当前位置:文档之家› 第二章:液压传动基础知识

第二章:液压传动基础知识

第二章:液压传动基础知识
第二章:液压传动基础知识

第二章液压传动基础知识

本章介绍有关液压传动的流体力学基础,重点为液体静压方程、连续性方程、伯努力方程的应用,压力损失、小孔流量的计算。要求学生理解基本概念、牢记公式并会应用。

§2-1 液体静力学基础

液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性,不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规律以及液体对物体壁面的作用力。

一、液体静压力及其特性

作用在液体上的力有两种类型:一种是质量力,另一种是表面力。

质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。

表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以静止液体只能承受压力。

所谓静压力是指静止液体单位面积上所受的法向力,用p表示。

液体内某质点处的法向力ΔF对其微小面积ΔA的极限称为压力p,即:

p=limΔF/ΔA (2-14)

ΔA→0

若法向力均匀地作用在面积A上,则压力表示为:

p=F/A (2-15)

式中:A为液体有效作用面积;F为液体有效作用面积A上所受的法向力。

静压力具有下述两个重要特征:

(1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。

(2)静止液体中,任何一点所受到的各方向的静压力都相等。

二、液体静力学方程

图2-3静压力的分布规律

静止液体内部受力情况可用图2-3来说明。设容器中装满液体,在任意一点A处取一微小面积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z0。为了求得任意一点A的压力,可取dA·h这个液柱为分离体〔见图(b)〕。根据静压力的特性,作用于这个液柱上的力在各方向都呈平衡,现求各作用力在Z方向的平衡方程。微小液柱顶面上的作用力为p0dA(方向向下),液柱本身的重力G=γhdA(方向向下),液柱底面对液柱的作用力为pdA(方向向上),则平衡方程为:

pdA=p0dA+γhdA

故p= p

+γh (2-16)

为了更清晰地说明静压力的分布规律,将(2-16)式按坐标Z变换一下,即以:h=Z0-Z

代入上式整理后得:

p+γZ= p

0+γZ

=常量 (2-17)

上式是液体静力学基本方程的另一种形式。其中Z实质上表示A点的单位质量液体的位能。设A点液体质点的质量为m,重力为mg,如果质点从A点下降到基准水平面,它的重力所做的功为mgz。因此A处的液体质点具有位置势能mgz,单位质量液体的位能就是

mgz/mg=Z,Z又常称作位置水头。而p/ρg表示A点单位质量液体的压力能,常称为压力水头。由以上分析及式(2-1)可知,静止液体中任一点都有单位质量液体的位能和压力能,即具有两部分能量,而且各点的总能量之和为一常量。

分析式(2-16)可知:

(1)静止液体中任一点的压力均由两部分组成,即液面上的表面压力p0和液体自重而引起的对该点的压力γh。

(2)静止液体内的压力随液体距液面的深度变化呈线性规律分布,且在同一深度上各点的压力相等,压力相等的所有点组成的面为等压面,很显然,在重力作用下静止液体的等压面为一个平面。

(3)可通过下述三种方式使液面产生压力p0:

①通过固体壁面(如活塞)使液面产生压力;

②通过气体使液面产生压力;

③通过不同质的液体使液面产生压力。

三、压力的表示方法及单位

液压系统中的压力就是指压强,液体压力通常有绝对压力、相对压力(表压力)、真空度三种表示方法。 因为在地球表面上,一切物体都受大气压力的作用,而且是自成平衡的,即大多数测压仪表在大气压下并不动作,这时它所表示的压力值为零,因此,它们测出的压力是高于大气压力的那部分压力。也就是说,它是相对于大气压(即以大气压为基准零值时)所测量到的一种压力,因此称它为相对压力或表压力。另一种是以绝对真空为基准零值时所测得的压力,我们称它为绝对压力。当绝对压力低于大气压时,习惯上称为出现真空。因此,某点的绝对压力比大气压小的那部分数值叫作该点的真空度。如某点的绝对压力为4.052×

104Pa(0.4大气压),则该点的真空度为0.6078×104Pa(0.6

大气压)。绝对压力、相对压力(表压力)和真空度的关系如

图2-4所示。

图2-4绝对压力与表压力的关系图2-5真空

由图2-4可知,绝对压力总是正值,表压力则可正可负,负的表压力就是真空度,如真空度为4.052×104Pa(0.4大气压),其表压力为-4.052×104Pa(-0.4大气压)。我们把下端开口,上端具有阀门的玻璃管插入密度为ρ的液体中,如图2-5所示。如果在上端抽出一部分封入的空气,使管内压力低于大气压力,则在外界的大气压力p a的作用下,管内液体将上升至h0,这时管内液面压力为p0,由流体静力学基本公式可知:pa=p0+ρgh0。显然,ρgh0就是管内液面压力p0不足大气压力的部分,因此它就是管内液面上的真空度。由此可见,真空度的大小往往可以用液柱高度h0=(pa- p0)/ρg来表示。在理论上,当p0等于零时,即管中呈绝对真空时,h0达到最大值,设为(h0max)r,在标准大气压下,

(h0max)r=p atm/ρg=10.1325/(9.8066ρ)=1.033/ρ

水的密度ρ=10-3kg/cm3,汞的密度为13.6×10-3kg/cm3。

所以(h0max)r=1.033×10-3=1033cmH2O=10.33mH2O

或(h 0max)r =1.03313.6×10-3

=76cmHg=760mmHg

即理论上在标准大气压下的最大真空度可达10.33米水柱或760毫米汞柱。根据上述归纳如下:

(1)绝对压力=大气压力+表压力

(2)表压力=绝对压力-大气压力

(3)真空度=大气压力-绝对压力

压力单位为帕斯卡,简称帕,符号为Pa ,1Pa =1N/m 2。由于此单位很小,工程上使用不便,因此常采用它的倍单位兆帕,符号MPa 。1Mpa=105Pa

四、液压静压力对固体壁面的作用力

在液压传动中,略去液体自重产生的压力,液体中各点的静压力是均匀分布的,且垂直作用于受压表面。因此,当承受压力的表面为平面时,液体对该平面的总作用力F 为液体的压力p 与受压面积A 的乘积,其方向与该平面相垂直。如压力油作用在直径为D 的柱塞上,则有F=pA=p πD 2/4。

当承受压力的表面为曲面时,由于压力总是垂直于承受压力的表面,所以作用在曲面上各点的力不平行但相等。要计算曲面上的总作用力,必须明确要计算哪个方向上的力。

图2-7所示为液压缸筒受力分析图。设缸筒半径为r ,长度为l ,求液压力作用在右壁部x 方向的力Fx 。在缸筒上取一微小窄条,其面积为dA=lds=lrd θ,压力油作用在这微小面积上的力dF 在x 方向的投影为:

dFx=dFcos θ=pdAcos θ=plrcos θd θ

在液压缸筒右半壁上x 方向的总作用力为: Fx= ?-22ππplrcos θd θ=2lrp (2-19)

式中,2lr 为曲面在x 方向的投影面积。由此可得出结论,作用在曲面上的液压力在某

一方向上的分力等于静压力与曲面在该方向投影面积的乘积。这一结论

图2-7液体对固体壁面的作用力

对任意曲面都适用。图2-8为球面和锥面所受液压力分析图。要计算出球面和锥面在垂直方向受力F ,只要先计算出曲面在垂直方向的投影面积A ,然后再与压力p 相乘,即:

F=pA=pπd2/4 (2-20)

式中:d为承压部分曲面投影圆的直径。

图2-8液压力作用在曲面上的力

§2-2 液体动力学基础

在液压传动系统中,液压油总是在不断的流动中,因此要研究液体在外力作用下的运动规律及作用在流体上的力及这些力和流体运动特性之间的关系。对液压流体力学我们只关心和研究平均作用力和运动之间的关系。本节主要讨论三个基本方程式,即液流的连续性方程、柏努力方程和动量方程。它们是刚体力学中的质量守恒、质量守恒及动量守恒原理在流体力学中的具体应用。前两个方程描述了压力、流速与流量之间的关系,以及液体能量相互间的变换关系,后者描述了流动液体与固体壁面之间作用里的情况。液体是有粘性的,并在流动中表现出来,因此,在研究液体运动规律时,不但要考虑质量力和压力,还要考虑粘性摩擦力的影响。此外,液体的流动状态还与温度、密度、压力等参数有关。为了分析,可以简化条件,从理想液体着手,所谓理想液体是指没有粘性的液体,同时,一般都视为在等温的条件下把粘度、密度视作常量来讨论液体的运动规律。然后在通过实验对产生的偏差加以补充和修正,使之符合实际情况。

一、基本概念

1)理想液体与定常流动液体具有粘性,并在流动时表现出来,因此研究流动液体时就要考虑其粘性,而液体的粘性阻力是一个很复杂的问题,这就使我们对流动液体的研究变得复杂。因此,我们引入理想液体的概念,理想液体就是指没有粘性、不可压缩的液体。首先对理想液体进行研究,然后再通过实验验证的方法对所得的结论进行补充和修正。这样,不仅使问题简单化,而且得到的结论在实际应用中扔具有足够的精确性。我们把既具有粘性又可压缩的液体称为实际液体。

