53分,占物理总分的48.2%。 11年必考电磁学部分: 48分,占物理总分43.6% 12年,电学部分共考查: 57分,占物理总分的51.8%。 13年必考电磁学部分: 45分,占物理总分40.9% 14年必考力学部分: 46分,占物理总分41.8% (3)选修部分:每年选考部分:15分,占物理总分13.6%。 2、整体内容分析: (1)必考部分:从所占分值来看,主要是以选修3-1为主,必修1、必修2共在42分左右,而选修3-2通常只考2个左右选择题。09年、10、12、13年高考都出现物理学史方面的题,所以在高考复习时要引起重视。万有引力部分在这五年中,每年都考了1道选择题,牛顿定律、机械能和电场、磁场总是高考的考查重点。实验题通常是考1道力学和1道电学题,一大一小,共15分,通常会以电学实验为大题,但11年就是以测加速度为大实验,12年全部为电学实验,所以还是不能一概而论。计算题在这五年中,09、10、11、13都是1道直线运动和1道带电粒子在电、磁场(或单纯的磁场)中运动题,尽管09年的直线运动题中会用到动能定理。而12年却出了一道关于力的平衡的计算题。 (2)选考部分:选修3-5:选择题在五年中有两年考了光电效应(09

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题 气体压强的产生与计算 1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。 2.决定因素 (1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分子的密集程度。 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。 (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。 (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。 考向1 液体封闭气体压强的计算 若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。 图2-2 [解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知 p甲S=-ρghS+p0S 所以p甲=p0-ρgh 在图乙中,以B液面为研究对象,由平衡方程F上=F下有: p A S+ρghS=p0S p乙=p A=p0-ρgh 在图丙中,仍以B液面为研究对象,有 p A′+ρgh sin 60°=p B′=p0 所以p丙=p A′=p0- 3 2 ρgh 在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S 所以p丁=p0+ρgh1。 [答案]甲:p0-ρgh乙:p0-ρgh丙:p0- 3 2 ρgh1丁:p0+ρgh1 考向2 活塞封闭气体压强的求解 如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边

高考物理必考考点题型

高考物理必考考点题型 必考一、 描述运动的基本概念 【典题 1】 2010 年 11 月 22 日晚刘翔以 13 秒 48 的预赛第一成绩轻松跑进决赛,如图所示,也 是他历届亚运会预赛的最佳成绩。刘翔之所以能够取得最佳成绩,取决于他在 110 米中的 ( ) A. 某时刻的瞬时速度大 B. 撞线时的瞬时速度大 C. 平均速度大 D.起跑时的加速度大 必考二、受力分析、物体的平衡 【典题 2】如图所示,光滑的夹角为 θ= 30°的三角杆水平放置, 两小球 A 、 B 分别穿在两个杆上,两球之间有一根轻绳连接两球,现在用力将 B 球缓慢 拉动,直到轻绳被拉直时,测出拉力 F = 10N 则此时关于两个小球受到的力 的说法正确的是( ) A 、小球 A 受到重力、杆对 A 的弹力、绳子的张力 B 、小球 A 受到的杆的弹力大小为 20N 20 3 θ C 、此时绳子与穿有 A 球的杆垂直,绳子张力大小为 3 N A F B 20 3 D 、小球 B 受到杆的弹力大小为 3 N 必考三、 x - t 与 v - t 图象 【典题 3】图示为某质点做直线运动的 v - t 图象,关于这个质点在 4s 内的运动情况,下列说法 中正确的是( ) -2 ) A 、质点始终向同一方向运动 2 v/(m ·s 1 B 、 4s 末质点离出发点最远 O 1 2 3 4 t/s C 、加速度大小不变,方向与初速度方向相同 -1 D 、 4s 内通过的路程为 4m ,而位移为 0 -2 必考四、 匀变速直线运动的规律与运用 【典题 4】生活离不开交通,发达的交通给社会带来了极大的便利,但是,一系列的交通问题也伴随而来,全世界每秒钟就有十几万人死于交通事故,直接造成的经济损失上亿元。某驾驶员以 30m/s 的速度匀速行驶,发现前方 70m 处前方车辆突然停止,如果驾驶员看到前方车辆停止时的反 应时间为 0.5s ,该汽车是否会有安全问题?已知该车刹车的最大加速度为 . 必考五、 重力作用下的直线运动 【典题 5】某人站在十层楼的平台边缘处, 以 v 0 =20m/s 的初速度竖直向上抛出一石子 , 求抛出后石子距抛出点 15m 处所需的时间 ( 不计空气阻力,取 g=10 m/s 2). 必考六、牛顿第二定律 【典题 6】如图所示,三物体 A 、B 、C 均静止,轻绳两端分别与 A 、C 两 A 物体相连接且伸直, m A =3kg , m B =2kg , m C = 1kg ,物体 A 、 B 、 C 间的动摩 F 擦因数均为 μ=0.1,地面光滑,轻绳与滑轮间的摩擦可忽略不计。若要用力将 B C B 物体拉动, 则作用在 B 物体上水平向左的拉力最小值为 (最大静摩擦力等于 滑动摩擦力,取 g = 10m/s 2)( ) A .3N B .5N C . 8N D . 6N

相关主题
文本预览
相关文档 最新文档