当前位置:文档之家› 催化剂及其作用机理

催化剂及其作用机理

催化剂及其作用机理
催化剂及其作用机理

1 基本概念

金属氧化物催化剂常为复合氧化物 (Complex oxides ),即多组分氧化物。如VO5-MoO3 ,Bi2O3-MoO3 ,TiO2-V2O5-P2O5 ,V2O5-MoO3-Al2O3 ,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2 (即7 组分的代号为C14 的第三代生产丙烯腈催化剂)。组分中至少有一种是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况常因条件而异。复合氧化物系常是多相共存,如Bi2O3-MoO3,就有a B和Y相。有所谓活性相

概念。它们的结构十分复杂,有固溶体,有杂多酸,有混晶等。

就催化剂作用和功能来说,有的组分是主催化剂,有的为助催化剂或者载体。主催化剂单独存在时就

有活性,如MoO3-Bi2O3 中的MoO3 ;助催化剂单独存在时无活性或很少活性,但能使主催化剂活性增强,

如Bi2O3 就是。助催化剂可以调变生成新相,或调控电子迁移速率,或促进活性相的形成等。依其对催化剂性能改善的不同,有结构助剂,抗烧结助剂,有增强机械强度和促进分散等不同的助催功能。调变的目的总是放在对活性、选择性或稳定性的促进上。

金属氧化物主要催化烃类的选择性氧化。其特点是:反应系高放热的,有效的传热、传质十分重要,要考虑催化剂的飞温;有反应爆炸区存在,故在条件上有所谓“燃料过剩型”或“空气过剩型”两种;这类反应的产物,相对于原料或中间物要稳定,故有所谓“急冷措施”,以防止进一步反应或分解;为了保持高选择性,常在低转化率下操作,用第二反应器或原料循环等。

这类作为氧化用的氧化物催化剂,可分为三类:①过渡金属氧化物,易从其晶格中传递出氧给反应物

分子,组成含 2 种以上且价态可变的阳离子,属非计量化合物,晶格中阳离子常能交叉互溶,形成相当复

杂的结构。②金属氧化物,用于氧化的活性组分为化学吸附型氧物种,吸附态可以是分子态、原子态乃至间隙氧(Interstitial Oxygen )。③原态不是氧化物,而是金属,但其表面吸附氧形成氧化层,如Ag对乙烯

的氧化,对甲醇的氧化,Pt 对氨的氧化等即是。

金属硫化物催化剂也有单组分和复合体系。主要用于重油的加氢精制,加氢脱硫( HDS )、加氢脱氮(HDN )、加氢脱金属(HDM )等过程。金属氧化物和金属硫化物都是半导体型催化剂。因此由必要了解有关半导体的一些基本概念和术语。

2 半导体的能带结构及其催化活性

催化中重要的半导体是过渡金属氧化物或硫化物。半导体分为三类:本征半导体、n-型半导体和p型

半导体。具有电子和空穴两种载流子传导的半导体,叫本征半导体。这类半导体在催化并不重要,因为化学变化过程的温度,一般在300?700C,不足以产生这种电子跃迁。靠与金属原子结合的电子导电,叫n-

型(Negative Type)半导体。靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)半导体。

属n-型半导体的有ZnO、Fe2O3、TiO2、CdO、V2O5、CrO3、CuO等,在空气中受热时失去氧,阳

离子氧化数降低,直至变成原子态。属于p-型半导体的有NiO、CoO、Cu2O、PbO、Cr2O3等,在空气中受热获得氧,阳离子氧化数升高,同时造成晶格中正离子缺位。

n-型半导体和p-型半导体都是非计量化合物。在n-型半导体中,如非计量ZnO,存在有Zn++离子的过

剩,它们处于晶格的间隙中。由于晶格要保持电中性,间隙处过剩的Zn++离子拉住一个电子在附近,开成

eZn++,在靠近导带附近形成一附加能级。温度升高时,此eZn++拉住的电子释放出来,成为自由电子,这

是ZnO 导电的来源。

此提供电子的能级称为施主能级。在p-型半导体中,例如NiO,由于缺正离子造成的非计量性,形成

阳离子空穴。为了保持电中性,在空穴附近有两个Ni++变成Ni++,后者可看成为Ni++束缚一个空穴。温

度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO 导电的来源。空穴产生的附加能级靠近价带,可容易接受来价带的电子,称为受主能级。