当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速v 及密度g表示为空间坐标和时间的函数,例如:

压力p=p(x,y,z,t)

速度v=v(x,y,z,t)

密度ρ=ρ(x ,y ,z ,t )

如果空间上的运动参数p 、v 及ρ在不同的时间内都有确定的值,即它们只随空间点坐标的变化而变化,不随时间t 变化,对液体的这种运动称为定常流动或恒定流动。但只要有一个运动参数随时间而变化,则就是非定常流动或非恒定流动。

如果空间点上的运动参数p 、υ及ρ在不同的时间内都有确定的值,即它们只随空间点坐标的变化而变化,不随时间t 变化,对液体的这种运动称为定常流动或恒定流动。定常流动时,

,0=??t p 0=??t v , 0=??t ρ

在流体的运动参数中,只要有一个运动参数随时间而变化,液体的运动就是非定常流动或非恒定流动。

图2-9恒定出流与非恒定出流

(a)恒定出流(b)非恒定出流

在图2-9(a)中,我们对容器出流的流量给予补偿,使其液面高度不变,这样,容器中各点的液体运动参数p 、υ、ρ都不随时间而变,这就是定常流动。在图2-9(b)中,我们不对容器的出流给予流量补偿,则容器中各点的液体运动参数将随时间而改变,例如随着时间的消逝,液面高度逐渐减低,因此,这种流动为非定常流动。

3)流量和平均流速

①流量:单位时间内通过通流截面的液体的体积称为流量,用q 表示,流量的常用单位为升/分,L/min 。

对微小流束,通过dA 上的流量为dq,其表达式为:

dq=udA (2-21)

q=?A

udA 当已知通流截面上的流速u 的变化规律时,可以由上式求出实际流量。

②平均流速:在实际液体流动中,由于粘性摩擦力的作用,通流截面上流速u 的分布规律难以确定,因此引入平均流速的概念,即认为通流截面上各点的流速均为平均流速,用v

来表示,则通过通流截面的流量就等于平均流速乘以通流截面积。令此流量与上述实际流量相等,得:

q= A

udA = vA (2-22) 则平均流速为:

v = q/A (2-23)

又如正方形的管道,边长为b,则湿周为4b ,,因而水力半径为R=b/4。水力半径的大小,对管道的通流能力影响很大。水力半径大,表明流体与管壁的接触少,同流能力强;水力半径小,表明流体与管壁的接触多,同流能力差,容易堵塞。

3.2连续性方程

质量守恒是自然界的客观规律,不可压缩液体的流动过程也遵守能量守恒定律。在流体力学中这个规律用称为连续性方程的数学形式来表达的。

其中不可压缩流体作定常流动的连续性方程为:

图2-11液体的微小流束连续 性流动示意图

v 1A 1=v 2A 2 (2-27)

由于通流截面是任意取的,则有:

q =v 1A 1=v 2A 2=v 3A 3= ……=v n A n =常数 (2-28) 式中:v 1,v 2分别是流管通流截面A 1及A 2上的平均流速。式(2-26)表明通过流管内任一通流截面上的流量相等,当流量一定时,任一通流截面上的通流面积与流速成反比。则有任一通流断面上的平均流速为:

v i =q/A i

3.3伯努利方程

能量守恒是自然界的客观规律,流动液体也遵守能量守恒定律,这个规律是用伯努利

方程的数学形式来表达的。伯努利方程是一个能量方程,掌握这一物理意义是十分重要的。

1) 1) 1) 理想液体微小流束的伯努利方程

为研究的方便,一般将液体作为没有粘性摩擦力的理想液体来处理。

P 1/ρg +Z 1 +u 12/2g = P 2/ρg+ Z 2 + u 22 /2g (2-29)

式中p/r 为单位重量液体所具有的压力能,称为比压能,也叫作压力水头。Z 为单位重量液体所具有的势能,称为比位能,也叫作位置水头。(u 2

/2g )为单位重量液体所具有的动能,称为比动能,也叫作速度水头,它们的量纲都为长度。

图2—12液流能量方程关系转换图

对伯努利方程可作如下的理解: ①伯努利方程式是一个能量方程式,它表明在空间各相应通流断面处流通液体的能量守恒规律。

②理想液体的伯努利方程只适用于重力作用下的理想液体作定常活动的情况。

③任一微小流束都对应一个确定的伯努利方程式,即对于不同的微小流束,它们的常量值不同。

伯努利方程的物理意义为:在密封管道内作定常流动的理想液体在任意一个通流断面上具有三种形成的能量,即压力能、势能和动能。三种能量的总合是一个恒定的常量,而且三种能量之间是可以相互转换的,即在不同的通流断面上,同一种能量的值会是不同的,但各断面上的总能量值都是相同的。

2) 实际液体微小流束的伯努利方程

由于液体存在着粘性,其粘性力在起作用,并表示为对液体流动的阻力,实际液体的流动要克服这些阻力,表示为机械能的消耗和损失,因此,当液体流动时,液流的总能量或总比能在不断地减少。所以,实际液体微小流束的伯努力方程为

=++g u Z p 22111γωγh g u Z p +++22222 (2-30)

3)实际液体总流的伯努利方程

=++g v Z p 22

1111

αγωαγh g v Z p +++222

222

(2-31)

伯努利方程的适用条件为:

①稳定流动的不可压缩液体,即密度为常数。

②液体所受质量力只有重力,忽略惯性力的影响。

③所选择的两个通流截面必须在同一个连续流动的流场中是渐变流(即流线近于平行线,有效截面近于平面)。而不考虑两截面间的流动状况。

§2-3 管道内压力损失的计算

实际粘性液体在流动时存在阻力,为了克服阻力就要消耗一部分能量,这样就有能量损失。在液压传动中,能量损失主要表现为压力损失,这就是实际液体流动的伯努利方程式中的hw 项的含义。液压系统中的压力损失分为两类,一类是油液沿等直径直管流动时所产生的压力损失,称之为沿程压力损失。这类压力损失是由液体流动时的内、外摩擦力所引起的。另一类是油液流经局部障碍(如弯头、接头、管道截面突然扩大或收缩)时,由于液流的方向和速度的突然变化,在局部形成旋涡引起油液质点间,以及质点与固体壁面间相互碰撞和剧烈摩擦而产生的压力损失称之为局部压力损失。

压力损失过大也就是液压系统中功率损耗的增加,这将导致油液发热加剧,泄漏量增加,效率下降和液压系统性能变坏。

在液压技术中,研究阻力的目的是:①为了正确计算液压系统中的阻力;②为了找出减少流动阻力的途径;③为了利用阻力所形成的压差?p 来控制某些液压元件的动作。

4)流动状态、雷诺数

实际液体具有粘性,是产生流动阻力的根本原因。然而流动状态不同,则阻力大小也是不同的。所以先研究两种不同的流动状态。

① ① ① 流动状态——层流和紊流

液体在管道中流动时存在两种不同状态,它们的阻力性质也不相同。虽然这是在管道液流中发生的现象,却对气流和潜体也同样适用。

试验装置如图2-20所示,试验时保持水箱中水位恒定和可能平静,然后将阀门A微微开启,使少量水流流经玻璃管,即玻璃管内平均流速V很小。这时,如将颜色水容器的阀门B也微微开启,使颜色水也流入玻璃管内,我们可以在玻璃管内看到一条细直而鲜明的颜色流束,而且不论颜色水放在玻璃管内的任何位置,它都能呈直线状,这说明管中水流都是安定地沿轴向运动,液体质点没有垂直于主流方向的横向运动,所以颜色水和周围的液体没有混杂。如果把A阀缓慢开大,管中流量和它的平均流速V也将逐渐增大,直至平均流速增加至某一数值,颜色流束开始弯曲颤动,这说明玻璃管内液体质点不再保持安定,开始发生脉动,不仅具有横向的脉动速度,而且也具有纵向脉动速度。如果A阀继续开大,脉动加剧,颜色水就完全与周围液体混杂而不再维持流束状态。

图2-20 雷诺试验

层流:在液体运动时,如果质点没有横向脉动,不引起液体质点混杂,而是层次分明,能够维持安定的流束状态,这种流动称为层流

紊流:如果液体流动时质点具有脉动速度,引起流层间质点相互错杂交换,这种流动称为紊流或湍流。

②②②雷诺数

液体流动时究竟是层流还是紊流,须用雷诺数来判别。

实验证明,液体在圆管中的流动状态不仅与管内的平均流速v有关,还和管径d、液体的运动粘度ν有关。但是,真正决定液流状态的,却是这三个参数所组成的一个称为雷诺数Re的无量纲纯数:

Re=vd/ν(2—24)

由式(2—41)可知,液流的雷诺数如相同,它的流动状态也相同。当液流的雷诺数Re小于临界雷诺数时,液流为层流;反之,液流大多为紊流。常见的液流管道的临界雷诺数由实验求得。示于表2-4中。

