当前位置:文档之家› 采动区建筑物移动变形与地表移动变形关系研究

采动区建筑物移动变形与地表移动变形关系研究

采动区建筑物移动变形与地表移动变形关系研究
采动区建筑物移动变形与地表移动变形关系研究

采动区建筑物移动变形与地表移动变形关系研究

发表时间:2018-09-12T16:51:49.900Z 来源:《基层建设》2018年第20期作者:刘治国

[导读] 摘要:矿山开采导致地表移动变形,从而使位于采动区的建筑物损害,建筑物移动变形与地表移动变形关系是采动区建筑物损害评定及抗变形设计的基础,对此进行研究具有重要的理论与实际意义。

山西华润煤业有限公司山西省太原市 030012

摘要:矿山开采导致地表移动变形,从而使位于采动区的建筑物损害,建筑物移动变形与地表移动变形关系是采动区建筑物损害评定及抗变形设计的基础,对此进行研究具有重要的理论与实际意义。本文通过现场实测及对实测资料的分析,研究了不同类型建筑物位于工作面不同位置时,建筑物下沉、倾斜、曲率、水平变形与相应的地表移动变形的关系,获得了其变化规律,分析了不同区域建筑物应采取不同的抗变形措施,这一研究为采动区建筑物保护和设计提供了基础。

关键词:拉伸变形区,压缩变形区,井下开采

1建筑物观测站概况

研究区的建筑物为位于国内某矿的超长工作面上方,选择一幢村学校和一幢民房,村学校两层楼房,建筑尺寸为58m×8m×6m,建筑质量一般;民房为平房,建筑尺寸为16m×8m×3.5m,建筑质量一般。学校、民房均为砖石结构建筑物。

为研究建筑物移动变形破坏与地表移动变形的关系,分别在建筑物和对应地表设置观测点,根据这些观测点观测不同时间建筑物移动变形与地表移动变形,从而研究建筑物移动变形与地表移动变形的关系,下面的分析基于该方法进行的。

2建筑物变形与地表变形关系

在地下开采的影响下,地表的移动和变形取决于地表各点在时间-空间上与回采工作面相对位置关系。建筑物的变形是由于采空区上方及其周围地表产生的移动与变形作用于建筑物的基础,导致建筑物受到附加应力而产生的。在采动过程中地表产生各种变形(下沉、倾斜、曲率、水平移动和水平变形),建筑物亦将受到这些变形的影响。地表移动盆地是随着开采工作面的推进逐渐形成的,随着地表产生的移动与变形,破坏了建筑物与地基之间的初始平衡状态,伴随着力系平衡的重新建立,使建筑物产生附加应力,从而导致建筑物发生变形,严重时将遭到破坏。

由于建筑物位于工作面不同位置时,所受到的移动变形不一样,当建筑物位于煤柱上方时受拉伸变形和正曲率作用,而当工作面推过建筑物后,建筑物位于采空区上方,受压缩变形和负曲率作用,由于两者对建筑物的影响不同,从而使建筑物移动与地表移动变形的关系不同,因此,必须分开进行研究。

2.1建筑物下沉与地表下沉关系

根据观测资料,分别研究了学校和民房位于正曲率和拉伸变形区及位于负曲率和压缩变形区时,建筑物下沉与地表下沉的关系可以得出以下规律:

(1)学校下沉比对应的地表下沉大,民房下沉比地表下沉小,这是由于学校高度大,建筑物载荷相对大,在采动影响下,由于地基应力重分布的影响,更容易切入地基,从而导致学校下沉比地表下沉大;而民房相对单位载荷小,从而使建筑物下沉小于地表下沉;

(2)位于正曲率和拉伸变形区建筑物下沉系数(建筑物下沉与地表下沉之比)比位于负曲率和压缩变形区的建筑物下沉系数大。其原因为,建筑物位于正曲率区时,建筑物与地基为点接触,在同样建筑物作用下,产生的地基附加应力更大,基础切入地基[13]的量更大。而位于负曲率区时,建筑物与地基为两点接触,在同样建筑物作用下,产生的地基附加应力相对更小,基础切入地基的量也更小,从而使位于负曲率区的建筑物下沉系数比位于正曲率区的建筑物下沉系数小。

2.2建筑物倾斜与地表倾斜关系

根据观测数据,经分析计算,获得了建筑物倾斜与地表倾斜,将两者进行统计分析,建筑物倾斜与地表倾斜具有以下规律:(1)位于负曲率和压缩变形区时,建筑物倾斜系数(建筑物倾斜与地表倾斜之比)大于位于正曲率和拉伸变形区的建筑物倾斜系数,其原因与建筑物下沉与地表下沉关系一样,说明位于负曲率和压缩变形区建筑物基础切入地基的量小,建筑物随地表倾斜而倾斜,位于正曲率和拉伸变形区的建筑物基础切入地基的量大,吸收了部分地表倾斜,从而使建筑物倾斜小于地表倾斜。

(2)对同一建筑物来说,位于正曲率和拉伸变形区时,墙体的倾斜小于基础的倾斜,而位于负曲率和压缩变形区,则是墙体的倾斜大于基础的倾斜。

2.3建筑物曲率与地表曲率关系

建筑物曲率表示建筑物受采动影响时,随地表的弯曲程度,由于建筑物自身具有一定的刚度,在地表变形过程中,建筑物基础与地基存在协同变形,部分建筑物基础切入地基,减小了建筑物弯曲,建筑物曲率比地表曲率要小很多,这一见效量与建筑物的高度、长度等有关,通过分析观测资料获得如下规律:

(1)总体来说,建筑物曲率小于地表曲率,这是由于建筑物有一定的刚度,可以抵抗一定的曲率变形,不完全随地表弯曲而弯曲;

(2)位于正曲率区的建筑物传递的地表曲率比位于负曲率区的大;

(3)建筑物高长比(建筑物高度与长度相比)越小(学校高长比为0.10,民房为0.22),在正曲率区随地表的弯曲程度越大,这是长高比大的建筑物容易损害的原因,由此可见,在同样长度的条件下,高层建筑物比低层建筑物抗曲率变形更强,越不容易损害。

2.4建筑物水平变形与地表水平变形关系

在采动影响下,地表水平变形通过地基与基础接触面传递给建筑物,导致建筑物产生拉伸和压缩变形,从而使建筑物拉坏或压坏。传递到建筑物上的水平变形大小与建筑物基础与地基接触面及摩擦力有关,接触面和摩擦力越大,传递到建筑物上的水平变形越大,通过对现场数据的分析,得到如下规律:

(1)对同一建筑物而言,传递到基础的水平变形大于传递到墙体的水平,因此,为防止水平变形对建筑物的损害,应加强基础的强度;