与金属的能带不同,氧化物半导体的能带是分立的、不迭加的,分为空带和价带。价带为形成晶格价键的电子所占用,已填满。空带上只有电子受热或辐射时从价带跃迁到空带上才有电子。这些电子在能量上是自由的,在外加电场作用下,电子导电。此带称为导带。与此同时,由于电子从满带中跃迁形成的空穴,以与电子相反应的方向传递电流。在价带与导带之间,有一能量宽度为Eg的禁带。金属的Eg为零,

绝缘体的Eg 很大,各种半导体的Eg 居于金属和绝缘体之间

Fermi 能级Ef 是表征半导体性质的一个重要的物理量,可以衡量固体中电子逸出的难易,它与电子的

逸出功①直接相关。①是将一个电子从固体内部拉到外部变成自由电子所需要的能量,此能量用以克服电

子的平均位能,Ef就是这种平均位能。因此从Ef到导带顶的能量差就是逸出功①。显然,Ef越高,电子逸出越容易。本征半导体,Ef在禁带中间,在施主能级与导带之间;p-型半导体,Ef在受主能级与满带之

间。

对于给定的晶格结构,Fermi能级Ef的位置对于它的催化活性具有重要意义。故在多相金属和半导体氧化催化剂的研制中,常采用添加少量助剂以调变主催化剂Ef的位置,达到改善催化剂活性、选择性的目

的。Ef提高,使电子逸出变易;Ef降低使电子逸出变难。Ef的这些变化会影响半导体催化剂的催化性能。

半导体中的自由电子和空穴,在化学吸附中起着接受电子的作用,与催化活性密切相关。如果气体在半导体氧化物上的化学吸附能使半导体的电荷负载增加,半导体的电导将随之递增,这种化学吸附就容易发生,通常称为“累积吸附”;反之,使半导体的电荷负载减少而电导降低,化学吸附就较难发生,又称“衰减吸附”。

3氧化物表面的M=O键性质与催化剂活性和选择性的关联(1)晶格氧(0=)起催化作用对于许多

氧化物催化剂和许多催化反应,当催化剂处于氧气流和烃气流的稳态下反应,如果使02供应突然中断,

催化反应仍将继续进行一段时间,以不变的选择性进行运转。若催化剂还原后,其活性下降;当供氧恢复,反应再次

回到原来的稳态。这些实验事实说明,是晶格氧(0=)起催化作用,催化剂被还原。

一般认为,在稳态下催化剂还原到某种程度;不同的催化剂有自身的最佳还原态。根据众多的复合氧

化物催化氧化概括出:(A)选择性氧化涉及有效的晶格氧;(B )无选择性完全氧化反应,吸附氧和晶格氧

都参加反应;(C)对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子Mn+ 承担对烃分子的活化

与氧化功能,它们再氧化靠沿晶格传递的0=离子;使另一种金属阳离子处于还原态承担接受气相氧。这就

是双还原氧化(dual-redox )机理

(2)金属与氧的键合和M=0 键类型

以Co2+ 的氧化键合为例,

Co2+ + 02 + Co2+ Co3+- 0- Co3+

可以有3种不同的成键方式成M=0的厅n双键结合。(a)金属Co的eg轨道(,)与02的孤对电子形成b 键;(b)金属Co的eg轨道与02的n分子轨道形成b键;(c)金属Co的t2g轨道(dxy , dxz, dyz)与02的n 分子轨道开成n键。

(3)M=0 键能大小与催化剂表面脱氧能力

复合氧化物催化剂给出氧的能力,是衡量它是否能进行选择性氧化的关键。如果M=0 键解离出氧(级予气相的反应物分子)的热效应厶HD 小,则给出易,催化剂的活性高,选择性小;如果△ HD大,则给出难,催化剂活性低;只有△ HD适中,催化剂有中等的活性,但选择性好。

