当前位置:文档之家› 锅炉汽包水位测量问题分析及技术措施

锅炉汽包水位测量问题分析及技术措施

锅炉汽包水位测量问题分析及技术措施
锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进

孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1

(1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波

市,315612)

摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。

关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计

doi:10.3969/j.issn.1000-7229.2010.10.000

Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant

SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province,

China)

ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column.

KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter

0 引言

汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。

1 存在的主要问题

1.1 模拟量测量信号系统存在的问题

目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面:

(1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。

(2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。

(3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

(4)有的锅炉差压式水位测量装置取样管安装不规范,如倾斜度不足,甚至有个别差压水位计取样管基本水平。

(5)通常汽包水位测量信号处理在模拟量控制系统(modulation control system ,MCS )系统中,水位保护逻辑在锅炉炉膛安全监控系统(furnace safeguard supervisory system ,FSSS )系统中。有的机组将2者之间的信号传输通过网络通讯进行,这种做法从安全性角度考虑,降低了信号处理的可靠性。

(6)通常MCS 系统中设置有3个差压信号值偏差大切除汽包水位自动至手动并报警功能。运行过程中,由于测量管路和平衡门漏点、变送器柜保温装置投入后的温度昼冷昼热等原因,引起偏差大导致调节系统自动切手动的故障有时发生。

1.2 就地水位计存在的问题

就地汽包水位测量均配置了2台双色水位计,电接点水位计除少数电厂未配置或配置1台全量程外,其余均配置了2台。这些就地水位计在运行中除之间偏差大外,还存在以下主要问题:

(1)汽包就地水位计的测量中,存在汽水侧连通管的倾斜度不满足要求、就地电接点水位计未保温情况(有的电厂因保温后与其他测量原理测得的示值偏差增大而拆除了保温)。就地水位计采用的是连通管式测量方法,其测量准确度很大程度上取决于汽水侧连通管的倾斜度(保证连通管内不饱和水的循环倍率)和保温情况。

(2)就地双色云母水位计易发生云母片损坏、泄露现象,且云母窗易结垢,不少双色云母水位计检修投运不长时间后,就因结垢看不清水位示值。

(3)电接点水位计泄漏现象频繁发生:比如某电厂原电接水位测量筒型号为UDZ-02-19Q ,电极使用寿命短,在高温、高压状态下,经常发生电极断裂、破损等泄漏故障。据2008年2—4月份3个月的不完全统计,4台锅炉的汽包电接点水位计就发生缺陷12次(其中有11次更换电极);累计缺陷持续时间99 h 38 min ,平均每次故障持续时间8 h 18 min 。

(4)电极老化和被污垢附着等原因,导致电接点水位计的电极挂水现象时有发生。 2 测量偏差原因分析

引起汽包水位测量偏差,经分析有安装、维护和环境等原因,也有测量原理上存在的不足因素引起,下面分别进行分析讨论。

2.1 水位取样装置的安装位置影响

对于运行机组汽包水位取样装置的标高,多数电厂比较注意冷态的核对与修正,而对热态的标高位置较少去关心。实际上由于取样管路的长度不一、环境温度的不同,特别是有的正压侧单室平衡容器没有固定支架,这将导致连通管1:100的倾斜角度无法控制,会出现冷态修正一致的标高在热态时发生不同的偏离,甚至在热应力作用下改变倾斜方向,使平衡容器无法形成足够稳定的两相流,导致平衡容器内温度过低,对测量结果产生影响。

2.2 参比水柱密度受环境温度影响

单室平衡容器引出管内水温陡度的存在和环境温度的变化,引起参比水柱密度变化的不确定性,是造成测量示值偏差的主要原因。浙江嘉兴发电厂热工人员对相同负荷(600 MW )、不同的环境温度条件下的参比水柱温度梯度进行了测量,结果表明单室平衡容器冷凝器的竖直管段(参比水柱)温度有较大差异,并且温度的分布为非线性。