(2)位于不同变形区的建筑物,地表水平变形传递到建筑物的量不同,压缩变形区的建筑物传递的水平变形比拉伸变形区的传递的少,对于学校而言,拉伸区水平变形系数(建筑物水平变形与地表水平变形比值)大约是压缩区水平变形系数的4倍,民房为2倍多,分析原因是,学校建筑物高度和长度均较大,学校长高比为民房长高比的2倍,导致两者的水平变形系数也接近2倍。

第一章 开采引起的岩层与地表移动

第一章开采引起的岩层与地表移动 煤矿开采的三性特殊性、艰巨性和困难性; 特殊困难条件下的开采 三下一上(建筑物下、铁路下、水体下和承压水上);有冲击地压危险的煤层;有煤与瓦斯突出危险的煤层;三软煤层;深部;边角煤;极薄煤层。 采用特殊开采工艺方式 短壁开采;充填采煤;上行开采;水力采煤;煤与煤层气共采;煤的地下气化 1、下沉及变化规律 主断面内地表移动向量的铅直分量,用W表示。坐标O点:最大下沉值处的地表点W坐标轴向下为正,单位为mmx坐标轴向右为正,单位为mW=W(x)最大下沉值在盆地中央,Wo=W5; x增加,W由零增加到最大,而后又趋于零W(-x)=W(x);边界点由d0决定;下沉曲线凹凸分界的拐点处,下沉值约为最大值的一半 2、倾斜 倾斜是指地表单位长度内下沉的变化,用i表示单位为mm/m,i坐标轴向下为正 倾斜是地表下沉的一阶导数,i(x) 正负号的决定:① i=tga 下沉曲线的切线与x轴正向所夹锐角为+a时,倾斜为正; 下沉曲线的切线与x轴正向所夹锐角为-a时倾斜为负。 倾斜的正负号的物理意义;垂直于地表下沉曲线的杆状物倾倒的趋向与x轴正向相同时,倾斜为正;杆状物倾倒的趋向与x 轴负向相同时倾斜为负。 3、水平移动 水平移动-地表移动向量的水平分量,用U表示,单位为mm,U=U(x),有两组方向不同的水平移动

规定:正值的水平移动与x轴的正方向一致 负值的水平移动与x轴的负方向一致 水平移动U(x)和倾斜i(x)的变化趋势同步他们之间相差一个有单位的比例系数B 4、曲率 地表单位长度内倾斜的变化,用K表示,单位为mm/m2或 10-3/m。 曲率坐标轴向上为正 . 正负号 倾斜曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 倾斜曲线的切线与x轴正向所夹锐角为-a时曲率为负。 曲率正负号的物理意义 ; 正曲率的物理意义是地表下沉曲线在地面方向凸起或在煤层方向下凹.负曲率的物理意义是地表下沉曲线在地面方向下凹或在煤层方向凸起 5、水平变形 水平变形—单位长度上水平移动的变化 用 e 表示,坐标向上为正,单位:mm/m 正负号 用tga,水平移动曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 水平移动曲线的切线与x轴正向所夹锐角为-a时曲率为负。 水平变形正负号的物理意义 . 水平变形正值的物理意义为地表受拉伸变形,负值的物理意义为地表受压缩变形。 水平变形的变化规律 两个相等的正极值和两个相等的负极值 正极值为最大拉伸值,位于边界点和拐点之间; 负极值为最大压缩值,位于两个拐点之间; 盆地边界点、拐点和中点处水平变形为零;

定义可变形部件

定义可变形部件 使用定义可变形部件向导可将部件定义为当将其添加到装配中时,能够呈现多种形状的部件。 可以在将部件添加到装配之前或之后将部件定义为可变形的组件。可变形组件和装配的单位必须匹配。可以添加其单位与装配单位不同的可变形组件,但该组件必须保持原始形状。 定义可变形组件时,您可以将包含可变形定义的用户定义特征添加到模型历史记录中。 定义可变形部件步骤 1.启动建模应用模块并选择工具→定义可变形部件。 2.(可选)在定义页面的名称框中,键入要添加的特征的名称。 3.单击下一步。 4.在特征页面上,从部件中的特征列表中,选择可变形特征并单击添加特征。 5.单击下一步。 6.(可选)在表达式页面上,从可用表达式列表中,选择一个或多个表达式作为可变形部 件的输入参数,并单击添加表达式。 7.单击下一步。 8.(可选)在参考页面上,从列表中选择参考几何体,并在新建提示框中为该几何体键入 有意义的名称,然后按Enter。

9.单击下一步。 10.在汇总页面上,查看可变形部件的定义,并单击完成。 注:NX8.0帮助文档/主页/CAD/装配/组件命令/可变形部件 可变形部件添加到装配中 1.确保装配是工作部件。 2.在装配工具条上,单击添加组件,或选择装配→组件→添加组件。 3.选择可变形部件,并将其定位在靠近装配的某个位置。 在本例中,弹簧是可变形组件。

将出现变形对话框。此对话框的名称是变形的名称。 4.在“变形”对话框中,修改变形输入参数,然后单击确定。 如果此时不想使部件变形,则单击取消。 5.按显示的样式将可变形组件约束于装配。 6.保存装配。

矿山压力与岩层控制部分习题答案

一、重要概念 1矿山压力、2 矿山压力显现、3矿山压力控制、4原岩应力、5支承压力、6老顶、7直接顶、8直接顶初次垮落、9顶板下沉量、10老顶初次来压、11周期来压、12关键层、13开采沉陷、14充分采动与非充分采动、15岩层移动角、16岩层变形、17沿空留巷、18沿空掘巷、19锚固力、 20软岩、 21顶板大面积来压、22浅埋煤层、23放顶煤开采。 二、简答与分析论述 1. 简述原岩应力场的概念及主要组成部分。 2. 原岩应力分布的基本特点 3. 支承压力与矿山压力的区别? 4. 煤柱下方底板岩层中应力分布特点及其实际意义? 5. 简述岩石破碎后的碎胀特征及其在控制顶板压力中的作用? 6. 分析采场上覆岩层结构失稳条件 7. 分析加快工作面推进速度与改善顶板状况的关系。 8. 试分析开采深度对采场矿山压力及其显现的影响。 9. 老顶破时在岩体内将引起什么性质的挠动,其特点是什么?有何实用意义? 10. 简述回采工作面周围支承压力分布规律。 11.是否矿山压力大矿山压力显现也必然强烈,试举例说明。 12. 简述我国缓倾斜煤层工作面顶板分类方案。 13. 支撑式、掩护式、支撑掩护式液压支架结构特征及适用范围。 14. 简述采场支架与围岩关系特点。 15. 分析采场支架工作阻力与顶板下沉量“P-△L”曲线关系 16. 试分析综采面支护质量监测对于改善工作面支架—围岩关系,确保工作面高产高效的作用。 17. 简述开采后引起的上覆岩层的破坏方式及其分区。 18. 简述绿色开采技术体系,关键层的作用。 19. 简述控制岩层移动的技术。 20. 为什么说锚注支护是软岩巷道支护的新途径? 21. 采区平巷在其服务期内沿走向的矿压规律有哪些?采动影响带的前影响区和后影响区内矿压显现时间和机理有何不同? 22. 沿空留巷矿压显现基本特征?与沿空掘巷矿压显现的主要区别? 23. 跨巷回采卸压的基本原理? 24. 画出巷道支架与围岩相互作用关系示意图,并分析支架与围岩的相互作用原理。 25. 高强度螺纹钢锚杆组成及其经常与之组合使用的支护材料。 26. 如何根据锚杆对围岩的约束方式定义锚杆锚固力? 27. 简述软岩巷道变形力学机制。 28. 简述影响顶煤冒放性的主要因素,提高顶煤冒放性的主要措施。