表2-4 常见液流管道的临界雷诺数

4Re vr

υ= (2-25)

式中:Re 为流截面的水力半径,它等于也流的有效截面积A 和它的湿周(有效截面的周界长度)x 之比,即:

A

R x = (2-26)

直径为D 的圆柱截面管道的水力半径为R=A/x=

2

14

d d ππ=d/4 .将此式代入(2-25),

可得式(2-24)。

一、液体在直管中流动时的压力损失 液体在直管中流动时的压力损失是由液体流动时的摩擦引起的,称之为沿程压力损失,它主要取决于管路的长度、内径、液体的流速和粘度等。液体的流态不同,沿程压力损失也不同。液体在圆管中层流流动在液压传动中最为常见,因此,在设计液压系统时,常希望管道中的液流保持层流流动的状态。

1.层流时的压力损失

在液压传动中,液体的流动状态多数是层流流动,在这种状态下液体流经直管的压力损失可以通过理论计算求得。

图2—21圆管中的层流

(1)液体在流通截面上的速度分布规律。如图2-21(a)所示,液体在直径d 的圆管中作层流运动,圆管水平放置,在管内取一段与管轴线重合的小圆柱体,设其半径为r ,长度为l 。在这一小圆柱体上沿管轴方向的作用力有:左端压力p 1,右端压力p 2,圆柱面上的摩擦力为F f ,则其受力平衡方程式为:

122()0

f p p r F π--= (2-44)

由式(2-6)可知: 22()du Ff rl rl dr πτπμ

==- (2-45)

式中:μ为动力粘度。 因为速度增量du 与半径增量dr 符号相反,则在式中加一负号。

另外, Δp =p 1- p 2

把 Δp 、式(2-45)代入式(2-44),则得:

2du p r dr l μ-?= (2-46)

对式(2-46)积分得:

2

4pr u c l μ?=-+ (2-47)

当r =R 时,u =0,代入(2-47)式得:

2

4pR c l μ?=

则 22()4p u R r l μ?=

- (2-48)

由式(2-48)可知管内流速u 沿半径方向按抛物线规律分布,最大流速在轴线上,其值为:

2max 4pR u l μ?= (2-49)

(1) (2) (1) 管路中的流量。图2-21(b)所示抛物体体积,是液体单位时间内流过通流截面

的体积即流量。为计算其体积,可在半径为r 处取一层厚度为 d r 的微小圆环面积,通过此环形面积的流量为:

2222()4p dq rudr r

R r dr l ππμ?==- (2-50)

对式(2-50)积分,即可得流量q :

2200442()48128R R p q dq r R r dr l

R p d p l l

πμππμμ?==-??==?? (2-51) (2) (3) (2) 平均流速。设管内平均流速为υ,

422

128324d p

q d p l

v d A l πμπμ??=== (2-52)

把式(2-52)与式(2-49)对比可得平均流速与最大流速的关系:

υ=max

2u (2-53)

(4)沿程压力损失。层流状态时,液体流经直管的沿程压力损失可从式(2-52)求得:

232lv p d μ?=

(2-54)

由式(2-54)可看出,层流状态时,液体流经直管的压力损失与动力粘度、管长、流速成正比,与管径平方成反比。

在实际计算压力损失时,为了简化计算,由式(2-8)和式(2-41)得μ=υd ρ/Re ,并把 μ=υd ρ/Re 代入式(2-54),且分子分母同乘以2g 得:

2

64...Re 2l l v p g d g ρ?= (2-55) 式中:λ为沿程阻力系数。它的理论值为λ=64/Re ,而实际由于各种因素的影响,对光滑金属管取λ=75/Re ,对橡胶管取λ=80/Re 。

2.紊流时的压力损失层流流动中各质点有沿轴向的规则运动。而无横向运动。紊流的重要特性之一是液体各质点不再是有规则的轴向运动,而是在运动过程中互相渗混和脉动。这种极不规则的运动,引起质点间的碰撞,并形成旋涡,使紊流能量损失比层流大得多。 由于紊流流动现象的复杂性,完全用理论方法加以研究至今,尚未获得令人满意的成果,故仍用实验的方法加以研究,再辅以理论解释,因而紊流状态下液体流动的压力损失仍用式(2-55) 来计算,式中的λ值不仅与雷诺数Re 有关,而且与管壁表面粗糙度 Δ 有关,具体的λ值见表2-5。

表2-5圆管紊流时的λ值

2.局部压力损失

局部压力损失是液体流经阀口、弯管、通流截面变化等所引起的压力损失。液流通过这些地方时,由于液流方向和速度均发生变化,形成旋涡(如图2-22),使液体的质点间相互撞击,从而产生较大的能量损耗。

图2-22 突然扩大处的局部损失

局部压力损失的计算式可以表达成如下算式:

p ?=ζρν2 /2 (2—56)

式中:ζ为局部阻力系数,其值仅在液流流经突然扩大的截面时可以用理论推导方法求得,其他情况均须通过实验来确定;ν为液体的平均流速,一般情况下指局部阻力下游处的流速。

3.管路系统中的总压力损失与效率

管路系统的总压力损失等于所有沿程压力损失和所有局部压力损失之和,即:

p ?=

∑?p +∑?p γ=∑d l λγ22v g +∑ζ22v g γ (2—58)

§2-4液体流经孔口几缝隙的特性

在液压传动系统中常遇到油液流经小孔或间隙的情况,例如节流调速中的节流小孔,液压元件相对运动表面间的各种间隙。研究液体流经这些小孔和间隙的流量压力特性,对于研究节流调速性能,计算泄漏都是很重要的。

一、小孔流动

液体流经小孔的情况可以根据孔长l与孔径d的比值分为三种情况:l/d≤0.5时,称为薄壁小孔;0.5<l/d≤4时,称为短孔;l/d>4时,称为细长孔。

图2-23液体在薄壁小孔中的流动

1. 1. 1.液流流经薄壁小孔的流量

液体流经薄壁小孔的情况如图2-23所示。液流在小孔上游大约d/2处开始加速并从四周流向小孔。由于流线不能突然转折到与管轴线平行,在液体惯性的作用下,外层流线逐渐向管轴方向收缩,逐渐过渡到与管轴线方向平行,从而形成收缩截面A c。对于圆孔,约在小孔下游d/2处完成收缩。通常把最小收缩面积Ac与孔口截面积之比值称为收缩系数Cc,即Cc=Ac/A。其中A为小孔的通流截面积。

液流收缩的程度取决于Re、孔口及边缘形状、孔口离管道内壁的距离等因素。对于圆形小孔,当管道直径D与小孔直径d之比D/d≥7时,流速的收缩作用不受管壁的影响,称为完全收缩。反之,管壁对收缩程度有影响时,则称为不完全收缩。

对于图2-23所示的通过薄壁小孔的液流,取截面1—1和2—2为计算截面,设截面1

—1处的压力和平均速度分别为p 1、υ1,截面2—2处的压力和平均速度分别为p 2、υ2。由于选轴线为参考基准,则Z 1=Z 2,列伯努利方程为:

122211222w P a v g p a v g h γγ+=++

由于小孔前管道的通流截面积A 1比小孔的通流截面积A 大得多,故υ1υ2, υ1可忽略不计。此外,式中的hw 部分主要是局部压力损失,由于2—2通流截面取在最小收缩截面处,所以,它只有管道突然收缩而引起的压力损失。

22w h v g ζ=

将上式代入伯努利方程中,并令Δp =p 1- p 2,求得液体流经薄壁小孔的平均速度υ2为:

221()v a ζ=+ρp

?2 (2-60)

令C υ=1/(α2+ζ),为小孔流速系数,由于υ2是最小收缩截面上的平均速度,设最小通流截面的面积为Ac ,与小孔通流截面积A 的比值为Ac/A=Cc ,则流经小孔的流量为:

2q Acv ==c u C C A ρp

?2=CdA ρp ?2 (2-61)

式中:流量系数C d =C c C υ;Δp 为小孔前后压差。 流量系数一般由实验确定。在液流完全收缩的情况下,当Re ≤105时,Cd 可按下式计算:

0.05

0.964Re d C -= 当Re >105时,C d 可视为常数,取值为C d =0.60~0.62。

当液流为不完全收缩时,其流量系数为C d ≈0.7~0.8。

2.液流流经细长孔和短孔的流量

液体流经细长小孔时,一般都是层流状态,所以可直接应用前面已导出的直管流量公式(2-51)来计算,当孔口直径为d ,截面积为A =πd 2

/4时,可写成: 4128q d p l πμ=? (2-62)

比较式(2-61)和式(2-62)不难发现,通过孔口的流量与孔口的面积、孔口前后的压力差以及孔口形式决定的特性系数有关,由式(2-61)可知,通过薄壁小孔的流量与油液的粘度无关,因此流量受油温变化的影响较小,但流量与孔口前后的压力差呈非线性关系;由式(2-62)可知,油液流经细长小孔的流量与小孔前后的压差Δp 的一次方呈正比,同时由于公式中也包含油液的粘度μ,因此流量受油温变化的影响较大。为了分析问题的方便起见,将式(2-61)和式(2-62)一并用下式表示,即:

m

q KA p =? (2-63)