图1是某电厂1号锅炉于2007年3月在运行压力下,测得的平衡容室下的参比水柱仪表管(在不保温情况下)每隔100 mm 处的温降示意图。图1中H 为平衡容器中心线至下取样孔的距离,A 为汽包零水位到平衡容器中心线的距离,B 为汽包零水位到下取样孔的距离,h 为实际水位与零水位线的差,

a ρ为参比水柱密度,w ρ为饱和水密度,s ρ为饱和蒸汽密

度。此温度分布受汽包内参数和冷凝罐外环境温度的影响,使参比侧的水密度总是处于一种变化的状态,因此其测量误差是不恒定的。

图1 汽包水位参比水柱温降示意图

Fig.1 The graph indicating of a reference point for the drum water level measurement as the

temperature is going down

据计算表明,在汽包压力17~18 MPa 时,平均温度相差10 ℃,由此引起的水位差值约为10 mm [2]。浙江北部地区测量筒旁夏冬2季环境温度可相差30 ℃。如果不对参比水柱进行温度补偿,或者只是简单地设定为一个50 ℃的温度补偿值,可能影响的水位差值为40~80 mm 。

2.3 分散控制系统内补偿公式不正确

分散控制系统(distribution control system ,DCS )内水位计算公式通常由DCS 厂家提供。一方面机组从启动到全负荷运行,汽包压力变化范围较大,一些机组DCS 的补偿公式中,对汽包压力的补偿不是全程,而是采用多段折线方式进行,因此在消除汽包压力变化影响方面会存在一定的附加误差。另一方面DCS 厂家提供的水位公式,本身存在错误。如某公司提供给宁海电厂的水位计算公式经验证,与理论计算值存在较大的偏差。

2.4 仪表校验引入的误差

汽包水位测量使用的是高静压、低差压变送器,因此仪表校验时,只要膜盒中有残积的水,其结果会带来附加的误差。如某电厂机组小修后曾一度出现差压式水位计两侧水位指示偏差大于校验前的情况,经检查发现造成偏差大的原因不是变送器问题,而是因校验人员在现场校验水位变送器中未将变送器膜盒内的积水清理干净所致。

2.5 联通管式原理测量误差

云母双色水位计、电接点水位是联通管式水位计。虽然汽水侧取样管及连通管本身都有保温层,但水位计管内的水柱温度总是低于汽包内饱和水的温度,因此,

a ρ总是大于w ρ,水位计中的显示值H ˊ总是低于汽包内实际水位高度H ,它的示值偏差为

H ---=H -H '=?H s a w

a ρρρρ (1)

由式(1)可以看出,基于联通管式原理的汽包水位计显示的水柱值不仅低于锅炉汽包内的实际水位,而且受汽包内的压力、水位、压力变化速率以及水位计环境条件等诸多因素影响,水位计显示值和汽包内实际水位间不是一个确定的、一一对应的关系,而这一偏差在汽包零水位时可达50~200 mm ,水位越高测量筒散热越多,水位误差就越大,反之误差减小。这一误差只是由环境温度和结构不同而造成的,在汽包不同位置取样,不同结构的连通式水

位计在汽包零水位时,其相差要全程控制在30 mm 之内是困难的。

2.6 保温影响

对参比水柱的管道进行不正确的保温后,将改变原来确定的温度补偿关系,使得参比水柱的平均温度T a 难以设定。因此,根据水位补偿计算的要求,参比水柱的管道应该裸露在环境温度中,即从单室平衡容器以下至水侧取样孔高度的管道不得施加伴热或者保温。引到差压变送器的2根取样管则应平行敷设并共同保温,这是为了使2根取样管内的介质具有相同的温度和相同的重度,不产生附加的差压误差。