地表移动观测站设计

旬邑县宋家沟煤矿 xunyixiansongjiagoumeikuang 2026综采工作面地表移动观测站 设计方案 编制单位:地测科 编制日期: 2013.06.01

前言 为了获得2026综采工作面最可靠的地表移动参数,掌握该工作面地质采矿条件下的地表移动规律,我矿决定建立2026综采工作面地表移动观测站,进行该工作面地表移动的观测和研究工作。 2026工作面地表移动观测与研究的主要内容: 1、掌握地质采矿条件与地表移动的变形关系; 2、获得综采条件下地表移动与变形的分布规律; 通过对2026工作面地表移动观测站的研究,为我矿保护煤柱的留设和实现煤矿安全生产等提供科学依据,并进一步探求地表移动规律,丰富和发展我矿采煤技术。

2026综采工作面地表移动 观测站设计方案 一、2026工作面地质采矿条件 2026工作面走向长度为1110米,倾向宽150米,面积约16.65万㎡,平均采深为227米,工作面平均倾角12°,该工作面4-2煤层厚度在2.4-3.0米之间,平均2.7米,采用走向长壁垮落采煤法,综合机械化采煤。本工作面掘进水文地质条件简单,顶底板均为泥岩、粉砂岩,隔水性能好;该工作面老顶为粉砂岩或砾岩,厚度为5.75-75米,该层非常坚硬;直接顶为泥岩、砂质泥岩厚度为1.46-6.67米,直接底为细砂岩、砂质泥岩,岩性变化不大,厚度约2.47米,具有膨胀性,上部松散层厚度约为145米。 二、地表移动观测站的设计 1、观测站设计原则 为了能够获得准确、可靠、有代表性的观测资料,在观测站设计中应遵循以下原则: (1)观测线应设在地表移动盆地的主剖面上; (2)观测线在观测期间不受临近开采的影响; (3)观测线的长度要大于地表移动盆地的范围; (4)根据开采深度和设站目的,观测线上的测点应有一定的密度; (5)观测站的控制点要设在移动盆地范围以外,埋设要牢固。 2、角量参数的选定 由于该观测站为我矿第一个观测站,角度参数的选定只能参照我矿采矿条

矿山地表及岩层移动观测

矿山地表及岩层移动观测 为了保护井巷、建筑物、水体、铁路等免受开采的有害影响,合理提高煤炭资源回收率,并为留设保护煤柱提供技术资料,新建矿井应开展地表及岩层的移动观测工作。 地表及岩层的移动观测工作设置的各种观测站必须编写岩移观测方案,并报请集团公司地质勘测处审批。观测站设计由文字说明和图纸两部分组成。文字部分包括观测站设计书。图纸包括井上、下对照图(包括观测线和观测点的位置)、观测线剖面图(包括观测线长度的确定)、岩层柱状图、观测点的构造图等。 矿区设置观测站时应统一规划,并选择在有代表性的地方设置。地表移动观测站位置的选择,应遵循由简单到复杂的原则,初次建立地表移动观测站的位置应满足:煤层走向、倾角及厚度均稳定,地势平坦,无大断层,单煤层开采,四周无采空区。 地表移动观测站一般可设走向观测线和倾斜观测线各 一条,设在移动盆地的主断面位置。如回采工作面的走向长度大于1.4H0+50m(式中H0为平均开采深度),亦可设置两条倾斜观测线,但至少应相距50m,并且应距开切眼或停采线0.7H以上。 观测点间距离应根据开采深度按下表21确定。

表21 矿山企业应根据矿区地面控制网,按5″级导线(网) 精度要求建立岩移观测控制网。各控制点和观测点的高程测量应组成水准网,按三等水准测量的要求进行观测。 控制点和观测点的设置应符合下列要求: (一)埋设的控制点和观测点必须用全站仪按设计标定,并应尽可能使观测点中心位于控制点连线的方向上; (二)在非冻土地区,测点的埋设深度应不小于0.6m。在冻土地区,测点的底面一般应在冻结线0.5m以下。测点可采用浇注式或混凝土预制件; (三)当地表至冻结线下0.5m内有含水层时,一般应采用钢管式测点; (四)埋设的测点应便于观测和保存。如预计地表下沉后测点可能被水淹没,则点的结构应便于加高; (五)在一般情况下,倾斜观测线上观测点编号应自下山向上山方向顺序增加,走向观测线上观测点编号应按工作面推进方向顺序增加。 在观测站各点埋设10-15天后,即可进行观测。首先应