式中:m 为指数,当孔口为薄壁小孔时,m =0.5,当孔口为细长孔时,m =1;K 为孔口的通流系数,当孔口为薄壁孔时,K =Cd(2/ρ)0.5;当孔口为细长孔时,K =d 2

/32μl 。j

液流流经短孔的流量仍可用薄壁小孔的流量计算式:q =CdA (2Δp/ρ) m

,但其中的流量系数可在有关液压设计手册中查得。由于短孔介于细长孔和薄壁孔之间,故有:q=CdA(2Δp/ρ) m ,0.5

二、间隙流动

液压元件内各零件间有相对运动,必须要有适当间隙。间隙过大,会造成泄漏;间隙过小,会使零件卡死。如图2-24所示的泄漏,泄露是由压差和间隙造成的。内泄漏的损失转换为热能,使油温升高,外泄漏污染环境,两者均影响系统的性能与效率,因此,研究液体流经间隙的泄漏量、压差与间隙量之间的关系,对提高元件性能及保证系统正常工作是必要的。间隙中的流动一般为层流,一种是压差造成的流动称压差流动,另一种是相对运动造成的流动称剪切流动,还有一种是在压差与剪切同时作用下的流动。

图2-24内泄漏与外泄漏

1. 1. 1. 平行平板的间隙流动 液体流经平行平板间隙的一般情况是既

受压差Δp=p 1-p 2

的作用,同时又受到平行平板间相对运动的作用。如图2-25所示。设平板长为l ,宽为b(图中未画出),两平行平板间的间隙为h ,且l>>h ,b>>h ,液体不可压缩,质量力忽略不计,粘度不变。在液体中取一个微元体dx dy(宽度方向取单位长),作用在它与液流相垂直的两个表面上的压力为p 和p+dp ,作用在它与液流相平行的上下两个表面上的切应力为τ和τ+d τ,因此它的受力平衡方程为

()()pdy d dx p dp dy dx τττ++=++

图2-25平行平板间隙流动

经过整理并将式(2-6)代入后有:

dx dp dy u d .122μ=

对上式二次积分可得:

=u μ22y dx dp

+1

2C y C + (2-64) 式中:C 1、C 2为积分常数。

下面分两种情况进行讨论。

(1)固定平行平板间隙流动(压差流动)且=u 0。

上、下两平板均固定不动,液体在间隙两端的压差的作用下而在间隙中流动,称为压差流动。

将边界条件:当y =0时,u =0;当y =h 时,u =0,代入式(2-64),得:

C 1=-h dp /2 dx μ、C 2=0

所以

dx dp y y h h u )(2--

于是有 bdy =-q s =?A udA =?h 0

dx dp y y h h )(2--μbdy =-μ123bh dx dp

因为液流做层流流动时p 只是x 的线性函数,即:

dx dp =12()p p l p l -=-?

将此关系式代入上述流量公式,得:

q =l bh μ123

p ? (2-65)

从以上两式可以看出,在间隙中的速度分布规律呈抛物线状,通过间隙的流量与间隙的三次方成正比,因此必须严格控制间隙量,以减小泄漏。

(2)两平行平板有相对运动时的间隙流动。

①两平行平板有相对运动,速度为u 0,但无压差,这种流动称为纯剪切流动。将边界条

件:当y =0时,u =0;当y =h 时,u =u 0,且dp/dx=0,代入式(2-64)得:

10C u h = 、 20C =

则 u =y h u o (2-66)

由式(2-64)可知,速度沿y 方向呈线性分布。其流量为:

q =?A udA =?h 0y h u o dy =2bh 0u (2-67)

②两平行平板既有相对运动,两端又存在压差时的流动,这是一种普遍情况,其速度和流量是以上两种情况的线性叠加,即: dx dp y y h h u )(2--

=μ+y h u o (2-68)

同样 dx dp

12()p p p l =-=-? 得; q =l bh μ12302bh p u ?± (2-69)

式(2-68)和式(2-69)中正负号的确定:当长平板相对于短平板的运动方向和压差流动方向一致时,取“+”号;反之取“-”号。此外,如果将泄漏所造成的功率损失写成:

)212(03u bh p l bh p qp P l ±??=?=μ (2-70)

由上式得出结论:间隙h 越小,泄漏功率损失也越小。但是h 的减小会使液压元件中的摩擦功率损失增大,因而间隙h 有一个使这两种功率损失之和达到最小的最佳值,并不是越小越好。

图2-26同心环形间隙间的液流 图2-27偏心环状间隙中的液流

2.圆柱环形间隙流动

(1)同心环形间隙在压差作用下的流动。图2-26所示为同心环形间隙流动,当h/r<<1

时,可以将环形间隙间的流动近似地看作是平行平板间隙间的流动,只要将b =πd 代入式(2-69),就可得到这种情况下的流动,即:

03212u dh p l dh q πμπ±?= (2-71)

该式中“+”号和“-”号的确定同式(2-69)。

(2)偏心环形间隙在压差作用下的流动。液压元件中经常出现偏心环状的情况,例如活塞与油缸不同心时就形成了偏向环状间隙。图2-27表示了偏心环状间隙的简图。孔半径为R ,其圆心为O ,轴半径为r ,其圆心为O 1,偏心距e ,设半径在任一角度α时,两圆柱表面间隙为h ,从图可看出:

(cos cos )h R r e a β=-+

因为β很小,cos β→1,

所以 (cos )h R r e a =-++ (2-72) 在d α一个很小的角度范围内,通过间隙的流量dq 可应用平面间隙流量公式(2-64)计算,即:

l p b h q μ123?=

因为b 相当于Rd α,于是得:

2330[(cos )]1212R P R P dq h d R r e d l l παααμμ????==-+?

并从0积分到2π得到通过整个偏心环形间隙的流量q 为:

??--??=??=ππααμαμ203203)cos (1212d e r R l P R d h l P R q

液压传动基础知识

1章液压传动基础知识 1、液压油的密度随温度的上升而,随压力的提高而。 2、在液压系统中,通常认为液压油是不可被压缩的。() 3、液体只有在流动时才会呈现出,静止液体是粘性的。 4、液体的黏度是指它在单位速度梯度下流动时单位面积上产生的。 5、液压油压力增大时,粘度。温度升高,粘度。 6、进入工作介质的固体污染物有四个主要根源,分别 是、、和。 7、静止液体是指液体间没有相对运动,而与盛装液体的容器的运动状态无关。 8、液体的静压力具有哪两个重要的特性? 9、液体静压力的基本方程是p=p +ρgh,它说明了什么?(如何看待液体静压力基本 方程?) 10、液体静压力基本方程所包含的物理意义是:静止液体中单位质量液体的 和可以互相转换,但各点的总能量却保持不变,即。 11、液体中某点的绝对压力是,大气压为 Mpa,则该点的真空度为 Mpa,相对压力 Mpa 12、帕斯卡原理是在密闭容器中,施加于静止液体上的压力将同时传到各点。 13、液压系统中的压力是由决定的。 14、流量单位的换算关系:1m3/s=( )L/min A 60 B 600 C 6×104 D 1000 15、既无粘性又不可被压缩的液体称为。 16、液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这 种流动称为。 A 二维流动 B 时变流动 C 非定常流动 D 恒定流动 17、单位时间内通过某通流截面的液体的体积称为。A 流量B 排量C 流速D 质量

18、在液压传动中,能量损失主要表现为损失。A 质量B 泄露C 速度 D 压力 19、压力损失主要有压力损失和压力损失两类。液体在等直径管中流动时, 产生压力损失;在变直径、弯管中流动时,产生压力损失。20、液体在管道中流动时有两种流动状态,即和,前者力 起主导作用;后者力起主导作用。液体的流动状态可用来判别。 21、当小孔的通流长度l与孔径d之比l/d≤时称之为小孔。 22、小孔的长径比l/d>4时称之为小孔。 23、在液体流动中,因某点处的压力低于空气分离压而产生气泡的现象,称之为。 25、在液压系统中,由于某种原因,液体压力在一瞬间突然升高,产生很高的压力 峰值,这种现象称为。 26、小孔的类型有三种:薄壁小孔、细长小孔、短孔,三种小孔的流量公式 为。 27、作用在液压缸活塞上的压力越大,活塞运动的速度越快。() 28、在液压传动中,工作液体不起作用。 A 升温 B传递动力 C 传递速度 D 润滑液压元件 29、如图所示圆管,管中液体有左向右流动,已知管中通流断面的直径分别为 d 1=200mm,d 2 =100mm,通过通流断面1的平均流速v 1 =1.5m/s,求流量是多少?通过 通流断面2的平均流速是多少?