安装电伴热带是冬季防止汽包水位测量管路结冰的一项措施。由于仪表管路铺设不规范,正压、负压侧上管的发热量不一致时,会引起高低压侧仪表管内a 不同,在冬季也会对水位的正确测量产生影响。如浙江某电厂3号炉曾发生过此类故障,原本误差稳定的3个差压式水位计中,有1路与另外2路信号偏差加大。检查后发现是由于差压式水位变送器取样管路上缠绕的伴热带温控失灵引起。另外该电厂也曾发生因伴热带短路跳闸,管路结冰引起差压式水位计测量不准的故障。

2.7 排污阀内漏

由于汽包水位量程较小,稍有泄漏就会影响测量结果,因此排污阀内漏是影响水位测量准确性的一个因素。如某锅炉电接点汽包水位计,多年运行一直是一侧测量值比另一侧高30 mm 左右,但一次调停复役后发现其水位显示突然比差压式显示和另一侧电接点水位计高出50~100 mm ,且在实际水位变动不大的情况下该电接点示值波动比其他水位计大得多。对测量筒进行多次冲洗、排污处理,均无好转,更换排污阀后示值偏差恢复至调停前状态。因此,除要重视汽包水位变送器排污阀的质量外,排污阀还应为2个阀串联安装,以提高可靠性。

2.8 水分离器和加药管入口的影响

某电厂一侧电接点汽包水位值与其余汽包水位值的偏差平时为30 mm 左右,大时达70 mm 左右且波动明显高于其他测量显示。在机组C 级检修期间进入汽包内部检查,发现在靠电接点水位计引出管附近有1个汽水分离装置脱离原安装位置;另汽侧取压口上方30 mm 处(汽包加药管的引入口)有一明显水流痕迹,且在电接点水位引出管附近汽包内部有明显气泡波动造成的虚假水位痕迹。因此,判断炉内加药管离电接点汽包水位的汽侧取压口过近,使该区域炉水电导度过高和加药水流入电接点测量筒内,造成水位显示异常。检修中将该电接点水位计测量筒与差压式汽包水位测量筒安装位置互换,使电接点水位测量筒取压口避开原受加药影响有虚假水位的区域。机组复役后,该电接点水位计显示恢复正常。

2.9 汽包管束布置结构影响

某燃机电厂自机组点火,锅炉调试运行以来,1号余热锅炉发生的首起跳机事件是因高压汽包水位低低(差压)信号引起,历史曲线显示3条差压水位曲线均存在较大波动,最大时可达到700多mm ,但汽包压力建立起来后波动随之减弱,测量结果亦趋于正确。在排除各种可能原因后,从高压汽包管束布置结构上查找,发现与其他电厂不同的是靠近汽包两侧位置亦布置了上升管束, 结合每次启动期间液位曲线分析,认为水位波动的原因是因汽包上升管的布置所致。因为启动期间,锅炉高压给水泵未上水,汽包处在建立压力过程中,上升管和下降管水、汽开始流动,正常情况下,汽包内水位因膨胀而有所上升,由于汽包液位差压取点因靠上升管太近,受汽、水流动影响冲击导致取样负压侧压力产生较大波动而造成水位测量波动,在汽包压力建立起来、温度升高后,上升管水、汽的流动相得到抑制(汽包压力和水、汽压力差变小),减轻了对取样负压侧的扰动,所以水位测量也相对趋于稳定和正常。之后通过对汽包内水侧取样孔加装稳流装置,消除了波动。

2.10 测量管路泄漏

200 MW及以下的一些机组,汽包水位变送器布置在炉9 m层变送器器小室,而汽包在34 m层,仪表管敷设沿途保温。运行过程中曾出现几次一侧仪表管由于焊接处沙眼或裂缝造成水位信号虚高或虚低,使A、B侧信号存在明显差异的现象。由于仪表管管路太长,故障点查找、确认困难,给消缺工作带来不便,而且由于管路长,焊接口较多,易产生故障的点也相对较多,因此汽包水位变送器尽可能就地布置。

