当前位置:文档之家› 液压系统故障智能诊断技术的研究与发展

液压系统故障智能诊断技术的研究与发展

液压系统故障智能诊断技术的研究与发展
液压系统故障智能诊断技术的研究与发展

液压系统故障智能诊断技术的研究与发展

周宏林

(苏州大学机电工程学院,江苏苏州215021)

摘要:介绍了液压系统故障的特点、液压系统故障智能诊断技术的发展历史和研究现状;提

出了液压系统故障智能诊断领域目前和将来的研究方向。

关键词:液压系统;故障;智能诊断

中图分类号:TH137;T P277文献标识码:A文章编号:1671-5276(2004)02-0016-03

Research and Development on Fault Intelligent Diagnosis of Hydraulic Systems

ZHOU H ong-lin

(Colleg e of Mechanical and Electrical Engineering,Suzhou University,JS Suzhou215021,China) Abstract:T his article beg ins w ith the brief introduction to specialities on fault of hydraulic systems,then the history and general situation of intelligent technique on fault diagnosis in hydraulic systems are introduced. Last the development trend in this technique is predicted.

Key words:hydraulic system;fault;intelligent diagnosis

0引言

液压系统故障智能诊断技术是人工智能技术在液压系统故障诊断领域中的应用,它是计算机技术和液压系统故障诊断技术相互结合与发展进步的结果。智能诊断的本质特点是模拟人脑的机能,又能比人脑更有效地获取、传递、处理、再生和利用故障信息,成功地识别和预测诊断对象的状态。因此,智能诊断是液压系统故障诊断的一个极具生命力的发展方向。

1液压系统故障的特点

一般液压系统对污染等干扰因素敏感,而液压伺服系统是结构复杂的机、电、液综合系统,其可能的故障既有结构性的,又有参数性的,导致系统具有机液耦合、时变性和非线性等特征。另外液压伺服系统具有自动校正功能,即当一环节发生故障时不易直接察觉。绝大多数液压系统故障是由于油液污染和磨损所引起的,同时由于制造材料和生产工艺缺陷以及疲劳、气蚀等原因导致液压系统故障分布具有明显的随机性。

因此液压系统故障的特点、原因普遍存在模糊性,表现为同一故障可能由不同的原因造成,同一故障可能会产生不同的故障特征,不同的故障也可能引起同样的故障特征,多故障并发时,故障特征更复杂。2液压系统故障智能诊断技术的发展历史

液压系统故障诊断技术正由基于建模处理和信号处理的诊断技术发展成为基于知识处理的智能诊断技术。智能诊断技术在知识层次上实现了辨证逻辑与数理逻辑的集成、符号逻辑与数值处理的统一、推理过程与算法过程的统一、知识库与数据库的交互等功能。目前的研究主要从两方面展开:基于专家系统的液压系统故障智能诊断技术和基于神经网络的液压系统故障智能诊断技术。211基于专家系统的故障智能诊断技术故障诊断专家系统是研究最多、应用最广的一类智能诊断系统。主要用于那些没有精确数学模型或很难建立数学模型的复杂系统。液压系统故障诊断专家系统是在采用先进传感技术与信号处理技术的基础上研制开发的。大致经历了两个发展阶段:基于浅知识的第一代故障诊断专家系统和基于深知识的第二代故障诊断专家系统。近期出现的混合结构的液压系统故障诊断专家系统,是将上述两种方法结合使用,互补不足。

212基于神经网络的故障智能诊断技术神经网络具有的超高维性、强非线性等动力学特性,使其具有原则上容错、结构拓扑鲁棒、联想、推测、记忆、自适应、自学习、并行和处理复杂模式等功能,带来了提供更佳诊断性能的潜在可能性。

#16#http://Z https://www.doczj.com/doc/0c6733305.html,5机械制造与自动化6第33卷第2期

具体应用方式有:从模式识别角度应用神经网络作为分类器进行液压系统故障诊断;从预测角度应用神经网络作为动态预测模型进行液压系统故障预测;利用神经网络极强的非线性动态跟踪能力进行基于结构映射的液压系统故障诊断;从知识处理角度建立基于神经网络的液压系统故障诊断专家系统。

213基于模糊逻辑的诊断方法

模糊逻辑的引入主要是为了克服由于过程本身的不确定性以及噪声所带来的困难,因而在处理复杂系统的大时滞、时变及非线性方面,显示出它的优越性。目前主要有三种诊断思路:一是基于模糊关系及合成算法的诊断,先建立征兆与故障类型之间的因果关系矩阵,再建立故障与征兆的模糊关系方程,最后进行液压系统故障模糊诊断;二是基于模糊知识处理技术的诊断,先建立液压系统故障与征兆之间的模糊规则库,再进行模糊逻辑推理的诊断过程;三是基于模糊聚类算法的诊断,先对原始采样数据进行模糊均值聚类处理,再通过模糊传递闭包法和绝对值指数法得到模糊均值法的初始迭代矩阵,最后用划分系数、划分熵和分离系数等来评价聚类的结果是否最佳。