15-05-地表残余沉陷变形机理数值模拟与预计参数分析-2016年第2期

地表残余沉陷变形机理数值模拟与预计参数分析 易四海 (中煤科工集团唐山研究院有限公司,河北唐山063012) [摘要]采用数值模拟计算,通过对覆岩移动过程的模拟研究,指出了地表沉陷由岩体变形 破坏到岩体密实沉陷的发展过程,揭示了岩体密实沉陷延续是引起地表残余沉陷变形的机理;通过对岩体密实阶段地表沉陷分布规律的模拟研究,证实地表残余变形可以用概率积分法进行预计。根据数值模拟及现场实测数据,确定了长壁开采条件下地表残余沉陷变形的概率积分法预计参数。 [关键词] 残余沉陷变形;数值模拟;沉陷过程;预计参数;长壁开采 [中图分类号]TD325 [文献标识码]A [文章编号]1006-6225(2016)02-0029-04Forecast Parameters and Numerical Simulation of Mechanism of Surface Residual Subsidence Deformation YI Si-hai (CCTEG Tangshan Research Institute ,Tangshan 063012,China ) Abstract :Overburden strata movement process was studied by numerical simulation ,the results showed that surface subsidence expe- rienced the process that from rock mass deformation to rock mass subsidence ,it revealed that rock mass subsidence development was reasons that induced surface residual subsidence deformation.Surface residual deformation could be predicted by probability integral method according numerical simulation of surface subsidence distribution law during rock mass subsidence stage.On the basis of numer-ical simulation and measured data ,predicting parameters of probability integral method of surface residual subsidence deformation with long wall mining situation were confirmed. Key words :residual subsidence deformation ;numerical simulation ;subsidence process ;predicting parameters ;long wall mining [收稿日期]2015-08-19 [DOI ]10.13532/https://www.doczj.com/doc/0c6806479.html,11-3677/td.2016.02.009[基金项目]国家自然科学基金项目(51474129) [作者简介]易四海(1980-),男,湖北公安人,副研究员,博士,主要从事开采沉陷规律与“三下”采煤方面的研究工作。[引用格式]易四海.地表残余沉陷变形机理数值模拟与预计参数分析[J ].煤矿开采,2016,21(2):29-32. 开采沉陷延续时间较长,地表将在很长时间内存在残余沉陷变形,对采煤塌陷区地表新建建 (构)筑物产生不利影响。因此,了解和掌握采煤塌陷区地表残余沉陷规律十分重要。但是,限于采 煤塌陷区地表残余沉陷延续时间长、数值较小,一般难以用实测方法掌握其全部发展规律。目前,对采煤塌陷区地表残余沉陷变形的预测已有了一些研究 [1-3] ,对采煤塌陷区建设利用具有一定的指导意义,但在对残余沉陷变形预测参数取值时大多凭经验,缺乏足够的理论支持,给采煤塌陷区地表建筑带来了一定的安全隐患。 为此,本文采用数值模拟计算,研究覆岩移动过程及地表残余沉陷变形的分布规律,依据实测数据建立地表残余沉陷变形的预计方法并确定相关参数,为采煤塌陷区地表安全利用提供理论依据。1 采煤沉陷数值模拟 采用离散元法进行模拟试验。试验设计煤层采厚M =3.0m ,采宽L =125m ,倾角α=0?,采深 H 0=100m ,松散层厚度H s =20m ,基岩厚度H j = 80m ,基岩由砂岩、泥岩和砂质泥岩等岩性组成。 图1为数值计算模型网格剖分图 。 图1 数值计算模型剖分 1.1地表沉陷过程 地下煤层采出后引起的地表沉陷是一个时间和空间过程。由于地表沉陷孕育与发展过程非常复杂,许多学者从不同的角度对其进行了研究 [4-6] , 这些研究多从地表点的移动量及剧烈程度的角度进 行描述。而实际上,地表移动是岩层移动的延伸和表象,岩层移动是发生在岩体内部的力学现象,只有从岩层移动的角度来研究地表沉陷过程才能真实揭示岩层与地表移动的机理与规律。 图2为数值模拟采空区上方不同高度岩层内测 9 2第21卷第2期(总第129期) 2016年4月煤矿开采 COAL MINING TECHNOLOGY Vol.21No.2(Series No.129) April 2016 中国煤炭期刊网 w w w .c h i n a c a j .n e t

岩层及地表移动的各种参数

岩层及地表移动的各种参数(08-12-2修订) 通过地表移动观测确定地表移动参数: 边界角:在充分采动或接近充分采动条件下,地表移动盆地主断面上盆地边界点(下沉值为10mm)至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 移动角:在充分采动或接近充分采动条件下,地表移动盆地主断面上三个临界变形值中最外边的一个临界变形值点至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 三个临界变形值为:倾斜变形3mm/m;水平变形2mm/m;曲率变形0.2mm/m2。 裂缝角:在充分采动或接近充分采动条件下,地表移动盆地内最外侧的地表裂缝至采空区边界的连线与水平线在煤柱一侧的夹角。 充分采动角:在充分采动条件下,地表移动盆地平地边缘点至采空区边界连线与煤层在采空区一侧的夹角。 以上各角又都分为上山、下山和走向三角。 最大下沉角:非充分采动时,地表移动盆地中心区的最大下沉点至采空区中心点的连线与水平线在下山方向的夹角。充分采动

时,在松散层不厚情况下,可依据上下山充分采动角作两直线,其交点至采空区中点连线与水平线在下山一侧的夹角。 开采影响传播角:充分采动时,倾向主断面上地表最大下沉值与该点水平移动值的比值的反正切值。 关于最大下沉角和开采影响传播角,有些书和文章不加区分,其实从以上《规程》中的定义来看,一个通过作图得到,一个通过计算得到,二者从数值上是很可能不同的。 地表移动计算参数: 下沉系数:充分采动时,地表最大下沉值与煤层法线采厚在铅垂方向投影长度的比值。 水平移动系数:充分采动时,走向主断面上地表最大水平移动值与地表最大下沉值的比值。 主要影响角正切:走向主断面上走向边界采深与其主要影响半径之比。在概率积分法预计时,不用边界角、移动角和裂缝角作为预计参数而一般采用主要影响角正切作为预计参数。 注意:主要影响角与下山移动角是不同的概念。 拐点偏距:下沉曲线的几何拐点与煤壁在水平方向上的偏离距离(偏向采空区)。 对于以上计算参数,《规程》给出了根据地表移动观测站数据计算的方法。对于缺少实际观测资料的矿区,可采用覆岩综合评价系数P及地质、开采技术条件来确定地表移动计算参数(见《规程》)。《规程》还给出了煤层群条件下,如果下层煤开采的影

第一章 地表移动和变形规律

第一章地表移动和变形规律 第一节开采引起的岩层和地表移动 一、开采引起的岩层移动和破坏 (一)岩层移动和破坏过程 在地下煤层被采出前,岩体在地应力场作用下处于相对平衡状态。当部分煤层被采出后,在岩体内部形成一个采空区,其周围岩体应力平衡状态受到破坏,引起应力重新分布,从而使岩体产生移动、变形和破坏,直至达到新的平衡。随着工作面的推进,这一过程不断重复。这是十分复杂的物理、力学变化过程,也是岩层产生移动和破坏过程,这一过程和现象称为岩层移动(Strata Movement)。 为了便于理解,以近水平煤层开采为例,说明岩层移动和破坏过程和应力状态的变化。当地下煤层开采后,采空区直接顶板岩层在自重应力及上覆岩层重力的作用下,产生向下的移动和弯曲。当其内部应力超过岩层的应力强度时,直接顶板首先断裂、破碎,相继冒落,而老顶岩层则以梁、板的形式沿层面法向方向移动、弯曲,进而产生断裂、离层。随着工作面向前推进,受到采动影响的岩层范围不断扩大。当开采范围足够大时,岩层移动发展到地表,在地表形成一个比采空区范围大得多的下沉盆地,如图1-1所示。 由于岩层移动和破坏的结果,使采空区周围应力重新分布,形成增压区(支承压力区)和减压区(卸载压力区)。在采空区边界煤柱及其边界上、下方的岩层内形成支承压力区,其最大压力为原岩应力场的3~4倍。由于支承压力的作用,使该区煤柱和岩层被压缩,有时被压碎,煤层被挤向采空区。如图1-2所示。由于增压的结果,使煤柱部分被压碎,支承载荷的能力减弱,于是支承压力峰值区向煤壁深处转移。在回采工作面的顶、底板岩层内形成减压区,其应力小于采前的正常压力。由于减压的结果,使下部岩层发生弹性恢复变形。上部岩体由于受下部岩体移向采空区的结果,可能在顶板岩层内形成离层,而底板岩层在采空区范围内卸压,在煤柱范围内增压,两种压力作用的结果,可能出现采空区地板向采空区隆起的现象。 (二)岩层移动和破坏的形式 在岩层移动过程中,采空区周围岩层的移动和破坏形式主要有以下几种:1.弯曲 弯曲是岩层移动的主要形式。当地下煤层被开采后,从直接顶板开始岩层整体沿层面法线方向弯曲,直到地表。此时,有的岩层可能会出现断裂或大小不一的裂隙,但不产生脱落,保持层状结构。 2.垮落 垮落(又称冒落)这是岩层移动过程中最剧烈的形式,通常只发生在采空区直接顶板岩层中。当煤层采出后,采空区附近上方岩层弯曲而产生拉伸变形。当拉伸变形超过岩层的允许抗拉强度时,岩层破碎成大小不一的岩块,无规律地充填在采空区,此时,岩体体积增大,岩层不再保持其原有的层状结构。 3.煤的挤出 采空区边界煤层在上覆岩层强大的压力作用下,部分煤体被压碎挤向采空区,这种现象称为煤的挤出(又称片帮)。由于增压区的存在,煤层顶底板岩层