4 复合金属氧化物催化剂的结构化学

具有某一种特定的晶格结构的新化合的的生成,需要满足3个方面的要求:①控制化学计量关系的价

态平衡;②控制离子间大小相互取代的可能;③修饰理想结构的配位情况变化,这种理想结构是基于假定离子是刚性的,不可穿透的,非畸变的球体。实际复合金属氧化物催化剂的结构,常是有晶格缺陷的,非化学计量的,且离子是可变形的。

任何稳定的化合物,必须满足化学价态的平衡。当晶格中发生高价离子取代低价离子时,就要结合高

价离子和因取代而需要的晶格阳离子空位以满足这种要求。例如Fe3O4的Fe++离子,若按T Fe2O3中的电

价平衡,可以书写成Fe 口1/3 04

阳离子一般小于阴离子。晶格结构总是由配置于阳离子周围的阴离子数所决定。对于二元化合物,配

位数取决于阴阳离子的半径比,即p =邛日/r阴。

最后还有考虑离子的极化。因为极化作用能使围绕一个电子的电荷偏移,使其偏离理想化的三维晶格结构,以致形成层状结构,最后变为分子晶体,变离子键为共价键。

(1 )尖晶石结构的催化性能

共8 页:

很多具有尖晶石结构的金属氧化物常用作氧化和脱氢过程的催化剂。其结构通式可写成AB2O4 。其单

位晶胞含有32个0=负离子,组成立方紧密堆积,对应于式A8B16O32。正常晶格中,8个A原子各以4

个氧原子以正四面体配位;16个 B 原子各以6个氧原子以正八面体配位。正常的尖晶石结构, A 原子占据正四面体位, B 原子占据正八面体位,见图 6.3.4。有一些尖晶石结构的化合物具有反常的结构,其中 B 原子的一半占据正四面体位,另一半 B 与所有的 A 占据正八面体位。还有 A 与 B 完全混乱分布的尖晶石型化合物。

就AB2O4尖晶石型氧化物来说,8个负电荷可用3种不同方式的阳离子结合的电价平衡:(A2++2B3+),

(A4++2B2+ )和( A6++2B+ )。2,3结合的尖晶石结构占绝大多数,约为80%;阴离子除0=外还可以是S=、Se=或Te=。A2+ 离子可以是Mg++、Ca++、Cr++、Mn++、Fe++、Co++、Nr++、Cu++、Zn++、Cd++、Hg++ 或

Sn++ ;B3+ 可以是Al3+、Ga3+、In3+、Ti+、V3+、Cr3+、Mn3+、Fe3+、Co3+、Ni3+ 或Rh3+。其次是4,2结合的尖晶石结构,约占15%;阴离子主要是O=或S=o6,1结合的只有少数几种氧化物系,如MoAg2O4,MoLi204 以及WLi204。

( 2)钙钛矿型结构的催化性能

这是一类化合物,其晶格结构类似于矿物CaTiO3,是可用通式ABX3表示的氧化物,此处X是0=离

子。 A 是一个大的阳离子, B 是一个小的阳离子。在高温下钙钛矿型结构的单位晶胞为正立方体, A 位于

晶胞的中心, B 位于正立方体顶点。此中 A 的配位数为12(0=), B 的配位数为6( 0=)。见图 6.3.5。基于电中性原理,阳离子的电荷之和应为+6,故其计量要求为:

[1+5] = AIBV03 ; [2+4] = AIIBIV03 ; [3+3] = AIIIBIII03

具有这三种计量关系的钙钛矿型化合物有300 多种,覆盖了很大范围。有关钙钛矿型催化剂,原则如下:

①组分 A 无催化活性,组分 B 有催化活性。 A 和 B 的众多结合生成钙钛矿型氧化物时,或 A 与 B 为别的离子部分取代时,不影响它基本晶格结构。故有A1-xAB03 型的,有AB1-xB03 型的,以及A1-xAB1-yB03 型的等。