214基于故障树分析的诊断方法

基于液压系统故障的层次特性,其故障成因和后果的关系往往具有很多层次并形成一连串的因果链,加之一因多果或一果多因的情况就构成故障树。故障树分析法是对液压系统故障形成原因采用从整体到局部按树枝状逐渐细化分析的方法,通过分析系统的薄弱环节和完成系统的最优化来实现对液压系统故障的预测和诊断。

215基于实例推理的诊断方法

实例推理是一种新兴的推理技术,是一种使用过去的经验实例指导解决新问题的方法,其关键是如何建立一个有效的实例索引机制与实例组织方式。基于实例诊断的优点是根据过去液压系统故障实例解决新问题,因而它可以缩短问题求解途径,提高推理效率。

3液压系统故障智能诊断技术的研究现状

液压系统故障智能诊断技术的发展历史不长,研究已经取得了一定的成果。液压系统故障智能诊断专家系统以其知识的永久性、共享性和易于编辑等特点得到人们的普遍重视和利用,特别是在产生式专家系统中,知识是用规则显式地表达的,这种知识通常是系统性、理论性较强的逻辑知识,因此求解结果可靠性高。由于知识是显式的,具有很好的解释能力。然而,随着研究的不断深入,在研究中也发现了一些问题。专家系统的发展遇到了知识获取的/瓶颈0、/窄台阶0等困难。基于神经网络的液压系统故障智能诊断系统,用训练好的网络连接权值表示知识,在知识的获取及表示也存在不足,会导致推理的脆弱性。因此,液压系统的故障特点,决定了其故障诊断必须多种方法综合运用,取长补短。

4液压系统故障智能诊断技术的发展趋势

液压系统故障智能诊断技术发展到现代,已经成为包括多方面内容的系统科学。其发展趋势是与容错控制、冗余控制和解析余度管理等可靠性系统设计相结合,并成为主动维修策略、监测控制、容错控制、自治控制、可信性系统等设计中的一个关键。具体表现在以下几个方面:

411混合智能故障诊断技术的研究

将各种不同的智能诊断技术结合起来的混合诊断系统是智能诊断研究的一个发展趋势。结合方式主要有基于规则的专家系统与神经网络的结合;实例推理与基于规则的专家系统与神经网络的结合;模糊逻辑、神经网络与专家系统的结合等。其中模糊逻辑、神经网络与专家系统结合的液压系统故障智能诊断模型是最具发展前景的,也是目前人工智能领域的研究热点之一。

412多媒体技术应用的研究

多媒体技术应用于测控系统,可实现信息媒体的多样性,它是将各种不同信息转换的集成,最后把数据、文字、声音、图形、图象有机结合在一起综合表现出来。将其应用在液压系统故障诊断技术中,更能满足人与系统的实时性信息交换,而且更具可视性。

413基于网络的远程协作的诊断技术的研究

随着网络技术的发展,实现多专家与多系统的共同诊断,一种有效的解决途径就是建立基于网络的远程液压系统故障诊断与监测系统。网络化的远程故障诊断系统将监测诊断现场和诊断中心由网络联系起来,其中储存了多种的故障诊断知识和经验,可响应不同监测现场用户的使用要求,不同的监测现场可以与同一个诊断中心建立联系。基于网络的远程液压系统故障诊断系统将管理部门、

M achine Building&Au tomation,A pr2004,33(2):16~18#17#

监测现场、诊断专家、液压系统供应商联系起来,形成一个真正开放的系统。

414智能传感器技术的应用

智能传感器是用微处理器控制的具有双向通信功能的先进传感器系统。微处理器能够按照给定的程序对传感器实施软件控制,把传感器从单功能变成多功能,包括数据处理与通信、自适应、自补偿、自校正、自诊断、远程设定、状态组合、消息存储和记忆等功能。可利用液压系统故障诊断专家系统对微传感器进行校正与补偿。

415虚拟现实技术的应用

虚拟现实技术是人们通过计算机对复杂数据进行可视化操作以及交互的一种全新的方式,与传统的人机界面如键盘、鼠标器、图形用户界面等相比,它在技术思想上有了质的飞跃。应用该技术后,用户、计算机和控制对象被视为一个整体,通过各种直观的工具将信息进行可视化,用户直接置身于这种三维信息空间中自由地操作、控制计算机。可以预言,随着虚拟显示技术的进一步发展和在液压系统故障智能诊断技术中的广泛应用,它将给液压系统故障智能诊断技术带来一次技术性的革命。5结论

根据液压系统故障的特点,选择合适的智能诊断技术,各种方法取长补短,才是最有效的故障诊断策略,是液压系统智能故障诊断技术研究的一个发展趋势。

参考文献:

[1]王道平,张义忠.故障智能诊断系统的理论与方法[M].北京:

冶金工业出版社,20011

[2]葛思华.液压系统故障诊断[M].西安:西安交通大学出版社,

19921

[3]黎洪生,杨叔子,等.基于B/S的远程故障诊断专家系统研究

[J].武汉工业大学学报,1999,(8):39-411

[4]郭齐升.模糊综合评判在液压系统故障诊断中的应用[J].甘肃

工业大学学报,1995,(3):611-6161

[5]钟展青,邓家青,等.液压设备故障智能诊断系统(综述)[J].冶

金自动化,2002,(2):23-251

收稿日期:2003-11-10

(上接第7页)

b)/四不要0,包括:

1)不问市场,单纯提高装备及工艺能力,花巨资引进,导致技改/早改早死、晚改晚死和不改等死0的现象,这一传统的技改观念造成了对技术进步的误解;

2)/小而全0、/大而全0的生产模式,/肥水不流外人田0的观念;

3)只依靠基于/廉价劳动力和批量生产0的价格战,而不是依靠产品开发及科技进步;

4)制造学科中部分存在的与经济建设脱节,狭隘的门户观念以及保守性,妨碍了学科和技术的渗透、集成。

10多年863计划的实践,我们在技术与经济的结合中学到并实践了几条最主要的认识:基于国情和对我国企业的瓶颈分析;树立/企业说好,才是真好0的应用技术评价标准;以企业效益和企业竞争力作为技术实施的最终目标,这是观念上的重大进步,这些观念使我们走了一条与美国既有相同之处又有许多不同的创新之路。

7结论

a)正确理解/以信息化带动工业化0的时代特征和战略特征;深入理解/以信息化带动工业化0的带动作用,是实施制造业信息化的最重要基础,认识到位才能行动到位;

b)正确全面理解制造业信息化的内涵可以避免片面性;/效益驱动、总体规划、分步实施、重点突破0,可以克服科技和经济/两张皮0的状况;

c)制造业信息化不只是技术问题,用系统观点特别是复杂系统的方法论做指导,整合管理创新、技术创新、知识创新,确保制造业信息化实施成功;

d)需求分析、技术方案、效益预测是企业实施信息化工程贯穿始终的要点,在企业各种约束条件下不断交互深入;

e)当前需要十分重视降低信息化项目实施的风险;

f)说到底还是转变观念问题,对企业家、技术人员、领导者都是重要的、有现实意义的。

收稿日期:2003--;修回日期:2004-03-18

作者简介:吴澄,男,清华大学自动化系教授、博士生导师、中国工程院院士。国家863计划自动化领域首席科学家、国

家CIM S工程研究中心主任。我国著名自动控制专家,

长期参与并领导我国CIM S的研究和应用,发表论著

100多篇,曾获国家教委科技进步一等奖,国家光华基金

一等奖,首届何粱何利科技进步奖,国家863计划一等

奖、国家科技进步二等奖,美国制造工程学会(SM E)的

CIM S/大学领先奖0等荣誉。

#18#http://Z https://www.doczj.com/doc/0c6733305.html,5机械制造与自动化6第33卷第2期

故障诊断专家系统及其发展

综述与评论 计算机测量与控制.2008.16(9) C omputer Measurement &Control 1217 中华测控网https://www.doczj.com/doc/0c6733305.html, 收稿日期:2008-06-08; 修回日期:2008-07-16。 作者简介:安茂春(1967-),山东莱阳人,副研究员,主要从事测试与故障诊断技术的管理工作。 文章编号:1671-4598(2008)09-1217-03 中图分类号:TP182 文献标识码:A 故障诊断专家系统及其发展 安茂春 (北京系统工程研究所,北京 100101) 摘要:文章对主要的故障诊断专家系统进行了系统的归纳和分类,主要关注故障诊断专家系统在军事领域的应用;重点讨论了基于规则的诊断专家系统、基于模型的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统的技术要点、发展现状、优缺点及其在军事方面的应用;最后,对该学科的发展做出了预测,指出基于多种模型结合的诊断专家系统、分布式诊断专家系统、实时诊断专家系统是今后的发展方向。 关键词:专家系统;故障诊断;军事应用;基于规则推理;建模技术;人工神经网络;模糊推理;基于事例推理 A Survey on Fault Diagnosis Expert Systems An M ao chun (Beijing Institute o f System and Eng ineering ,Beijing 100101,China) Abstract:In this article w e present a s urvey of fault diagnosis expert system s,and categorize them into 5different types according to know ledge organiz ation m ethod and reasoning