第1章覆岩与地表移动规律

第1篇覆岩与地表移动规律 第1章覆岩与地表移动规律 1.1 概述 各种有用的矿物赋存在地下岩体中的一定位置,与周围的岩体相接触,并保持其应力平衡状态。地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及到地表,引起地表下沉,形成所谓的下沉盆地(Subsidence basin)。采动覆岩与地表移动变形的过程是开采破坏了原岩应力状态形成新的平衡的必然过程。 开采引起矿层及围岩的移动和破坏在时间及空间上是一个复杂的运动破坏过程,其特点如下: (1)从采空区至地表,覆岩破坏范围逐渐扩大、破坏强度逐渐减弱,根据覆岩破坏特征一般将其划分为冒落带、裂隙带和弯曲下沉带,即所谓的“三带”如图1—1所示; 图1—1 采动覆岩移动破坏三带分布图 a-冒落带;b-裂隙带;c-弯曲下沉带 (2)覆岩移动状态可划分为5个区,如图1-2所示。其中: ①垂直下移区。该区域的岩层在重力作用下作垂直于矿层的运动。 ②垂直上移区。该区域的岩层在侧向及底板应力的作用下向上移动。 ③垂直与水平移动区。该区域的岩层在覆岩自重及水平应力的作用下,作向采空区中心方向的移动。 ④底板下移区。该区域的岩层在支撑压力的作用下,向底板卸压区移动。 ⑤开采支撑压力区。该区域的岩层要承受采空区上覆岩体重力的转移,形成开采支撑压力区,开采支撑压力区的应力值一般高达原岩应力的1.5~3.0倍。

第1章 覆岩与地表移动规律 第 页 2 图1-2覆岩内部移动状态分布图 1.2 覆岩移动破坏规律 1.2.1 “三带”的形成 矿层开采后,其覆岩要发生移动和破坏。经长期的观测证实,覆岩移动和破坏具有明显的分带性,它的特征与地质、采矿等因素有关。在采用走向长壁全部冒落法开采缓倾斜中厚矿层的条件下,只要采深达到一定深度(采深与采高之比H/m >40),覆岩的破坏和移动会出现三个代表性的部分,自下而上分别称为:冒落带(Caved zone)、裂隙带(Fractured zone)和弯曲下沉带(Continuous deformation zone)(见图1-1)。 1.冒落带 冒落带也称垮落带,是指岩层母体失去连续性,呈不规则岩块或似层状巨块向采空区冒落的那部分岩层。冒落带位于覆岩的最下部,紧贴矿层。矿层采空后,上覆岩层失去平衡,由直接顶岩层开始冒落,并逐渐向上发展,直到开采空间被冒落岩块充满为止。 冒落岩块由于碎胀,体积较冒落前增大,增大比率可用碎胀系数表示,碎胀系数大小与岩性及采厚有关。硬岩及采厚较大时,其值大,反之较小,平均约在1.2~1.6范围。在自由堆积状态下,由于冒落岩块碎胀性而逐渐充填开采空间,导致冒落带发展到一定高度而自行停止。表1-1给出了常见岩石的碎胀系数。 表1-1 常见岩石的碎胀系数 岩石名称 碎 胀 系 数 初始碎胀系数K p 残余碎胀系数K s 砂 1.06~1.15. 1.01~1.03 粘土 <1.20 1.03~1.07 碎煤 <1.20 1.05 粘土页岩 1.40 1.10 砂质页岩 1.60~1.80 1.10~1.15 硬砂岩 1.50~1.80 冒落带碎落岩块在上覆岩层沉降压力下可逐渐压实,甚至部分形成再生顶板。厚矿层分层开采时,冒落岩块受重复采动的多次破坏,岩体碎度增大,碎胀系数减小。 冒落带内岩块之间空隙多,连通性强,是水体和泥沙溃入井下的通道,也是瓦斯逸出或

《开采损害学》课程讲义 第二章 采动地表移动变形预计

第二章 采动地表移动变形预计 重点:①预计理论体系概况; ②概率积分法。基本含义、基本概念、应用条件、应用方法、分布规律、特征值的确定方法,极值公式及计算、按特征值绘制移动变形分布图。 ③半无限开采及半无限叠加方法; ④地表任一点移动变形预计方法; ⑤动态移动变形与静态方法的区别及其评价方法。 2.1 地表移动和变形预计理论方法概述 开采沉陷损害预计理论,可以概括为影响函数方法,理论模型方法,经验方法三大类型。 2.1.1 影响函数方法 ①国内外学者及理论应用情况; ②假定开采单元矿层dv,其水平投影面积为dp,单元矿层开采引起地表点A 的下沉表达式为:dp s f m dw a )(η= (2-1) ③影响函数的可叠加性; 根据影响函数的叠加原理,对于开采范围为P 的矿层开采引起地表点A 的下沉量的通式表示为: ??=P a dp s f m w )(η (2-9) 2.1.2 经验方法 ①前苏联应用的负指数函数方法;②英国煤田方法(NCB.1975);③波兰学者Z.Kowalczyk (1972)积分网格法;④中国学者何国清提出的威布尔分布法;⑤各矿区通过观测曲线拟合得出的适用本矿区的典型剖面曲线法等。 2.1.3 理论模型方法 属于理论模型方法是建立在力学模型上的,以及建立在弹性或塑性理论基础上的计算方法。在这方面主要有以A.Salstowicz (1958)等为代表的固体力学理论;J.Litwiniszy (1963)等为代表的随机介质理论。建立在弹性或塑性理论基础上的计算方法如:有限单元法(FEM );边界元法(BEM );离散元(DEM)等方法;非线性力学(Nonlinear )等方法。 目前应用情况简介 2.2 概率积分法(重点) 目前已成为我国乃至世界范围较为成熟、应用最广泛的预计方法之一。 2.2.1 水平成层介质中的单元盆地 开采沉陷的随机性→随机介质理论为基础 ①非连续介质单元模型,②单元相互分离并发生相对运动。 如图2.1在三维问题中,地下(x 0, y 0, z 0)处开采使地表点A(x, y, z )附近某一小块面积ds 发生下沉这一事件的概率为: ds z y x ds P ),,()(δ= (2-10)