(完整版)液压传动基础知识试题及答案

测试题(液压传动) 姓名:得分: 一、填空题(每空2分,共30分) 1.液压系统中的压力取决于(),执行元件的运动速度取决于()。 2.液压传动装置由()、()、()和()四部分组成,其中()和()为能量转换装置。 3.仅允许油液按一个方向流动而反方向截止的液压元件称为()。 4.溢流阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油必须单独引回油箱。 5.为了便于检修,蓄能器与管路之间应安装(),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装()。 二、选择题(每题2分,共10分) 1.将发动机输入的机械能转换为液体的压力能的液压元件是()。 A.液压泵 B.液压马达 C.液压缸 D.控制阀 2.溢流阀一般是安装在()的出口处,起稳压、安全等作用。 A.液压缸 B.液压泵 C.换向阀 D.油箱。 3.液压泵的实际流量是()。 A.泵的理论流量和损失流量之和 B.由排量和转速算出的流量 C.泵的理论流量和损失流量的差值 D.实际到达执行机构的流量 4.泵常用的压力中,()是随外负载变化而变化的。 A.泵的输出压力 B.泵的最高压力 C.泵的额定压力 5.流量控制阀使用来控制液压系统工作的流量,从而控制执行元件的()。 A.运动方向 B.运动速度 C.压力大小 三、判断题(共20分) 1.液压缸活塞运动速度只取决于输入流量的大小,与压力无关。()

2.流量可改变的液压泵称为变量泵。() 3.定量泵是指输出流量不随泵的输出压力改变的泵。() 4.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。() 5.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。()6.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。() 7.单向阀可以用来作背压阀。() 8.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。()9.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀。() 10.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。() 四、问答题(共40分) 1、说明液压泵工作的必要条件?(15分) 2、在实际的维护检修工作中,应该注意些什么?(25分)

液压传动基本知识.(DOC)

第一讲 液压传动基础知识 一、 什么是液压传动? 定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。 二、液压传动系统由哪几部分组成? 液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。 三、液压传动最基本的技术参数: 1、压力:也叫压强,沿用物理学静压力的定义。静压力:静止液体中单位承压面积上所受作用力的大小。 单位:工程单位 kgf/cm 2 法定单位:1 MPa (兆帕)= 106 Pa (帕) 1 MPa (兆帕)≈10 kgf/cm 2 2、流量:单位时间内流过管道某一截面的液体的体积。 单位:工程单位:L / min ( 升/ 分钟 ) 法定单位:m 3 / s 四、职能符号: 定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。 作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。如图: 操纵阀双向锁 YDF-42/200(G) 截止阀 过滤器 安全阀 千斤顶液控单向阀 五、常用密封件: 1.O 形圈: 常用标记方法: 公称外径(mm ) 截面直径 (mm ) 2.挡圈(O 形圈用): 3.常用标记方法: 挡圈 A D × d × a

A型(切口式); D外径(mm);d内径(mm);a厚度(mm) 第二讲控制阀;液控单向阀;单向锁 一、控制阀: 1.定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。 2.分类:根据阀在液压系统中的作用不同分为三类: 压力控制阀:如安全阀、溢流阀 流量控制阀:如节流阀 方向控制阀:如操纵阀液控单向阀双向锁 3.对阀的基本要求: (1)工作压力和流量应与系统相适应; (2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象; (3)密封性能好,泄漏量小; (4)结构简单,制作方便,通用性大。 二、液控单向阀结构与原理: 1.定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。一般单向阀只能使工作液一个方向流动,不能逆流,而液控单向阀可以由液压控制打开单向阀,使工作液逆流。 2. 3. 作用(以立柱液控单向阀为例): ①升柱:把操纵阀打到升柱位置,高压液打开液控单向阀阀芯向立柱下腔供液,立柱活塞杆伸出。 ②承载:升到要求高度时继续供液3~5s后停止供液,此时液控单向阀在立柱下腔高压液体的压力作用下,阀芯关闭,闭锁立柱下腔中的液体,阻止立柱下腔的液体回流,使立柱承载。 ③降柱:把操纵阀打向降柱位置,从操作阀过来的高压液一路通向立柱上腔,一路打开液控阀阀芯,沟通立柱下腔回路,立柱下降。 4. 规格型号:

第二章 液压传动中的工作液体

2 液压传动中的工作液体 工作液体是液压能的载体,其基本功能是进行能量的转换和传递。此外,它还对液压元件和系统进行润滑和冷却。 2.1液体的主要物理性质 2.1.1液体的压缩性 液体体积随作用压力的变化而体积发生相应变化的性质称为液体的压缩性。压缩性大小用压缩系数β表示,即 dp dV V p V V β1)ΔΔlim( - == (Pa -1 ) (2-1) 其平均值: )(V 1// p p V V β---= (2-2) 式中: p 、p ′—压力(Pa ); V 、V ′—压力为p 和p ′的液体体积(m 3); dp —压力增量(Pa ); dV —压力增加到p + dp 时的液体体积减少量(3m ); 既然液体具有压缩性这一物理性质,那么当液体受到压缩时,它必然产生一种向外膨胀的力,当液体受到压缩时,所产生的这种向外膨胀的力,可以看成是一种弹性力,其大小用弹性系数K 来表示。 υ d dp V βK -== 1 (Pa ) (2-3) 2.1.2 粘性 “人往高处走,水往低处流”这一句古话。但水为什么往低处流呢?这是因为高处的水在重力的作用下,沿着水的表面方向产生了剪切力,破坏了水的静止状态,水在剪切力的作用下开始滑动,从而产生了水的流动。 水之所以流动,其原因是水对其剪切力的抗阻很小,即抵抗剪切力的能力很小。同样,其它液体也具有这种特性。 但是,如果把水和油放置在两个同样的流道中,会发现二者的流动速度是不同的,即二者流动的快慢程度不同。这说明二者承受切应力的能力是不同的。液体承受切应力大小的能力反映了液体的一种物理性质—粘性。即粘性是液体承受切应力大小的能力。 粘性是液体阻止自身发生剪切变形的一种特性,它存在于液体的内部。由于液体粘性的存在,液体在流动过程中,因克服自身的内摩擦力必然要做功。因此,液体的粘性是液体中产生机械能量损失的根源。 (1)牛顿内摩擦定律

液压传动基础知识含答案

一.填空题: 1.液压油的主要物理性质有(密度)、(闪火点)、(粘度)、(可压缩性),液压油选择时, 最主要考虑的是油液的(粘度)。 2.液体受压力作用而发生的性质称为液体的可压缩性,当液压油中混有空气时,其抗压缩 能力将(降低)。 3.液压油的常见粘性指标有(运动)粘度、(动力)粘度、和(相对)粘度,其中表示液 压油牌号的是(运动)粘度,其单位是(厘斯)。 4.我国油液牌号以( 40℃)时油液的平均(运动)黏度的(cSt)数表示。 5.我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。 6.油的粘性易受温度影响,温度上升,(粘度)降低,造成(泄漏)、磨损增加、效率降低 等问题;温度下降,(粘度)增加,造成(流动)困难及泵转动不易等问题。 7.液压传动对油温变化比较敏感,一般工作温度在(15)~(60)℃范围内比较合适。 8.液压油四个主要的污染根源是(已被污染的新油)、(残留)污染、(侵入性)污染和(内 部生成)污染。 9.流体动力学三大方程分别为(连续性方程)、(伯努利方程)和(动量方程)。 10.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 11.绝对压力等于大气压力+(相对压力),真空度等于大气压力-(绝对压力)。 12.根据液流连续性原理,同一管道中各个截面的平均流速与过流断面面积成反比,管子细 的地方流速(大),管子粗的地方流速(小)。 13.理想液体的伯努利方程的物理意义为:在管内作稳定流动的理想液体具有(比压能)、 (比位能)和(比动能)三种形式的能量,在任意截面上这三种能量都可以(相互转化),但总和为一定值。 14.在横截面不等的管道中,横截面小的部分液体的流速(大),液体的压力(小)。 15.液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。 16.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损 失和(局部压力)损失两部分组成。 17.孔口流动可分为(薄壁)小孔流动和(细长)小孔流动,其中(细长)小孔流动的流量受 (温度)影响明显。 18.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2 次方成正比。通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。19.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正 比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 20.为防止产生(空穴),液压泵距离油箱液面不能太高。 21.在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现 象称为(液压冲击)。 二.判断题: 1.液压油具有粘性,用粘度作为衡量流体粘性的指标。(√) 2.标号为N32的液压油是指这种油在温度为40℃时,其运动粘度的平均值为32mm2/s。(√) 3.空气的粘度主要受温度变化的影响,温度增高,粘度变小。(√) 4.液压油的密度随压力增加而加大,随温度升高而减小,但一般情况下,由压力和温度引起的这种变化较小,可以忽略不计。(√) 5.液压系统对液压油粘性和粘温特性的要求不高。(×) 6.粘度指数越高,说明粘度随温度变化越小。(√)