②A位和B位的阳离子的特定组合与部分取代,会生成B位阳离子的反常价态,也可能是阳离子空穴

和/或0=空穴。产生这种晶格缺陷后,会修饰氧化物的化学性质或者传递性质。这种修饰会直接或间接地影响它们的催化性能。

③在AB03 型氧化物催化剂中,用体相性质或表面性质都可与催化活性关联。因为组分 A 基本上无活性,活性B彼此相距较远,约0.4nm;气态分子仅与单一活性位作用。但是在建立这种关联时,必须区分两种不同的表面过程。一为表面层内的(Intrafacial),另一为表面上的(Superfacial),前者的操作在相当高的温度下进行,催化剂作为反应试剂之一,先在过程中部分消耗,然后在催化循环中再生,过程按催化剂的还原-氧化循环结合进行;后一种催化在表面上发生,表面作为一种固定的模板提供特定的能级和对称性轨道,用于反应物和中间物的键合。

一般地说,未取代的AB03钙钛矿型氧化物,趋向于表面上的反应,而A位取代的(AA ' )BO3型氧化物,易催化表面层内的反应。例如M n-型的催化表面上的反应,属于未取代型的;Co-型和Fe-型则属于取

代型的。这两种不同的催化作用,强烈地依赖于0=离子迁移的难易,易迁移的有利于表面层内的反应,不

迁移的有利于表面上的反应。

④影响ABO3 钙钛矿型氧化物催化剂吸附和催化性能的另一类关键因素,是其表面组成。当 A 和 B 在表面上配位不饱和、失去对称性时,它们强烈地与气体分子反应以达到饱和,就会造成表面组成相对于体相计量关系的组成差异。比如 B 组分在表面上出现偏析,在表面上出现一种以上的氧种等,都会给吸附和催化带来显著的影响。

钙钛矿型催化剂可能是由催化氧化、催化燃烧和汽车尾气处理潜在可用的催化剂。用于部分氧化物反应类型有:脱氢反应,如醇变醛,烯烃变成二烯烃;脱氢羰化或腈化反应,如烃变成醛、腈;脱氢偶联反应,如甲烷氧化脱氢偶联成C2 烃等。

5 金属硫化物催化剂及其催化剂作用

金属硫化物与金属氧化物有许多相似之处,它们大多数都是半导体类型的,具有氧化还原功能和酸碱功能,更主要的是前者。作为催化剂可以是单组分形式或复合硫化物形式。这类催化剂主要用于加氢精制过程。通过加氢反应将原料或杂质中会导致催化剂中毒的组分除去。工业上用于此目的的有Rh和Pt族金

属硫化物或负载于活性炭上的负载型催化剂。属于非计量型的复合硫化物,有以Al2O3 为载体,以Mo、W、Co等硫化物形成的复合型催化剂。

硫化物催化剂的活性相,一般是其氧化物母体先经高温熔烧,形成所需要的结构后,再在还原气氛下

硫化。硫化过程可在还原之后进行,也可还原过程中用含硫的还原气体边还原边硫化,还原时产生氧空位,便于硫原子插入。常用的硫化剂是H2S和CS2。硫化后催化剂含硫量越高对活性越有利。硫化度与硫化温

度的控制、原料气中的含硫量有关。使用中因硫的流失导致催化剂活性下降,一般可重新硫化复活。

(1)加氢脱硫及其相关过程的作用机理在涉及煤和石油资源的开发利用过程中,需要脱硫处理。而硫是以化合状态存在,如烷基硫、二硫化物以及杂环硫化物,尤其是硫茂(噻吩)及其相似物。硫的脱除涉及催化加氢脱硫过程(HDS),先催化加

氢生成H2S 与烃,H2S 再氧化生成单质硫加以回收。烷基硫化物易于反应,而杂环硫化物较稳定。从催化角度看,它涉及加氢与S-C 键断裂,可以首先考虑金属,它们是活化氢所必须的,也能使许多单键氢解。