变形监测与灾害预测

《变形监测与灾害预测》教学大纲 课程编号:050614 总学时:28+4 总学分:2 课程性质:必修 适用专业及层次:测绘工程本科 相关课程:测量学基础、工程测量学基础、大地测量学基础 教材:《变形监测技术及应用》伊晓东等编著,黄河水利出版社,2007年 推荐参考书:《矿山开采沉陷学》何国清等编著,中国矿业大学出版 一、课程性质、目的与任务 本课程是测绘工程类专业特色课程之一,本课程的任务与目的是使学生从理论和应用研究角度,掌握地表变形基本规律,地表移动与变形的监测技术,地表沉陷预计方法和地表沉陷灾害防治与预报。 二、课程内容与要求 第一章地表移动与变形规律 1.了解地下开采引起覆岩变形与破坏的形式,掌握其变形机理。 2.了解地表移动盆地的形成,掌握地表移动盆地的描述参数及其特征。 3.掌握地表变形曲线类型及地表变形规律。 4.了解地表变形与地质采矿条件的关系。 第二章地表移动与变形的观测 1.了解观测站的类型,掌握观测站的设计原则与方法。 2.了解观测站的设置要求。 3.掌握地表移动的观测工作和数据处理方法。 4.了解岩层内部、立井变形监测技术。 第三章地表移动与变形的预计 1.了解地表移动与变形的预计方法。 2.了解概率积分法原理,掌握其计算方法。 3.掌握地表变形预计参数的求取方法。 第四章地表变形灾害防治与预报 1.了解地表变形灾害防治技术的种类。 2.了解建筑物下、水体下、铁路与公路下开采技术。 3.了解复杂开采条件下地表变形灾害的发生机理。 4.了解地表沉陷灾害预报方法。 三、课程学时分配

四、主要教学方法 采用启发、举例等课堂授课方法,掌握地表移动与变形的预计过程。 五、课程考核方式及成绩评定 考核方式:考试 成绩评定:平时成绩占30%,期末成绩占70%。

矿山压力与岩层控制习题答案.

矿山压力与岩层控制习题答案 一、名词解释: 1、老顶:通常把位于直接顶之上对采场矿山压力直接造成影响的厚而坚硬的岩层称为老顶。 2、顶板下沉量:一般指煤壁到采空区边缘裸露的顶底板的相对移近量,顶底板的相对移近量。 3、原岩应力:存在于地层中未受工程扰动的天然应力称为原岩应力。 4、周期来压:由于裂隙带岩层周期性失稳而引起的顶板来亚现象称为工作面顶板的周期来压。 5、回采工作面:在煤层或矿床的开采过程中,一般把直接进行采煤或采有用矿物的空间称为回采工作面,简称采场。 6、直接顶:一般把直接位于煤层上方的一层或几层性质相近的岩层称为直接顶。 7、矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成和作用在巷硐支护物上的力定义为矿山压力。 8、矿山压力显现:由于矿山压力作用使巷硐周围岩体和支护物产生的种种力学现象统称为矿山压力显现。 9、矿山压力控制:所有减轻,调节,改变和利用矿山作用的各种方法,均叫做矿山压力控制。 10、老顶初次来压:当老顶悬露达到极限跨距时,老顶断裂形成三铰拱式的平衡,同时发生已破断的岩块回转失稳有时可能伴随滑落失稳,从而导致工作面顶板急剧下沉,此时,工作面支架呈现受力普遍

加大的现象称为老顶初次来压。 11、支承压力:在岩体内开掘巷道后,巷道围岩必然出现应力重新分布,一般将巷道两侧改变后的切向应力增高部分称为之承压力。12、关键层:将对上覆岩层局部或直至地表的全部岩层活动起控制作用的岩层称为关键层。 13、冲击能指数:在单轴压缩状态下,煤样全“应力---应变”曲线峰值C前所积聚的变形能Es与峰值后所消耗的变形能Ex之比值。 13、沿空留巷:在上区段工作面采过后,通过加强支护或采用其他有效方法,将上区段工作面运输平巷保留下来,供下区段工作面回采时作为回风平巷。 14、沿空掘巷:回采工作面采过后,沿采空区边缘掘进的巷道。 15、软岩:是一种特定环境下的具有显著塑性变形的复杂岩石力学介质。 16、底鼓:底板向上鼓起的现象。 17、煤矿动压现象:煤矿开采过程中,在高应力状况下积聚有大量弹性能的煤或岩体在一定的条件下发生破坏,冒落或抛出,使能量突然释放,呈现声响,震动以及气浪等明显的动力效应,这些现象通称为煤矿动压现象。它有三种形式:冲击矿压,顶板大面积来压,煤与瓦斯突出。 18、冲击矿压:冲击矿压是聚积在矿井巷道和采场周围煤岩体中的能量突然释放,在井巷发生爆炸性事故,产生的动力将煤岩抛向巷道,同时发出强烈声响,造成煤岩体振动和煤岩体破坏,支架和设备损坏,

地表移动变形预计分析软件(2017年1月)

地表移动变形观测数据处理程序(SODP 3.0.0) 使用说明 二〇一七年一月

目录 1简介 (2) 2配置及启动 (2) 2.1配置SODP (3) 2.2启动SODP (3) 3实测数据处理 (4) 3.1工程数据导入 (4) 3.2测线数据导入 (6) 3.3超前距(角) (8) 3.4滞后距(角) (9) 3.5边界角 (10) 3.6移动角 (11) 3.7沉降持续时间 (12) 3.8移动变形最大值 (13) 3.9绘制移动变形曲线图 (13) 4预计参数反演 (15) 4.1工程数据导入 (15) 4.2求参项目数据导入 (15) 4.3数据预处理 (17) 4.4求参数 (18) 4.5求参结果 (19) 5开采变形预计 (21) 5.1工程数据导入 (21) 5.2预计项目数据导入 (21) 5.3预计方法 (23) 5.4数据预处理 (24) 5.5预计计算 (25) 5.6预计结果 (26) 6附录 (28) 6.1沉降实测数据文件格式 (28) 6.2水平移动实测数据文件格式 (29)