第二章 液压传动基础知识

第二章液压传动基础知识 本章介绍有关液压传动的流体力学基础,重点为液体静压方程、连续性方程、伯努力方程的应用,压力损失、小孔流量的计算。要求学生理解基本概念、牢记公式并会应用。 第一节第一节液压油 液压油是液压传动系统中的传动介质,而且还对液压装置的机构、零件起这润滑、冷却和防锈作用。液压传动系统的压力、温度和流速在很大的范围内变化,因此液压油的质量优劣直接影响液压系统的工作性能。故此,合理的选用液压油也是很重要的。 1.1液压油的分类: 普通液压油 专用液压油 1、石油基液压油 抗磨液压油 高粘度指数液压油 石油基液压油是以石油地精炼物未基础,加入抗氧化或抗磨剂等混合而成的液压油,不同性能、不同品种、不同精度则加入不同的添加剂。 合成液压油——磷酸酯液压油 2、难燃液压油水——乙二醇液压油 含水液压油油包税乳化液 乳化液 水包油乳化油 1)石油基液压油这种液压油是以石油的精炼物为基础,加入各种为改进性 能的添加剂而成。添加剂有抗氧添加剂、油性添加剂、抗磨添加剂等。不同工作条件要求具有不同性能的液压油,不同品种的液压油是由于精制程度不同和加入不同的添加剂而成。 2)成添加剂磷酸脂液压油是难燃液压油之一。它的使用范围宽,可达-54~135℃。抗燃性好,氧化安定性和润滑性都很好。缺点是与多种密封材料的相容性很差,有一定的毒性。 3)—乙二醇液压油这种液体由水、乙二醇和添加剂组成,而蒸馏水占35%~55%,因而抗燃性好。这种液体的凝固点低,达-50℃,粘度指数高(130~170),为牛顿流体。缺点是能使油漆涂料变软。但对一般密封材料无影响。 4)乳化液乳化液属抗燃液压油,它由水、基础油和各种添加剂组成。分水包油乳化液和油包水乳化液,前者含水量达90%~95%,后者含水量大40%。 1.2液压油的物理特性 1、1、密度ρ ρ = m/V [kg/ m3] 一般矿物油的密度为850~950kg/m3 2、重度γ γ= G/V [N/ m3] 一般矿物油的重度为8400~9500N/m3 因G = mg 所以γ= G/V=ρg 3、液体的可压缩性 当液体受压力作用二体积减小的特性称为液体的可压缩性。 体积压缩系数β= - ▽V/▽pV0 ▽体积弹性模量K = 1 /β 4、4、流体的粘性 液体在外力作用下流动时,由于液体分子间的内聚力而产生一种阻碍液体分子之间进行相对运动的内摩擦力,液体的这种产生内摩擦力的性质称为液体的粘性。由于液体具有

液压传动习题册(含答案)..

第一章液压传动概述 一、填空 1、液压系统若能正常工作必须由动力装置、执行装置、控制装置、辅助装置 和工作介质组成。 2、液压系统的两个重要参数是压力、流量 ,它们的特性是液压系统的工作压力取决于负载, 液压缸的运动速度取决于流量。 3、液压传动的工作原理是以__油液____作为工作介质,通过__密封容积__ 的变化来传递运动,通过油液内部的__压力 ___来传递动力。 二、判断 1.液压传动不易获得很大的力和转矩。() 2.液压传动装置工作平稳。能方便地实现无级调速,但不能快速起动、制动和频繁换向。 ( ) 3.液压传动适宜在传动比要求严格的场合采用。( ) 4.液压系统故障诊断方便、容易。() 5.液压传动适宜于远距离传动。() 6.液压传动装置本质上是一种能量转换装置。(√) 三、单项选择 1.液压系统的执行元件是( C )。 A.电动机 B.液压泵 C.液压缸或液压马达 D.液压阀 2.液压系统中,液压泵属于( A )。 A.动力部分 B.执行部分 C.控制部分 D.辅助部分 3.液压传动的特点有( B ) A.可与其他传动方式联用,但不易实现远距离操纵和自动控制 B.可以在较大的速度范围内实现无级变速 C.能迅速转向、变速、传动准确 D.体积小、质量小,零部件能自润滑,且维护、保养和排放方便 四、问答: 1、何谓液压传动?液压传动的原理?它有哪两个工作特性? 答:定义:液压传动是以液体为工作介质,把原动机的机械能转换为液体的压力能,通过控制元件将具有压力能的液体送到执行元件,由执行元件驱动负载实现所需的运动和动力,把液体的压力能再转变为工作机构所需的机械能。 原理:液压传动的工作原理是以油液作为工作介质,依靠密封容积的变化来传递运动,依靠油液内部的压力来传递动力。 特性:1)液压系统的工作压力取决于负载。 2)液压缸的运动速度取决于流量。 2、液压传动系统有哪几部分组成?说明各部分作用。 答:1)动力装置:液压泵,将机械能转换成液体压力能。 2)执行装置:液压缸或液压马达,将液体压力能转换成机械能。 3)控制装置:液压阀,对液压系统中液体的压力、流量和流动方向进行控制和调节。 4)辅助装置:油箱、过滤器、蓄能器等,对工作介质起到容纳、净化、润滑、消声和实现元件间连接等作用。 5)传动介质:液压油,传递能量的液体。 第二章液压传动的基础知识 一、填空 1.油液在外力作用下,液层间作相对运动而产生内摩擦力的性质,叫做油液的粘性,其大小用粘度表 示。常用的粘度有三种:即运动粘度、动力粘度和相对粘度。 2. 粘度是衡量粘性大小的指标,是液压油最重要的参数。液体的粘度具有随温度的升高而降低,随压 力增大而增大的特性。

液压传动基础知识

第一章液压传动基础 流体传动包括液体传动和气体传动,本章仅介绍液体传动的基本知识。为了分析液体的静力学、运动学和动力学规律,需了解液体的以下特性:

连续性假设:流体是一种连续介质,这样就可以把油液的运动参数看作是时间和空间的连续函数,并有可能利用解析数学来描述它的运动规律。. 不抗拉:由于油液分子与分子间的内聚力极小,几乎不能抵抗任何拉力而只能承受较大的压应力,不能抵抗剪切变形而只能对变形速度呈现阻力。 易流性:不管作用的剪力怎样微小,油液总会发生连续的变形,这就是油液的易流性,它使得油液本身不能保持一定的形状,只能呈现所处容器的形状。 均质性:其密度是均匀的,物理特性是相同的。 第一节液压传动工作介质 液压传动最常用的工作介质是液压油,此外,还有乳化型传动液和合成型传动液等,此处仅介绍几个常用的液压传动工作介质的性质。 一、液压传动工作介质的性质 1.密度 单位体积液体的质量称为液体的密度。体积为V,质量为m的液体的密度为 矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加,但变动值很小,可以认为是常值。我国采用摄氏20度时的密度作为油液的标准密度。 2.可压缩性 压力为p0、体积为V0的液体,如压力增大时,体积减小,则此液体的可压缩性可用体积压,即单位压力变化 下的体积相对变化量来表示缩系数 由于压力增大时液体的体积减小,因此上式右边须加一负号,以使成为正值。液体体积压缩系数的。1/=倒数,称为体积弹性模量K,简称体积模量。即K 3.粘性1)粘性的定义 时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦)或有流动趋势(液体在外力作用下流动 力,这种现象叫做液体的粘性。液体只有在流动(或有流动趋势)时才会呈现出粘性,静止液体是不呈现粘性的。 粘性使流动液体内部各处的速度不相等,以图1-2为例,若两平行平板间充满液体,下平板不动,而上平板以速度向右平动。由于液体的粘性作用,紧靠下平板和上平板的液体层速度分别为零和。通过实验测定得出,液体流动时 相邻液层间的内摩擦力Ft,与液层接触面积A、液层间的速度梯度成正比,即 为比例常数,称为粘性系数或粘度。如以表示切应力,即单位面积上的内摩擦力,则式中: 这就是牛顿的液体内摩擦定律。 2)粘性的度量

(完整版)左健民液压与气压传动第五版课后答案1-11章

液压与气压传动课后答案(左健民) 第一章液压传动基础知识 1-1液压油的体积为331810m -?,质量为16.1kg ,求此液压油的密度。 解: 23-3m 16.1= ==8.9410kg/m v 1810 ρ?? 1-2 某液压油在大气压下的体积是335010m -?,当压力升高后,其体积减少到 3349.910m -?,取油压的体积模量为700.0K Mpa =,求压力升高值。 解: ''33343049.9105010110V V V m m ---?=-=?-?=-? 由0P K V V ?=-?知: 64 3 070010110 1.45010 k V p pa Mpa V --?????=-==? 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm,外筒转速n=8r/s 时,测得转矩T=40N ?cm,试求其油液的动力粘度。 解:设外筒内壁液体速度为0u 08 3.140.1/ 2.512/2f u n D m s m s F T A r rl πτπ==??=== g 由 du dy du dy τμ τμ=?= 两边积分得 0220.422()() 22 3.140.20.0980.10.0510.512 a a T l d D p s p s u πμ-?-??∴===g g 1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s , 20C ?时200Ml 的蒸馏水流过的时间为2t =51s ,求该液压油的恩式粘度E ?,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ?= == 62526.31(7.31)10/ 1.9810/E m s m s E ν--=?-?=?? 21.6810Pa s μνρ-==??g

第二章 液压传动基础知识.