在涉及煤和石油资源的开发利用过程中,需要脱硫处理。而硫是以化合状态存在,如烷基硫、二硫化

物以及杂环硫化物,尤其是硫茂(噻吩)及其相似物。硫的脱除涉及催化加氢脱硫过程(HDS),先催化加氢生成H2S 与烃,H2S 再氧化生成单质硫加以回收。烷基硫化物易于反应,而杂环硫化物较稳定。从催化角度看,它涉及加氢与S-C 键断裂,可以首先考虑金属,它们是活化氢所必须的,也能使许多单键氢解。

(2)重油的催化加氢精制

在原油进行加工处理之前,需要将含硫量降低到一定的水平。于是硫的脱除伴随有催化加氢脱硫精制。除硫外,重油中还含有一定量的氮,它比硫含量一般小一个数量级,因为这些含氮的有机物具有碱性,会使酸性催化剂中毒,含于燃料油品中会污染大气,因此发展了与HDS 相似的过程,即HDN 工艺。

原油中,尤其是一次加工后的常压渣油中和减压渣油中,含有多种金属和有机金属化合物,它们主要

是V、Ni、Fe、Pb以及As、P等。在加氢脱硫过程中,氢解为金属或金属硫化物,沉积于催化剂剂表面,造成催化剂中毒或堵塞孔道,故要求在石油炼制和油品使用之前将它们除去,这就是HDM ,即加氢脱金属过程。有关HDM 技术是当代工业催化剂研究的前沿。

催化剂的特性及其作用

催化剂的特性及其作用 一、催化剂的特性 1、三乙基铝(TEAL):三乙基铝为催化剂助剂的一种,显弱酸性,具有非常强的活性,遇空气中的氧气能发生自然,遇水发生爆炸,它与主催化剂形成Ti-C活性中心并可以在聚合反应中杀死对主催化剂有害的物质. 2、给电子体(DONOR):全名甲基环己基二甲氧基硅烷,也是催化剂助剂的一种,显弱碱性,遇水可分解出甲醇对人体皮肤和眼睛造成一定伤害,其主要调节聚丙烯分子量的分布及产品的等规度. 3、主催化剂:四氯化钛为主催化剂,遇水可分解出HCL性水溶液对人体造成伤害. 这三种催化剂除TEAL以纯品投用外其他两种均用白油稀释后注入反应区并且三中催化剂储存时都需要氮封,防止空气进入反应区影响反应活性. 二、催化剂在反应中的作用 本装置采用的催化剂为CS-2,CS-2是我国第四代催化剂,活性可高达≯30KGpp/g催化剂,产品等规度达98%,无脱灰、无脱无规物、无造粒等. 其催化剂成分包括四氯化钛(内给电子体邻苯二甲酸酯),三乙基铝,外给电子体DONOR.由于TEAL显弱酸性能中和掉主CAT中显弱碱性的内给电子体所以加入DONOR作为补给.而DONOR过量则会减少反应中活化铝的量使得CO、SO等带有孤对电子对的杂质不能完全被消除导致反应活性下降,所以TEAL和DONOR要以一定的比例投用到反应中而却保催化剂的活性.催化剂的载体为活化后的球形MgCl2,主CAT负载在其表面与TEAL、DONOR一起进入到D201中进行链引发过程,进行烷基化后的主CAT和TEAL形成Ti-C活性中心,与DONOR 一起负载在载体上共同研磨就形成了高活性、立构性好的催化剂。丙烯单体就在Ti-C活性中心上进行聚合过程,而DONOR主要确保聚丙烯的分子量分布以及等规度,而由于载体MgCl2为球形则聚合后的丙烯也为球状,即实现无造粒过程。

催化剂及其基本特征

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Br?nsted定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸 7、如何利用碱滴定法测定固体酸的酸量 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 10、催化裂化反应有哪些规律 (1)新生成的伯正碳离子极不稳定,并迅速转化为仲正碳离子,然后再β处断裂,反应继续下去,直至成为不能再断裂

催化剂及其基本特征

1、催化剂及其基本特征? 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成? 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性? 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别? 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。5、何谓B酸和L酸,及其简便的鉴定方法? 能够给出质子的都是酸,能够接受质子的都是碱,Br?nsted定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸? 7、如何利用碱滴定法测定固体酸的酸量? 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量? 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。