m ech anis m,w hich are ru le-b as ed fault diagn osis expert system,model-based fault diagnosis ex pert system,n eural netw ork fault diagnosis exp ert sy stem,fuz zy fault diagn osis expert system and cas e-based fault diagn os is expert sys -tem,for each type w e describ e its techn ical pr op erties,curren t status,ad vantag es and disadvantages,and application s in military field.At the end of th is article,w e point out that hybrid model-based,distributed and real-time diagnosis expert sys tems are fu tu re direction s. Key words:ex pert sys tem;fault diagnosis ;military application;rule -b as ed reasoning;modelin g;artificial neural netw or k;fuzzy reasonin g;ease-b as ed reasoning 1 故障诊断专家系统及其分类 专家系统(Ex per t Sy st em,ES)是人工智能技术(A rt if-i cial I ntelligence,A I)的一个重要分支,其智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 故障诊断技术是一门应用型边缘学科,其理论基础涉及多门学科,如现代控制理论、计算机工程、数理统计、模糊集理论、信号处理、模式识别等。故障诊断的任务是在系统发生故障时,根据系统中的各种量(可测的或不可测的)或其中部分量表现出的与正常状态不同的特性,找出故障的特征描述并进行故障的检测与隔离。 故障诊断专家系统是将专家系统应用到故障诊断之中,可以利用领域知识和专家经验提高故障诊断的效率[1]。目前专家系统在故障诊断领域的应用非常广泛,如美空军研制的用于飞机喷气发动机故障诊断专家系统XM AN [2],N A SA 与M IT 合作开发的用于动力系统诊断的专家系统,英国某公司为英美军方开发的直升机发动机转子监控与诊断专家系统[3]等,此外在电力、机械、化工、船舶等许多领域中也大量应用了故障诊断专家系统。 根据知识组织方式与推理机制的不同,可将目前常用的故障诊断专家系统大致分为基于规则的诊断专家系统、基于模型 的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统。 2 故障诊断专家系统对比分析 2 1 基于规则的诊断专家系统 在基于规则的诊断专家系统中,领域专家的知识与经验被 表示成产生式规则,一般形式是:if<前提>then<结论>其中前提部分表示能与数据匹配的任何模型,结论部分表示满足前提时可以得出的结论。基于规则的推理是先根据推理策略从规则库中选择相应的规则,再匹配规则的前提部分,最后根据匹配结果得出结论。 基于规则的诊断知识表达方式直观、形式统一,在求解小规模问题时效率较高,并且具有易于理解与实现的优点,因而取得了一定成功。20世纪90年代,国外在军用水压系统、电力供应网络等方面进行了应用。 但是,对于复杂系统,所观测到的症状与对应的诊断之间的联系是相当复杂的,通过归纳专家经验来获取规则有着相当的难度,且诊断时只能对事先预想到的并能与规则前提匹配的事件进行推理,存在知识获取的瓶颈问题。2 2 基于模型的诊断专家系统 在基于模型的诊断专家系统中,领域专家的专业知识包含在建立的系统模型中,这种基于模型的诊断更多地利用系统的结构、功能与行为等知识。相比基于规则的诊断专家系统,这种诊断方式能够处理预先没有想到的情况,并且可能检测到系统存在的潜在故障。这类系统的知识库相对容易建立并且具有一定的灵活性,已应用于航天器动力燃烧系统故障诊断等方面。