1简介 对地表移动变形监测站测得的数据进行处理分析,获得移动盆地主断面内的各种角量参数及最适合于该区域的移动变形预计模型参数,是研究地下开采引起的地表移动变形规律的核心内容。分析地表移动变形实测数据对开采沉陷的理论研究和生产实践都有重要的意义。利用主断面内的角量参数可以科学地确定建筑物保护煤柱的留设范围;利用合理的预计参数可以准确地对地表移动变形进行预测,预测的结果可以定量地研究受开采影响的岩层与地表移动在时间上和 空间上的分布规律。另外,预测结果还常被用来判别建筑物是否受开采影响和受开采影响的程度,作为受影响建筑物进行维修、加固或就地重建或采取地下开采措施的依据;还可以根据预测结果全面掌握矿区土地的塌陷情况,包括塌陷面积、塌陷深度,以便开展矿区土地复垦,保护矿区生态环境等。 本软件采用C#及C语言,基于https://www.doczj.com/doc/0c6806479.html,平台二次开发完成,可运行于AutoCAD2006及以上的版本。主要实现矿区地表移动变形实测数据处理分析、概率积分法最优参数反演及地表移动变形预计等功能。 2配置及启动 为了本软件能够良好运行,在使用本软件前,请确定已经安装了

第三节 地表移动与变形预计

第三节 地表移动与变形预计 1、已知概率积分法走向主断面半无限开采条件下下沉的表达式为 令 图1-40半无限开采地表移动和变形五项指标变化规律 (a )下沉;(b )倾斜;(c )水平移动;(d )曲率;(e )水平变形 2、由于煤壁附近采空区上方顶板的悬顶作用,其产生的效果相当于实际煤壁平移了一段距离,即由B 点移动到假想煤壁B ′点,使得地表下沉曲线的拐点位置平移了s 0,从而导致倾斜、曲率、水平移动和变形也相应地移动了s 0的距离,称为拐点偏移距。 ????????+=?-x r d e W x W πλλπ00122)(2222000122)()(r x x r e r W d e dx d W dx x dW x i ππλλπ--=????????+==?220)()(r x e r W B x Bi x U π-==220)(r x e bW x U π-=r B b =2 302)()(r x xe r W dx x di x K ππ--==2222303022)()(r x r x xe r bW xe r W B dx x dU x ππππε---=-==

拐点移动距s 定义为:过地表下沉曲线拐点在地表水平线上的投影点,按开采影响传播角作直线与煤层相交,该交点与采空区边界沿煤层方向的距离即为拐点移动距。对于水平煤层或沿煤层走向方向剖面,则为水平距离。 3、用地表移动和变形的最大值除以地表移动和变形的表达式,得如下关系式: 1、概率积分法的预计参数有哪些? 答:最大下沉值、主要影响半径和主要影响角、水平移动系数、拐点移动距、开采影响传播角、地表移动速度和持续时间 1、 了解条带采煤法的适用条件和条带开采类型。 答:条带采煤法突出的优点是开采后地表下沉小,适合于下述条件下开采: ①地面为密集建筑群、结构复杂的或纪念性的建筑物;②地面为难搬迁的村庄;③地面为铁路桥梁、隧道或铁路干线;④水体下的煤层及受岩溶承压水威胁的上方煤层;⑤地面排水困难。 条带采煤法开采的理想地质条件是:煤层埋深小于400~500m ,单一煤层厚度比较稳定,顶底板岩层和煤层较硬。 按条带长轴方向与煤层走向关系可分为走向条带和倾向条带。 按条带工作面采空区的处理方式,有垮落条带和充填条带之分。 2、掌握条带开采地表移动和变形的特点。 答:①地表下沉系数小②主要影响角正切小③水平移动系数随采深增加变小 ④地表移动短期⑤地表多次下沉 第五节 村庄下采煤 1、了解村庄下采煤的技术途径。 答:①采空区充填②不迁村全采,采后维修和补偿③不迁村条带开采④不迁村就地重建抗采动变形建筑 2、设置缓冲沟、变形缝的主要作用是什么? 答:缓冲沟的作用:在地表受到采动影响产生拉伸或压缩水平变形时,缓冲沟可以部分地吸收地表曲率或水平变形,使受缓冲沟保护的建筑物的水平变形小于地表的变形,从而也就保护了建筑物。 变形缝的作用:一方面通过减小单元长度、简化形状和载荷减轻建筑物的实际变形,提高建筑物的抗变形能力;另一方面,由于存在变形缝,地表的变形将集中于变形缝处,从而也就减轻建筑物各独立单元体所需承受的变形,保护了建筑物。 2、掌握铁路下开采的地面维修措施。 答:①路基的维修——在开采过程中,随着线路的下沉和横向移动,对路基要进行阶段性的抬高与加宽,使其尽量恢复到开采前的状态。 ②线路下沉的维修——采用起道和顺坡的方法消除线路下沉,使线路纵断面恢复到原有状??? ?????+=? -1221)(002λππλd e W x W x r 220)(r x e i x i π-=220)(r x e U x U π-=2213.4)(0r x e r x K x K π--=2213.4)(0r x e r x x πεε--=

地表变形计算系统使用手册

地表变形计算及预计系统使用手册 一.系统功能简介 地表变形计算及预计系统程序包括了“三下采煤“中的所有内业计算,主要包括地表移动观测站的内业计算和变形预计两大功能。 1、地表观测站的内业计算包括: (1)、检查水准记录本。 (2)、水准标高计算,同时建立标高数据库。 (3)、检查边长测量记录本。 (4)、计算各个点之间的边长,同时建立边长数据库。 (5)、计算每次的下沉值。 (6)、计算综合变形。 (7)、汇总每一次的下沉值。 (8)、计算下沉曲线数据。 (9)、自动生成实测下沉曲线。 2、变形预计计算包括: (1)、单点变形预计,自动生成计算成果表。 (2)、显示、打印变形预计成果表。 (3)、计算下沉、倾斜、水平变形、曲率、水平移动等值曲线数据。 (4)、生成下沉、倾斜、水平变形、曲率、水平移动等值曲线。 二.系统具体菜单使用说明 程序运行以后屏幕上显示如下: 一、观测站 观测站有以下4个子菜单: 1、选择观测站名称

观测站名称是系统计算的主要参数,一个观测站只有一个名称,只有选择了观测站名称才能选择观测站走向线、倾向线名称、才能进行标高计算菜单、边长计算菜单、才能进行下沉计算、变形计算。只有选择了观测站的走向线、倾向线名称才能建立边长数据库,才能计算综合变形。因此,在程序运行以后,如果不选择观测站名称就无法选择走向线、倾向线名称,也就造成本程序大部分菜单都是灰色的,菜单功能失效。 选择该子菜单出现以下选择框 在左列表框内选择观测站名称,如果选择“14307东“,在右列表框内则自动列出该观测站的所有走向线、倾向线名称供用户选择,屏幕显示如下: 在选择好以后按“确定“按钮。 添加观测站:在左边小方框内输入观测站名称,然后按左边方框的“添加 “按钮,一个新的观测站名称添加到数据库中。 添加走向、倾向线:先选择观测站名称,然后在右小方框内输入走向线名称或倾向线名称,然后按“添加“按钮,新的走向线名称或倾向线名称将添加到数据库中。 删除观测站:在左列表框内选择观测站名称,然后按“删除”按钮,该观测站名称将从数据库中删除。 删除走向、倾向线:在右列表框内选择走向线或倾向线名称,然后按“删除“按钮,该走向线或倾向线名称将从数据库中删除。