第2章液压流体力学基础 本章介绍有关液压传动的流体力学基础知识,包括液体静力学方程、连续性方程、伯努利方程、动量方程的应用,压力损失、小孔流量的计算以及压力冲击现象等。 2.1 液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性,不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规律以及液体对物体壁面的作用力。 2.1.1 液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 液体内某质点处的法向力ΔF对其微小面积ΔA的极限称为压力p,即: p=limΔF/ΔA (2-1) ΔA→0 若法向力均匀地作用在面积A上,则压力表示为: p=F/A (2-2) 式中:A为液体有效作用面积;F为液体有效作用面积A上所受的法向力。 静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 2.1.2 液体静力学方程 图2-1静压力的分布规律 静止液体内部受力情况可用图2-1来说明。设容器中装满液体,在任意一点A处取一微小面积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z0。为了

液压传动作业答案

1. 什么叫液压传动?液压传动所用的工作介质是什么? 答:利用液体的压力能来传递动力的的传动方式被称之为液压传动。液压传动所用的工作介质是液体。 2. 液压传动系统由哪几部分组成?各组成部分的作用是什么? 答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是液压系统的动力源。 (2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以保证执行元件和工作机构的工作要求。 (3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。 (4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄能器、冷却器、管件、管接头以及各种信号转换器等。它们是一些对完成主运动起辅助作用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。 (5)工作介质:工作介质指传动液体,在液压系统中通常使用液压油液作为工作介质。 3. 如图所示的液压千斤顶,小柱塞直径d =10 mm ,行程S =25 mm ,大柱塞直径D =50 mm ,重物产生的力 =50 000 N ,手压杠杆比L :l =500:25,试求:(1)此时密封容积中的液体压力是多少?(2)杠杆端施加力为多少时,才能举起重物?(3)杠杆上下动作一次,重物的上升高度是多少? 解:(1)6232 250000 25.4610(5010)4 F p A π-= ==???Pa = 25.46 MPa (2)632125.4610(1010)20004 F pA π -==?? ??= N 1252000100500 l F F L ==?= N (3)22121 1210 ()25()150 A d S S S A D ===?= mm 答:密封容积中的液体压力p = 25.46 MPa ,杠杆端施加力F 1 =100 N ,重物的上升高度2S =1 mm 。 第二章 液压流体力学基础

第2章液压传动系统的设计

第2章液压传动系统的设计 液压系统的设计是整机设计 的一部分,它除了应符合主机动作 循环和静、动态性能等方面的要求 外,还应当满足结构简单、工作安 全可靠、效率高、寿命长、经济性 好、使用维护方便等条件。 液压系统的设计没有固定的 统一步骤,根据系统的繁简、借鉴 的多寡和设计人员经验的不同, 在做法上有所差异。各部分的设 计有时还要交替进行,甚至要经过 多次反复才能完成。图2.1所示为 液压系统设计的基本内容和一般 流程。 2.1 明确设计要求、 图2.1 液压系统设计的一般流程 进行工况分析 2.1.1 明确设计要求 1.明确液压系统的动作和性能要求 液压系统的动作和性能要求,主要包括有:运动方式、行程和速度范围、载荷情况、运动平稳性和精度、工作循环和动作周期、同步或联锁要求、工作可靠性等。 2.明确液压系统的工作环境 液压系统的工作环境,主要是指:环境温度、湿度、尘埃、是否易燃、外界冲击振动的情况以及安装空间的大小等。 2.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的大小、方向及其变化规律。通常是用一个工作循环内各阶段的速度和负载值列表表示,必要时还应作出速度和负载随时间(或位移)变化的曲线图(称速度循环图和负载循环图)。 在一般情况下,液压缸承受的负载由六部分组成,即工作负载、导轨摩擦负载、惯性负载、重力负载、密封负载和背压负载,前五项构成了液压缸所要克服的机械总负载。 1. 工作负载F W

—— 液压缸回油路的背压(Pa ),在系统设计完成之前无法准确计算,可先按表 p b 2.5估计。差动快进时,有杆腔压力大于无杆腔,其压差p =是油液从有杆腔流入无杆 p b 腔的压力损失。 2.2.4 执行元件的工况图 各执行元件的主要参数确定之后,不但可以复算液压执行元件在工作循环各阶段内的工作压力,还可求出需要输入的流量和功率。这时就可作出系统中各执行元件在其工作过程中的工况图,即液压执行元件在一个工作循环中的压力、流量和功率随时间(或位移)的变化曲线图(图2.2为某一机床进给液压缸工况图)。当液压执行元件不只有一个时,将系统中各执行元件的工况图进行叠加,便得到整个系统的工况图。液压系统的工况图可以显示整个工作循环中的系统压力、流量和功率的最大值及其分布情况,为后续设计中选择元件、回路或修正设计提供依据。 对于单个执行元件的系统或某些简单系统,其工况图的绘制可以省略,而仅将计算出的各阶段压力、流量和功率值列表表示。 图2.2 机床进给液压缸工况图 —快进时间;—工进时间;—快退时间 1t 2t 3t 2.3 液压系统原理图的拟定 液压系统原理图是表示液压系统的组成和工作原理的图样。拟定液压系统原理图是设计液压系统的关键一步,它对系统的性能及设计方案的合理性、经济性具有决定性的影响。 1. 确定油路类型 一般具有较大空间可以存放油箱且不另设散热装置的系统,都采用开式油路;凡允许采用辅助泵进行补油并借此进行冷却油交换来达到冷却目的的系统,都采用闭式油路。通常节流调速系统采用开式油路,容积调速系统采用闭式回路。 2. 选择液压回路 在拟订液压系统原理图时,应根据各类主机的工作特点和性能要求,首先确定对主机主要性能起决定性影响的主要回路。例如,对于机床液压系统,调速和速度换接回路是主要回路;对于压力机液压系统,压力回路是主要回路。然后再考虑其它辅助回路,例如有垂直运

液压传动知识点复习总结

液压与气压传动知识点复习总结(很全) 一,基本慨念 1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液 压油)组成 2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是 液压系统的两个重要参数 其功率N=PQ 3, 液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面; 液体中任一点压力大小与方位无关. 4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数 (Re=2000~2200)判别,雷诺数(Re )其公式为Re=VD/υ,(其中D 为水力 直径), 圆管的水力直径为圆管的内经。 5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变 大, 而受压力影响小;运动粘度与动力粘度的关系式为ρ μν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度 的平方成正比.22ρλv l d p =?, 2 2 v p ρξ=?. 层流时的损失可通过理论求得λ=64e R ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试 验确定。 7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22 P h=C(常数),即液流任意截面的压力水头,速度水头和位置 水头的总和为定值,但可以相互转化。它是能量守恒定律在流体中的应用;小孔 流量公式q=C d A t ρp ?2,其与粘度基本无关;细长孔流量q=?l d μπ1284P 。平板缝隙流量q=p l bh ?μ123 ,其与间隙的 三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成 反比.流体连续性原理是质量守衡定律在流体中的应用. 9,在重力场中,静压力基本方程为P=P gh O ρ+; 压力表示:.绝对压力=大气压力+表 压力; 真空度=大气压力-绝对压力. 1Mp=10pa 6,1bar=105pa. 10,流体动量定理是研究流体控制体积在外力作用下的动量改变,通常用来求流体

液压传动作业答案

1. 什么叫液压传动液压传动所用的工作介质是什么 答:利用液体的压力能来传递动力的的传动方式被称之为液压传动。液压传动所用的工作介质是液体。 2. 液压传动系统由哪几部分组成各组成部分的作用是什么 答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是液压系统的动力源。 (2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以保证执行元件和工作机构的工作要求。 (3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。 (4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄能器、冷却器、管件、管接头以及各种信号转换器等。它们是一些对完成主运动起辅助作用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。 (5)工作介质:工作介质指传动液体,在液压系统中通常使用液压油液作为工作介质。 3. 如图所示的液压千斤顶,小柱塞直径d =10 mm ,行程S =25 mm ,大柱塞直径D =50 mm ,重物产生的力 =50 000 N ,手压杠杆比L l =50025,试求:(1)此时密封容积中的液体压力是多少(2)杠杆端施加 力为多少时,才能举起重物(3)杠杆上下动作一次,重物的上升高度是多少 解:(1)6232 250000 25.4610(5010)4 F p A π-= ==???Pa = MPa (2)632125.4610(1010)20004 F pA π -==?? ??= N 1252000100500 l F F L ==?= N (3)22121 1210 ()25()150 A d S S S A D ===?= mm 答:密封容积中的液体压力p = MPa ,杠杆端施加力F 1 =100 N ,重物的上升高度2S =1 mm 。 第二章 液压流体力学基础

液压传动基础知识.