液压系统故障诊断技术的现状与发展趋势

液压系统故障诊断技术的现状与发展趋势 发表时间:2019-05-19T14:53:35.567Z 来源:《防护工程》2019年第1期作者: 1曹晓宁 2马海舰 3赵静思 [导读] 就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。1天津格特斯检测设备技术开发有限公司天津 300380;2天津格特斯检测设备技术开发有限公司天津 300380;3天津格特斯检测设备技术开发有限公司天津 300380 摘要:现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。液压系统重量轻、功率强、运行平稳,而且还能够采取大范围的无极调速,因此被普遍运用到了机械设备当中,同时液压系统一般都运用于控制和自动化这两种系统当中,并且液压系统还可以当做传输动力设备来运用。液压系统的运行能力以及安全性,能够对关键系统形成决定性的影响,要是液压系统出现问题,那么关键系统就会发生停滞的情况,从而让企业的经济收益受到影响,因此相关工作人员一定要掌握合理的液压系统故障诊断技术,从而让液压系统得到安全的运行。 关键词:液压系统;故障诊断技术;现状;发展趋势 引言 液压系统会通过对自身作用力的运用,对压强作用力进行增强。整体液压系统由液压油、动力元件以及执行元件等几部分内容组成,主要分为液压控制系统以及液压传动系统两类。由于其构成零件种类相对较为复杂,且安装位置较为隐蔽,所以一旦系统出现故障,就会出现系统诊断开展难度较大的尴尬局面,因此对液压系统故障诊断技术及其应用展开研究,具有一定现实意义。 1现状 早在上世纪60年代的的时候,我国就已经开始对液压系统故障诊断技术进行研究,主要是利用测量系统的流量、振动等参数,和处理与系统对应的信号,来给液压系统采取诊断。此项技术到了上世纪八十年代以后,因为液压系统具有很多的类型,而且结构也比较的繁杂,导致诊断技术无法给液压系统采取完善的诊断,这给液压系统故障诊断技术的发展造成了很大的影响。根据这些问题,我国的相关专家在经过了长时间的研究和改进以后,让诊断技术的水平得到了一定程度的提高,不但能够确保液压故障诊断的完善性,另外也能够给故障信息进行保存,这样的话就可以让液压系统得到更加完善的运维管理,从而进一步加强了液压系统的工作效率。 2液压系统故障诊断技术应用分析 2.1仪表测量技术 该项技术主要会通过对测试仪的运用,完成对系统故障的诊断。此设备主要由流量计、压力表以及安全阀等部件所组成,在具体测试过程中,技术人员会通过串联的方式将测试仪接连在相应回路之中,并会通过断开原主油路的方式,确保压力油可以经由测试仪流回到油箱之中,以便利用逐渐加载的方式完成相应诊断。所以该测试仪能够同时完成对系统监测点的流量以及压力测试工作,可以对执行元件、动力元件以及控制元件的工况与性能进行明确,以确保可以在短时间内完成故障位置查找。 2.2智能诊断技术 智能诊断技术种类相对较多,现阶段较为常用的技术主要有以下几种:1)专家系统。该项技术主要用于复杂系统诊断,是以信号处理以及传感技术为依托研发得到的。在具体应用过程中,技术人员会将故障现象经由用户接口输入到电脑终端,而电脑会按照数据库内信息对现象产生原因进行推理与分析,进而找出故障原因并会提供相应预防措施与维修方案,以供技术人员进行使用[2]。2)人工神经网络。此种诊断技术有效利用了神经网络所具有的计算、非线性以及自学习等方面能力,能够对系统故障进行准确判断,诊断效果较为理想。就某一角度而言,此项技术主要分为知识处理以及模式识别两种,其中在实施模式识别诊断时,会将神经网络作为分类器完成相应系统故障识别。 2.3四觉诊断技术 所谓“四觉”,就是利用嗅觉、触觉等较为直观的方式对系统故障进行获取。此种方式相对较为简单,技术人员会通过用手直接触摸的方式,明确液压泵表面是否存在过热问题或管路以及元件振动情况;会通过仔细观察的方式,对油温计、测点压力表以及真空表等设备数值合理性进行检查,以便及时发生异常数值,并准确找到数据产生原因等。与其他诊断技术相比,此种技术受技术人员自身能力以及感觉灵敏度的影响相对较大,只能作为定性判断,还需要展开后续检测,才可以查明故障产生真正原因。 3液压故障诊断技术的发展趋势 3.1经验知识和原理知识要紧密融合 若想加强液压故障智能诊断系统的能力,有关工作者要在研究液压系统故障诊断系统期间,掌握有关的专业知识,另外,还要掌握液压系统的结构和主要功能,要是在研究液压系统故障诊断期间,不重视对某一方面的研究的话,那么就会降低诊断效果。所以,相关工作者要把专业知识和诊断技能有效的融合到一起,然后再把两者结合到故障诊断系统里,安排合理的分析形式,还要保证所有的分析形式都可以单独运行,如此一来就可以慢慢的把液压系统故障诊断的系统的性能进行加强,让它能够变成具备专家级知识的诊断系统。 3.2多种智能故障诊断方法的混合 目前,液压系统故障诊断系统都在朝着技术融合的方向发展,也就是说把多种技术融合到一起,构成混合诊断系统。在智能技术进行融合期间,包括把专家诊断系统与神经网络采取有机融合,然后在里面加进模糊逻辑等。混合智能诊断方式的发展方向,就是要把传统的诊断系统转化为混合系统,把专家传播的知识转化成系统自主学习以及分析的系统,把单纯的推理转换为混合推理系统等。智能液压系统诊断系统在自主学习和诊断等方面都取得了突破性进展,所以目前受到了普遍的青睐。 3.3虚拟现实技术会得到重视和应用 在多媒体技术之后,虚拟现实技术开始得到人们普遍的关注,此项技术的存在感、感知性等都比较强。从表面进行分析,虚拟现实技术以及多媒体技术具有很多共同特征,所以人们能够更快的接受虚拟现实技术,不过虚拟现实技术可以让人们使用计算机来对很多的信息可视化,其属于交互性技术方式,和传统的人机界面采取对比的话能够发现,虚拟现实技术具有更好的应用价值。

故障诊断技术发展现状

安全检测与故障诊断 题目:故障诊断技术发展现状 导师:魏秀琨 学生姓名:刘典 学号:14114263

目录 1 引言 (3) 2 故障诊断的研究现状 (3) 1.1基于物理和化学分析的诊断方法 (3) 1.2基于信号处理的诊断方法对 (3) 1.3基于模型的诊断方法 (3) 1.4基于人工智能的诊断方法 (4) 2故障诊断研究存在的问题 (6) 2.1故障分辨率不高 (7) 2.2信息来源不充分 (7) 2.3自动获取知识能力差 (7) 2.4知识结合能力差 (7) 2.5对不确定知识的处理能力差 (7) 3发展方向 (8) 3.1多源信息的融合 (8) 3.2经验知识与原理知识紧密结合 (8) 3.3混合智能故障诊断技术研究 (9) 3.4基于物联网的远程协作诊断技术研究 (9) 4发展方向 (9)