拐点偏移距的影响因素及形成机理_郝延锦

2000年第1期 中州煤炭 总第103期 收稿日期:1999-10-12 作者简介:郝延锦(1965-),男,山西翼城县人,讲师,硕士,现从事开采沉陷方面的教学与研究工作。 拐点偏移距的影响因素及形成机理 郝延锦,吴立新 (中国矿业大学北京校区,北京 100083) 摘要:在整理和分析实测资料的基础上,研究了拐点偏移距的统计规律,并分析了拐点偏移距在开采过程中的形成机理。 关键词:拐点偏移距;硬岩层;采深;采动系数中图分类号:TD821 文献标识码:A 文章编号:1003-0506(2000)01-0004-02 在开采沉陷预计中,概率积分法是应用最广的一 种预计方法,拐点偏移距是其预计过程中的一个重要参数,它的大小直接影响着预计地表下沉盆地的形状和范围,目前要提高概率积分法的预计精度,重要的是要提高它的预计参数的准确性,因此,研究拐点偏移距的变化规律和形成机理具有重要的意义。 1 影响拐点偏移距的因素 1.1 硬岩层对拐点偏移距的影响 根据规程规定:岩层硬度系数f >6的属坚硬岩层,硬度系数f =3~6的为中硬岩层,硬度系数f <3的属软弱岩层。一般情况下认为,如果覆岩中硬岩层所占比例较大,那么拐点偏移距也较大。但对我国各主要矿区(77个煤矿或观测线,工作面的地质采矿条件为较薄松散层、开采厚度平均2.6m 、均为走向长壁开采、全陷法管理顶板)实测的、比较完整的地表移动资料进行综合分析后发现:拐点偏移距的大小和拐点偏移距的正负与硬岩层所占覆岩比例的大小没有显著的统计关系,也就是说,有的工作面覆岩中硬岩层所占比例较大且拐点偏移距较小,而有的工作面覆岩中硬岩层所占比例较小且拐点偏移距较大。例如包头河滩沟矿西二区,硬岩层占覆岩比例为91%,拐点偏移距为-30.5m ,而彩屯矿走向硬岩层占覆岩的比例为64%,拐点偏移距为+52m 。还有覆岩中同样没有硬岩层,但也有出现较大的正偏移距和负偏移距的现象。从统计中还发现:拐点偏移距为负值的比例为58%,拐点偏移距为正值的比例为38%,拐点偏移距为0的比例为4%。1.2 采深对拐点偏移距的影响 在对实际资料分析中发现,采深对拐点偏移距的影响较为显著,如图1是采深与正拐点偏移距的关系曲线图,图2是采深与负拐点偏移距的关系曲线图 。 图1 采深与正拐点偏移距曲线 从采深与拐点偏移距的回归曲线(图1和图2)中可以看出,无论是正拐点偏移距还是负拐点偏移距都是随着采深的增大而增大,但正拐点偏移距随采深变化的曲线要比负拐点偏移距随采深变化曲线陡峭,即采深对正拐点偏移距影响较大,对负拐点偏移距影响较小;但对何时出现正拐点偏移距、何时出现负拐点偏移距的机理有待进一步研究和探讨 。 图2 采深与负拐点偏移距曲线 1.3 采动程度对拐点偏移距的影响 采动程度是指地下矿层开采使得地表移动和变形的程度,它一般情况下可用采宽与采深的比值(D /H )来表示,其表达式为 n =K D H 式中 D —工作面的采宽,m ; H —工作面的平均采深,m ; K —小于1的系数,由实测或类比确定,一般取 0.8; · 4·

弱胶结覆岩高强度开采岩层与地表移动规律研究

弱胶结覆岩高强度开采岩层与地表移动规律研究本文以营盘壕煤矿2201工作面地质采矿条件为依托原型,采用实测数据分析、数值模拟实验与相似材料模拟实验相结合的方法,对弱胶结覆岩高强度开采下的地表与岩层移动变形规律进行了研究,取得的主要研究成果如下:1)对营盘壕矿区岩层进行实地取样并进行力学实验,实验表明90%的岩层抗压强度均低于30MP,且岩层结构均以泥质胶结为主,具有胶结性差、易风化、对扰动敏感等物理特性,故确定了营盘壕矿区上覆岩层均属于弱胶结性岩层。2)根据现场实测数据绘制出了地表移动变形曲线图,揭示了弱胶结覆岩地表动态移动变形的变化规律;并进一步详细对比分析了营盘壕煤矿与临近的小纪汗煤矿的地质采矿参数与岩层结构,采用类比法确定了营盘壕煤矿2201工作面地表预计参数大小。3)采用数值模拟实验研究了一次性采全高与分层开采两种开采方式下的地表与覆岩移动变形规律以及覆岩内部应力场、塑性区变化规律,揭示了在弱胶结覆岩地层条件下更适合一次性采全高的开采方式,为2201工作面实际开采时提供了理论支撑。4)将理论分析与相似材料模拟实验结果相结合,得出了直接顶应力随着距离开切眼距离的不同而呈现不同类型函数的变化规律;且在高围压状态下,弱胶结覆岩由于自身物理性质而易产生假塑性弯曲,这些“假塑性体”内部产生了与正应力呈不同角度的裂隙,依然可以看成为两端固定,中间悬空的“简支梁”平衡结构;对于地表移动变形而言,下沉曲线收敛速度较一般地质采矿条件下的地表下沉曲线收敛速度慢,且下沉值偏小。5)以弱胶结覆岩岩层动态移动过程为研究基

础,建立了弱胶结覆岩开采岩层移动力学模型。并以该力学模型为理论依据,结合材料力学相关知识,推导出了新的弱胶结覆岩开采垮落带发育高度的预测方法。6)理论分析了弱胶结覆岩地表下沉系数远远小于我国东部软岩条件下开采的经验下沉系数的四个因素。三个次要因素:弱胶结覆岩水化膨胀因素、似“覆岩离层注浆”因素、冲洪积砂的流动性因素;一个主要因素:岩层的巨厚特性因素。岩层巨厚的特点使得其在岩层移动变形向地表传递的过程中形成了类似于东部煤矿坚硬岩层的抗变形的作用。

相关主题
文本预览
相关文档 最新文档