催化剂及其基本特征

催化剂及其基本特征 Prepared on 24 November 2020

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。 5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Brnsted 定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸 7、如何利用碱滴定法测定固体酸的酸量 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 10、催化裂化反应有哪些规律 (1)新生成的伯正碳离子极不稳定,并迅速转化为仲正碳离子,然后再β处断裂,反应继续下去,直至成为不能再断裂的小正碳离子为止,并在反应过程中将H+ 传给催化剂变成烯烃。 (2)烯烃裂化时也首先形成正碳离子,并遵循β处断裂原则,生成一个较小的烯烃和一个伯正碳离子,伯正碳离子再重排,裂化为较小的烯烃。 (3)环烷烃裂化时形成的正碳离子的机理与烷烃一体,但由于存在大量仲碳离子和叔碳离子,所以环烷烃的反应能力很高,并能生成各种与烯烃裂化类似的产品,同时还存在一定的芳烃。

催化剂的特性

催化剂的特性 只有当反应物分子具备了足够能量(即活化分子)并达到一定数量时,化学反应才能进行。活化分子数量(即浓度)越多,反应速率越快。处于活化状态的分子所具有的最低能量与普通分子所具有的平均能量之差,称为反应的活化能,以E.表示,其单位是kj/mol。活化能数值的大小,体现了反应的难易程度和温度对该反应的影响敏感度。 降低活化能E.可显著提高反应速率常数k,加快反应速率。计算表明,活化能Ea降低2kj/mol,反应速率常数k可增加2倍;若活化能E.降低达80 kj/mol,则反应速率常数k增加107倍以上。通常使用适宜的催化剂能够显著降低反应的活化能,见表3 5。 反应活化能降低的原因,是催化剂改变了反应的途径,使反应按照新的途径进行。如图3 8所示,简单反应A+B -AB,非催化反应的活化能为Ea;催化反应第一步的活化能为 Ea1,第二步为Ea2。Eal和Ea2的数值均小于Ea,一般,Ea1 +Ea2

催化剂及其基本特征精选文档

催化剂及其基本特征精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1、催化剂及其基本特征? 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成? 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性? 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别? 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。 5、何谓B酸和L酸,及其简便的鉴定方法? 能够给出质子的都是酸,能够接受质子的都是碱,Brnsted 定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸? 7、如何利用碱滴定法测定固体酸的酸量? 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量? 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及

催化剂及其基本特征

催化剂及其基本特征 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。 5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Brnsted 定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 6、如何利用红外光谱法鉴定B酸和L酸 7、如何利用碱滴定法测定固体酸的酸量 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 10、催化裂化反应有哪些规律 (1)新生成的伯正碳离子极不稳定,并迅速转化为仲正碳离子,然后再β处断裂,反应继续下去,直至成为不能再断裂的小正碳离子为止,并在反应过程中将H+ 传给催化剂变成烯烃。 (2)烯烃裂化时也首先形成正碳离子,并遵循β处断裂原则,生成一个较小的烯烃和一个伯正碳离子,伯正碳离子再重排,裂化为较小的烯烃。 (3)环烷烃裂化时形成的正碳离子的机理与烷烃一体,但由于存在大量仲碳离子和叔碳离子,所以环烷烃的反应能力很高,并能生成各种与烯烃裂化类似的产品,同时还存在一定的芳烃。

催化剂及其基本特征(20210228190745)