1 引言 故障可以定义为系统至少有一个特性或参数偏离正常的范围,难于完成系统预期功能的行为。故障诊断技术是一种通过监测设备的状态参数,发现设备的异常情况,分析设备的故障原因,并预测预报设备未来状态的技术,其宗旨是运用当代一切科技的新成就发现设备的隐患,以达到对设备事故防患于未然的目的,是控制领域的一个热点研究方向。它包括故障检测、故障分离和故障辨识。故障诊断能够定位故障并判断故障的类型及发生时刻,进一步分析后可确定故障的程度。故障检测与诊断技术涉及多个学科,包括信号处理、模式识别、人工智能、神经网络、计算机工程、现代控制理论和模糊数学等,并应用了多种新的理论和算法。 2 故障诊断的研究现状 1.1基于物理和化学分析的诊断方法 通过观察故障设备运行过程中的物理、化学状态来进行故障诊断,分析其声、光、气味及温度的变化,再与正常状态进行比较,凭借经验来判断设备是否故障。如对柴油机常见的诊断方法有油液分析法,运用铁谱、光谱等分析方法,分析油液中金属磨粒的大小、组成及含量来判断发动机磨损情况。对柴油机排出的尾气(包含有NOX,COX 等气体) 进行化学成分分析,即可判断出柴油机的工作状态。 1.2基于信号处理的诊断方法对 故障设备工作状态下的信号进行诊断,当超出一定的范围即判断出现了故障。信号处理的对象主要包括时域、频域以及峰值等指标。运用相关分析、频域及小波分析等信号分析方法,提取方差、幅值和频率等特征值,从而检测出故障。如在发动机故障领域中常用的检测信号是振动信号和转速波动信号。如以现代检测技术、信号处理及模式识别为基础,在频域范围内,进行快速傅里叶变换分析等方法,描述故障特征的特征值,通过采集到的发动机振动信号,确定了试验测量位置,利用加速传感器、高速采集卡等采集了发动机的振动信号,并根据小波包技术,提取了发动机故障信号的特征值。该诊断方法的缺点在于只能对单个或者少数的振动部件进行分析和诊断。而发动机振动源很多,用这种方法有一定的局限性。 1.3基于模型的诊断方法 基于模型的诊断方法,是在建立诊断对象数学模型的基础上,根据模型获得的预测形态和所测量的形态之间的差异,计算出最小冲突集即为诊断系统的最小诊断。其中,最小诊断就是关于故障元件的假设,基于模型的诊断方法具有不依赖于被诊断系统的诊断实例和经验。将系统的模型和实际系统冗余运行,通过对比产生残差信号,可有效的剔除控制信号对

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

智能故障诊断技术知识总结复习课程

智能故障诊断技术知 识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较 和推理能力,能根据复杂环境变化做出正确决策和适应 环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况:

1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表 现出层次性。一般可分为系统级、子系统级、部件级、 元件级等多个层次;高层故障可由低层故障引起,而低 层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互 影响,如系统故障常常由相关联的子系统传播所致。表 现为,一种故障可能对应多种征兆,而一种征兆可能对 应多种故障。这种故障与征兆间的复杂关系导致了故障 诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性 故障的出现通常都没有规律性,再加上某些信息的模糊 性和不确定性,就构成了故障的随机性。

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压系统的故障诊断与维修

液压系统的故障诊断与 维修 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

液压系统的故障诊断与维修随着液压技术的发展进步,以及一些与液压技术相关的技术产业的进步,液压系统的工作性能较以前有了很大进步。其中液压传动系统的改进最为明显,它相对于其他的液压技术有着更多的优点,因此在实际应用中也很广泛。然而,针对液压系统的故障的研究一直以来都是人们关注的焦点,尤其是故障的诊断和维修方面。 对于液压系统的故障诊断有很多的方法来参考,本文主要是从液压系统的故障的特点出来来介绍几种常见的故障诊断方法,包括观察判断法、仪器诊断法、元件对换法、定期检查法,然后针对故障提供了一些维修的方法,并对液压系统的故障的预防提供了一些意见,并对不同的液压系统的维修做了分析。 液压技术在现在的工程项目中应用越来越广泛,我国的工程机械也在不断的进步。因此对于液压系统的安全性就提出了更高的要求,系统的安全和可靠完全决定着工程的进度。降低液压系统的故障发生率以及加强液压系统的故障预防成为现在液压系统的重中之重。 1.故障诊断的方法

对于液压系统的故障诊断通常是由表及里的进行检测,主要是观察诊断法、仪器诊断法、元件对换法、定期检查法四种方法。 1.1观察判断法 所谓的观察判断就是通过外在的观察来判断故障的所在。主要是通过液压系统的异常表现来进行判断的,例如外部泄漏、一些部件额不正常运转、仪表指示出错、部件发热等等异常表现,这些异常都能在一定程度上反映出液压系统出现了某些部位的故障,通过观察分析,以及再通过一些操作试验,再利用一些短路、断路的检测方法,最终可以对一些故障进行判断,并采取一定的措施进行故障的排除。 1.2仪器诊断法 仪器诊断法指指通过PFM型万能液压检测仪来对故障部分进行检测和排除,PFM型仪表是对液压系统的流量、温度以及系统部件的转速进行检测的仪器,这种仪表遍布全系统,随时对各项数据进行检测。 在利用检测仪对系统进行故障检测时,要根据一定的顺序,依次对各个部件进行检测,并逐一的进行故障排除。

全国液压系统维修及故障诊断技术培训班

目录 第一章液压传动基本知识 (33) 一、液压传动的工作原理 (33) 二、液压传动工作特性 (33) 三、液压传动系统的组成 (44) 四、液压传动系统的图形符号 (55) 第二章常用液压元件 (55) 一、液压泵 (55) 二、液压缸 (88) 三、液压马达 (1010) 五、液压辅助元件 (1414) 第三章液压系统的使用维护与管理 (1616) 一、液压系统的安装与试压 (1616) 二、液压系统的正确使用 (1717) 三、液压系统的维护 (1717) 四、液压系统的点检管理 (1919) 五、运行中期液压设备的管理要点 (2121) 六、常用液压元件的维护与修理 (2121) 第四章工作介质的使用和管理 (2626) 一、工作介质的种类 (2626) 二、对工作介质的基本要求 (2727) 三、液压油液的基本性质 (2727) 四、工作介质的选用 (2828) 五、工作介质的储存保管 (3030) 六、液压系统的换油方式 (3030)