第一章液压传动基础知识 一、填空题 1.液压传动是利用系统中的液体作为工作介质传递运动和动力的一种传动方式。 2.液压泵是利用密闭容积由小变大时,其内压力,密闭容积由大变小时,其内压力的原理而吸油和压油的。 3.液压系统由、、、和五部分组成。 4.液压泵是将原动机输入的转变为液体的的能量转换装置。它的功用是向液压系统。 5.液压缸是将液体的压力能转变为的能量转换装置;液压马达是将液体的压力能转变为的能量转换装置。 6.各种液压阀用以控制液压系统中液体的、和等,以保证执行机构完成预定的工作运动。 7.辅助装置包括油箱、油管、管接头、过滤器、压力表和流量计等,它们分别起、、、和 等作用。 8.目前液压技术正向着、、、、、 及液压与相结合的方向发展。 9.液体流动时,的性质,称为液体的粘性。 10.液体粘性用粘度表示。常用的粘度有、和。 11.液体的动力粘度μ与其密度ρ的比值称为,用符号表示,其国际单位为,常用单位为,两种单位之间的关系是。 12.将mL被测液体在θ°C时由恩氏粘度计小孔中流出所用的时间t1与mL 蒸馏水在°C时由同一小孔中流出所用的时间t2之比,称为该被测液体在 θ°C时的,用t2表示。 13.矿物油在15°C时的密度约为,水的密度为。 14.液体受压力作用而发生体积变化的性质,称为液体的。在或时,应考虑液体的可压缩性。 15.当液压系统的工作压力高,环境温度高或运动件速度较慢时,为了减少泄漏,宜选用粘度较的液压油;当工作压力低,环境温度低或运动件速度较快时,为了减小功率损失,宜采用粘度较的液压油。 16.液体为相对静止状态时,其单位面积上所受的法向压力,称为,用符号表示。其国际单位为,常用单位为,工程单位为,它们之间的关系为。

液压传动课后习题答案

第一章 第二章 2-6、 伯努利方程的物理意义就是什么?该方程的理论式与实际式有什么区别? 答:伯努利方程表明了流动液体的能量守恒定律。实际液体的伯努利方程比理想液体 伯努利方程多了一项损耗的能量与比动能项中的动能修正系数。 理想液体伯努利方程: g h p g h p 2222121122++=++μρμρ 实际液体伯努利方程:g h g h p h p w g +++=++222 2212 11122ναρναρ 2-13、原题参考教材: 解:s m D q v /094.010 7514.360102544623211=?????==--π s m D q v /034.01012514.3601025446 23 222=?????==--π min /23.23)(421211 1L d D v q =-=π min /46.22)(4 222222L d D v q =-=π 2-29、原题参考教材: 解a p d F p 5221018.302.041004?=?==π π 032 112u d p l d q δπμδπ-?=: 024u d AV q π ==

02034 2112u d AV u d p l d πδπμδπ==-?所以 p p ?= s m u /10648.140-?= s u t 8.606/1.00== 第三章 3-12、当泵的额定压力与额定流量为已知时,试说明下列各工况下压力表的读数(管道压力除图c,Δp 均忽略不计) 如图所示: 答:a:液压泵与外界相连,所以压力表读数为0。 b:外界对液压泵施加压力为F/A,所以压力表读数为F/A 。 c:节流阀压力为Δp,所以压力表读数为Δp 。

液压传动的基础知识的同步练习答案

液压传动的基础知识的同步练习答案(答案) 一、判断 1.液压传动装置本质上是一种能量转换装 置。(√) 2.液压传动具有承载能力大,可实现大围无级变速和获得恒定的传动比。(×)3.液压泵输出的压力和流量应等于液压缸等执行元件的工作压力和流量。(×) 4.液压传动中,作用在活塞上的推力越大,活塞运动的速度越快。 (×) 5.油液在无分支管路中稳定流动时,管路截面积大的地方流量大,截面积小的地方流量小。(×) 6.液压系统中某处有几个负载并联时,压力的大小取决于克服负载的各个压力值中的最小 值 (√) 7.习题图1-1所示的充满油液的固定密封装置中,甲、乙两个用大小相等的力分别从两端去推原来静止的光滑活塞,那么两活塞将向右运动。(√)

a)b) 习题图1-1 习题图1-2 8.习题图1-2两系统油缸尺寸相同,活塞匀速运动,不计损失,试判断下列概念: (1)图b活塞上的推力是图a活塞上推力的两倍; (√ ) (2)图b活塞上的运动速度是图a活塞运动速度的两倍;(×) (3)图b缸输出的功率是图a缸输出功率的两倍; (√ ) (4)若考虑损失,图b缸压力油的泄漏量大于a缸压力油的泄漏量。(√ ) 9.实际的液压传动系统中的压力损失以局部损失为主。 (√ )

10.驱动液泵的电动机所需功率应比液压泵的输出功率大。 (√ ) 11.液压传动系统的泄漏必然引起压力损失。 (√) 12.油液的粘度随温度而变化。低温时油液粘度增大,液阻增大,压力损失增大;高温时粘度减小,油液变稀,泄漏增加,流量损失增加。(√) 二、选择 1.液压系统的执行元件是(C )。 A.电动机B.液压泵 C.液压缸或液压马达D.液压阀 2.液压系统中液压泵属( A )。 A.动力部分B.执行部分 C.控制部分D.辅助部分 3.液压传动的特点有( B ) A.可与其他传动方式联用,但不易实现远距离操纵和自动控制B.可以在较大的速度围实现无级变速

液压传动基础知识

液压传动基础知识 Revised by Jack on December 14,2020

1章液压传动基础知识 1、液压油的密度随温度的上升而,随压力的提高而。 2、在液压系统中,通常认为液压油是不可被压缩的。() 3、液体只有在流动时才会呈现出,静止液体是粘性的。 4、液体的黏度是指它在单位速度梯度下流动时单位面积上产生的。 5、液压油压力增大时,粘度。温度升高,粘度。 6、进入工作介质的固体污染物有四个主要根源,分别是、、 和。 7、静止液体是指液体间没有相对运动,而与盛装液体的容器的运动状态无关。 8、液体的静压力具有哪两个重要的特性 9、液体静压力的基本方程是p=p0+ρgh,它说明了什么(如何看待液体静压力基本方程) 10、液体静压力基本方程所包含的物理意义是:静止液体中单位质量液体的和 可以互相转换,但各点的总能量却保持不变,即。 11、液体中某点的绝对压力是,大气压为 Mpa,则该点的真空度为 Mpa,相对压力Mpa 12、帕斯卡原理是在密闭容器中,施加于静止液体上的压力将同时传到各点。 13、液压系统中的压力是由决定的。 14、流量单位的换算关系:1m3/s=( )L/min A 60 B 600 C 6×104 D 1000 15、既无粘性又不可被压缩的液体称为。 16、液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这种流 动称为。 A 二维流动 B 时变流动 C 非定常流动 D 恒定流动 17、单位时间内通过某通流截面的液体的体积称为。A 流量B 排量C 流速D 质量 18、在液压传动中,能量损失主要表现为损失。A 质量B 泄露C 速度 D 压力 19、压力损失主要有压力损失和压力损失两类。液体在等直径管中流动时, 产生压力损失;在变直径、弯管中流动时,产生压力损失。

最新液压传动课后习题答案

第一章 第二章 2-6. 伯努利方程的物理意义是什么?该方程的理论式和实际式有什么区别? 答:伯努利方程表明了流动液体的能量守恒定律。实际液体的伯努利方程比理想液体 伯努利方程多了一项损耗的能量和比动能项中的动能修正系数。 理想液体伯努利方程:g h p g h p 22 2 2 12 11 22 ++ = ++ μρ μρ 实际液体伯努利方程:g h g h p h p w g +++ = ++ 222 22 12 111 2 2 ναρναρ 2-13.原题参考教材: 解:s m D q v /094.0107514.3601025446 23 211=?????==--π s m D q v /034.01012514.360102544623 2 22=?????==--π min /23.23)(4 212111L d D v q =-=π min /46.22)(4 22222 2L d D v q =-=π 2-29.原题参考教材: 解a p d F p 52 2 1018.302.04 100 4 ?=?= = π π 0321 12u d p l d q δπμδπ-?=: 024 u d AV q π = =

2034 2112u d AV u d p l d πδπμδπ==-?所以 p p ?= s m u /10648.140-?= s u t 8.606/1.00== 第三章 3-12、当泵的额定压力和额定流量为已知时,试说明下列各工况下压力表的读数(管道压力除图c ,Δp 均忽略不计) 如图所示: 答:a:液压泵与外界相连,所以压力表读数为0。 b:外界对液压泵施加压力为F/A,所以压力表读数为F/A 。 c:节流阀压力为Δp,所以压力表读数为Δp 。

相关主题
文本预览
相关文档 最新文档