催化剂是一种物质,它能够改变化学反应的速率,而不改 变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化 剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成? 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性? 指催化剂的活性和选择性随反应时间的变化,催化剂的 性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别? 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用 (如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间 主要是分子间力(也称“van der Waals"力) 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体 间化学键的形成、电子重排等。 能够给出质子的都是酸,能够接受质子的都是碱, Br?nsted定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以 Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。 7、如何利用碱滴定法测定固体酸的酸量? 就是把固体酸催化剂粉末悬浮于苯溶液中,其中加入指示剂,用正丁胺进行滴定,使用不同pKa值的各种指示剂,就可通过胺滴定来测定各种酸强度的酸量,这样测得的酸量为B酸和L酸的总和。对于有颜色的样品,可用分光光度计法或掺入已知酸强度的白色固体予以稀 释,也可用胺量热滴定法来测定有色或黑色固体酸样品的酸量。 8、如何利用CO2吸附法测定固体碱的碱量? 就是在TPD装置上将预先吸附了CO2的固体碱在等速升温,并通入稳定流速的载气条件下,检测一定温度下脱附出的酸性气体,得到TPD曲线。这种曲线的形状、大小及出现最高峰的温度值,都与固体碱的表面碱性有关,从而确定碱量。 9、简述固体酸催化剂的催化作用机理。 固体酸、碱催化剂,如硅铝胶、分子筛、MgO-SiO2等在烃类转化,包括裂解、异构化、烷基化、聚合反应中都有极好的活性。现普遍认为,固体酸催化反应与均相酸催化反应一样,都是按正碳离子机理进行的,与此相对应,烃类在固体碱催化剂作用下,反应按负碳离子机理进行的。所谓正碳离子和负碳离子相理,简单地说就在反应中,通过反应分子的质子化生成碳正离子,或从反应分子除去一个质子生成负碳离子,从而使反应分子得以活化的过程,并且是反应的控制步骤。 6、如何利用红外光谱法鉴定B酸和L酸?

催化剂基础知识

催化剂基础知识 一、选择题(中级工) 1、按( )分类,一般催化剂可分为过渡金属催化剂、金属氧化物催化剂、硫化物催化剂、固体酸催化剂等。 A、催化反应类型 B、催化材料的成分 C、催化剂的组成 D、催化反应相态 2、把暂时中毒的催化剂经过一定方法处理后,恢复到一定活性的过程称为催化剂的( )。 A、活化 B、燃烧 C、还原 D、再生 3、把制备好的钝态催化剂经过一定方法处理后,变为活泼态的催化剂的过程称为催化剂的( )A、活化B、燃烧C、还原 D、再生 4、催化剂按形态可分为( )。 A、固态,液态、等离子态 B、固态、液态、气态、等离子态 C、固态、液态 D、固态、液态、气态 5、催化剂的活性随运转时间变化的曲线可分为( )三个时期。 A、成熟期一稳定期一衰老期 B、稳定期一衰老期一成熟期 C、衰老期一成熟期一稳定期 D、稳定期一成熟期一衰老期 6、催化剂的主要评价指标是( )。 A、活性、选择性、状态、价格 B、活性、选择性、寿命、稳定性 C、活性、选择性、环保性、密度 D、活性、选择性、环保性、表面光洁 度 7、催化剂的作用与下列哪个因素无关( )。 A、反应速率 B、平衡转化率 C、反应的选择性 D、设备的生产能力 8、催化剂须具有( )。 A、较高的活性、添加简便、不易中毒 B、较高的活性、合理的流体流动的性质、足够的机械强度 C、合理的流体流动的性质、足够的机械强度、耐高温 D、足够的机械强度、较高的活性、不易中毒 9、催化剂一般由( )、助催化剂和载体组成。 A、粘接剂 B、分散剂 C、活性主体 D、固化剂 10、催化剂中毒有( )两种情况。 A、短期性和长期性 B、短期性和暂时性 C、暂时性和永久性 D、暂时性和长期性 11、关于催化剂的描述下列哪一种是错误的( )。 A、催化剂能改变化学反应速率 B、催化剂能加快逆反应的速率 C、催化剂能改变化学反应的平衡 D、催化剂对反应过程具有一定的选择性 12、使用固体催化剂时一定要防止其中毒,若中毒后其活性可以重新恢复的中毒是( )。 A、永久中毒 B、暂时中毒 C、碳沉积 D、钝化 13、下列叙述中不是催化剂特征的是( )。 A、催化剂的存在能提高化学反应热的利用率 B、催化剂只缩短达到平衡的时间,而不能改变平衡状态

第六章 金属催化剂催化作用

第六章金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,

Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d 轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分)

相关主题
文本预览
相关文档 最新文档