七、工作介质的取用 (3030) 八、工作介质变质的原因 (3131) 九、工作介质变质的控制 (3131) 十、工作介质的合理使用 (3232) 第五章液压系统的泄漏与密封....................... 错误!未定义书签。错误!未定义书签。 一、液压系统的泄漏............................. 错误!未定义书签。错误!未定义书签。 二、液压系统的密封............................. 错误!未定义书签。错误!未定义书签。第六章液压系统的污染控制......................... 错误!未定义书签。错误!未定义书签。 一、液压系统污染的原因......................... 错误!未定义书签。错误!未定义书签。 二、液压系统污染的类型及危害................... 错误!未定义书签。错误!未定义书签。 三、液压系统污染的控制......................... 错误!未定义书签。错误!未定义书签。 四、工作介质的污染度测定....................... 错误!未定义书签。错误!未定义书签。第七章液压系统故障诊断........................... 错误!未定义书签。错误!未定义书签。 一、液压系统故障的概念......................... 错误!未定义书签。错误!未定义书签。 二、液压系统故障分类........................... 错误!未定义书签。错误!未定义书签。 三、液压系统故障的特点......................... 错误!未定义书签。错误!未定义书签。 四、液压系统故障对设备及其工作的影响........... 错误!未定义书签。错误!未定义书签。 五、液压系统故障诊断的工作内容................. 错误!未定义书签。错误!未定义书签。 六、液压系统常见故障现象及其原因............... 错误!未定义书签。错误!未定义书签。 七、液压系统故障排除的步骤..................... 错误!未定义书签。错误!未定义书签。 八、液压系统故障诊断的层次和方法............... 错误!未定义书签。错误!未定义书签。 九、液压系统常见故障分析....................... 错误!未定义书签。错误!未定义书签。 十、现代液压故障诊断的技术途径................. 错误!未定义书签。错误!未定义书签。

智能故障诊断技术知识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较和推理能力, 能根据复杂环境变化做出正确决策和适应环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况: 1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表现出层次性。 一般可分为系统级、子系统级、部件级、元件级等多个层次;高层故 障可由低层故障引起,而低层故障必定引起高层故障。诊断时可采用 层次诊断模型和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互影响,如系统 故障常常由相关联的子系统传播所致。表现为,一种故障可能对应多 种征兆,而一种征兆可能对应多种故障。这种故障与征兆间的复杂关 系导致了故障诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性故障的出现通 常都没有规律性,再加上某些信息的模糊性和不确定性,就构成了故 障的随机性。 4可预测性——设备大部分故障在出现之前通常有一定先兆,只要及时捕捉这些征 兆信息,就可以对故障进行预测和防。 □故障诊断: ■故障诊断的概念 故障诊断就是对设备运行状态和异常情况做出判断。具体说来,就是在设备没有发 生故障之前,要对设备的运行状态进行预测和预报;在设备发生故障之后,要对故 障的原因、部位、类型、程度等做出判断;并进行维修决策。 ■故障诊断的实质及其理解 故障诊断的实质——模式识别(分类)问题

嵌入式智能故障诊断系统设计

嵌入式智能故障诊断系统设计 摘要:针对传统的故障诊断方法精度不高,实时性不好的问题,在嵌入式系统 环境下进行故障实时诊断系统的优化设计。本文首先分析了机械状态监测及故障 诊断的相关理论,然后详细分析了嵌入式智能故障诊断系统的设计与实现。实验 结果表明,采用该故障诊断系统进行滚动轴承故障实时检测非常便捷实用又适于 后续联网管理。 关键词:嵌入式系统;滚动轴承;故障诊断;硬件系统 引言 随着现代科技的不断发展,机械设备早已不是一个纯机械装备,而是融合了自动控制、 液压与气压传动等技术的结构和功能都十分复杂的系统。这给机械运行状态的监测和故障诊 断提出了越来越高的要求。机械运行过程中发生的故障不仅会导致重大经济损失,还可能给 人身安全带来极大威胁。因此,实时监测机械设备的运行工况并及时诊断故障,对经济效益 和社会效益的提高都有极其重要的意义。 1 机械状态监测和故障诊断的相关理论 机械诊断技术是通过监测机械设备运行状况,发现故障并预报故障发展趋势,诊断故障 类型及故障原因,确保机器正常运转的技术。目前,普遍采用的机械诊断技术有振动监测、 油液监测、噪声监测和无损探伤等。油液光谱分析技术通过分析机油中的金属颗粒物浓度, 能准确判断机械设备传动系统是否存在磨损型故障隐患。无损探伤技术利用物质的光、磁和 电等特性,能够在不损坏工件或改变机械设备运行状态的前提下准确完成机械部件工况的监测。 故障机理分析是机械诊断的关键。故障机理是在理论研究和实验分析的基础上得到的反 映故障信号和机器参数关系的表达式。从采集到的机械设备的状态信号,它能方便诊断出故 障的位置。这些状态信号通常是机械设备运行过程中表现出来的物理或化学现象,如机械振动、运行噪声、机器温度、油压波动、功耗增多和异常气味等。机械运行状态监测是通过各 种传感器采集机械设备运行过程中的物理或化学状态信号,并据此诊断故障的类型及原因。 故障信号的提取与处理是机械诊断中的重要步骤。通过分析传感器采集到的反映机械设备运 行状态的信号,提取出机械故障特征信息,从而为故障类型和故障原因的准确诊断提供可靠 的依据。信号处理方法经历了从时域分析到频域分析,再由频域分析到时频域分析的发展过程。频域分析将采集到的机械状态信号从时域变换到频域。典型的频域分析法有基于快速傅 里叶变换的经典谱估计法和现代谱估计法。时频分析技术同时在时域和频域分析机械非平稳 信号,其中Wigner-Ville时频分布等时频分析技术在机械诊断中得到了普遍应用。 2 嵌入式智能故障诊断系统设计 本系统将整体结构分为四层,包括管理层、功能层、推理层和数据层。管理层主要负责 整个系统的管理机制与通信机制。决策需要通信的Agent双方需要对话,还是需要进行知识 的交换。二是要Agent之间的关系作出判断。Agent之间的交互有两种关系:正关系和负关系。正关系表示Agent的规划有重叠的部分,或某个Agent具备其他Agent不具备的能力, 各Agent可通过管理层的协调获得帮助,负关系会导致冲突。管理层要进行协调,达到冲突 的消解的目的。功能层是多Agent诊断系统的核心层。主要包括知识处理、特征提取、实时 监控、故障诊断与故障决策等功能组件。推理层处于数据层和功能层之间。主要提供各功能 组件所需的知识或数据,并对推理机制进行定义。数据层包括数据库、知识库与扩展知识库 三个方面。数据库主要用于存储由传感器获得的各种信息,知识库为众多相关领域的专家的 经验总和。扩展知识库主要是为系统的日后扩展诊断功能留下接口。在管理层中主要有两个Agent:管理Agent和数据传输Agent。管理 Agent负责协调各Agent和通信,数据传输Agent 负责与后台计算机上的通信Agent之间传输巡检数据。具体诊断时,数据采集子系统将被诊 断设备的运行状态、参数等数据采集输入到诊断系统,一方面提供给PC端显示,另一方面,将数据提供给诊断方法 Agent,形成诊断请求。管理Agent对诊断请求进行任务分解,得出 多个子任务,再根据对诊断Agent的认识,将诊断任务分配给适当的诊断Agent。管理Agent 还要负责诊断Agent间的工作协调、协作和借助于KQML语言通信,以及将各诊断Agent的

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

智能诊断

智能诊断技术综述 摘要:设备故障诊断技术是在电子、计算机技术的发展中产生的一门技术。当1个系统的状态偏离正常状态时,就称该系统发生了故障,此时系统可能完全也可能部分丧失其功能。故障诊断就是寻找故障原因的过程,包括状态检测、故障原因分析及劣化趋势预测等内容。传统故障诊断技术在分析结构比较复杂的深层次故障时效果不理想,且对操作员能力要求较高;而人工智能技术的发展,则使诊断技术走向了智能化[1]。由于智能故障诊断技术可模拟人类的逻辑思维和形象思维,将人类各种知识融入诊断过程,故可实现对大型复杂设备的实时、可靠、深层次和预测性故障诊断,获得的诊断信息就能准确地对诊断对象的状态进行识别和预测。因此这一技术也受到了世界各国工程研究人员的普遍重视。目前,随着基于行为的人工智能、分布式人工智能、多传感器信息融合技术以及新理论的提出与发展,故障诊断也获得了新的发展机遇[2]。 基于建模处理和信号处理的诊断技术正发展为基于知识处理的智能诊断技术。智能诊断技术在知识层次上实现了辩证逻辑与数理逻辑的集成、符号逻辑与数值处理的统一、推理过程与算法过程的统一、知识库与数据库的交互等功能,目前的研究主要从两方面展开:基于专家系统的智能故障诊断技术和基于神经网络的智能故障诊断技术[3]。 图一智能诊断系统的功能模块 1智能诊断技术 (1)基于专家系统的智能诊断技术 故障诊断专家系统是诊断领域引人注目的发展方向之一,也是研究最多、应用最广的一类智能诊断技术,主要用于那些没有精确数学模型或很难建立数学模型的复杂系统。大致经历了两个发展阶段:基于浅知识的第一代故障诊断专家系统和基于深知识的第二代故障诊断专家系统。近期出现的混合结构的专家系统,是将上述两种方法结合使用,互补不足。基于浅知识(人类专家的经验知识)的故障诊断系统是以领域专家和操作者的启发性经验知识为核心,通过演绎推理或产生式推理来获取诊断结果,目的是寻找一个故障集合使之能对一个给定的征兆(包括存在的和缺席的)集合产生的原因做出最佳解释[4]。基于深知识(诊断对象的模型

相关主题
文本预览
相关文档 最新文档