2.11 锅炉燃烧原因

在对汽包水位进行调查时发现,大部分锅炉的同侧差压水位计之间偏差在大部分时间内小于30 mm。在机组检修过程中,进入汽包内检查,汽包水位运行水迹线也基本接近设计水位线,但是两侧水位测量显示却存在较大的固定偏差,也有的偏差大小随着运行状况变化而变化,其原因除汽包两侧不水平(因安装或基础沉降)和测量环境因素外,另一个主要的原因很可能是燃烧状况变化导致炉膛火焰中心偏移,或炉膛结焦左右情况不一致,引起汽包两端循环倍率不同。因此,在浙江国华宁海电厂进行了系统的燃烧调整试验,基本证明了这一点。

2.12 小结

根据以上汽包水位测量偏差问题分析,得出以下结论:

(1)目前在线运行的不同测量原理的汽包水位计,引起其测量偏差的因素有很多,通过努力可以减少测量偏差,但由于测量环境条件变化、测量原理上的差异和锅炉燃烧状况与运行方式不同而造成的误差不可避免。因此,目前汽包水位测量装置从原理上难以满足《防止电力生产重大事故的二十五项要求》中提出的汽包水位要全过程、全范围内实现各水位计之间的偏差小于30 mm的要求。

(2)汽包水位两侧的水位确实存在偏差,其原因除汽包因安装或基础沉降造成两侧不水平和测量环境因素外,最大的可能是炉内燃烧变化引起汽包两端循环倍率不同所致。

3 高汽包水位测量与保护系统运行可靠性的技术措施

3.1 水位取样装置与管路安装

(1)每个水位取样装置都应具有独立的取样孔。对取样孔不够的汽包可使用多测孔技术,实现取样的独立性。用于保护和控制的各汽包水位测量均应全程独立配置,但补偿用的汽包压力信号,以选用3取中信号为宜。

(2)汽、水侧取样阀门必须为2个截止阀串联且使其门杆处于水平位置安装(防止积水或积汽)。连接变送器的正压侧取样管宜从平衡容器低于汽侧取样管的侧面引出,按1:100向下倾斜延长不小于400 mm以后再向下引伸,至变送器的距离以控制在10 m以内为宜。

(3)汽包水位的汽、水侧取样管和取样阀门均应良好保温,单室平衡容器及参比水柱的管道不得保温,双室容器正压取样管以上部位不得保温,以下应保温,引到差压变送器的2根仪表管应平行敷设。如需要采取防冻措施,应从汽包水位取样管汽侧和水侧并列处开始共同保温直到变送器柜,并确保伴热设施对正负压侧仪表管的伴热均匀,任何情况下不会引起介质产生温差。

3.2 运行检修维护

(1)汽包水位测量误差部分来源于冷凝筒安装位置上的偏差和冷热2态情况下位置的偏移,因此除安装时应由丰富机械安装经验的人员严格把关,确保安装位置准确外,机组检修时应对冷凝筒安装位置标高分别进行冷、热2态情况下测量,如有偏差以热态测量数据进行替换;或安装可调的T型支架用于热态调整。

(2)为提高汽包水位测量的准确性,机组检修时应利用汽包人孔门开启机会,检查汽包内水痕迹或采用其他有效的方法,核对汽包水位测量显示的零位值偏差并进行修正。

(3)机组停运时,通过打开平衡门,关闭二次阀门的方式检验变送器是否有零点漂移。进行水位变送器校验前,必须清理干净变送器膜盒内的积水。

(4)为防止因管路结垢,未启压时排污造成管路堵塞的情况发生,汽包水位变送器的排污应在停炉或起压期间汽包压力为2 MPa左右时进行。

(5)运行中用红外测温仪测量正在运行的单室平衡容器的外壁温,如果上下壁温差不够大,可以认为取样管疏水不通畅,倾斜度不满足要求。可在机组检修时增加取样管的倾斜度。

(6)根据季节温度及时投用和停用电伴热装置,并将伴热带检查作为入冬前的常规安全检查项目。

3.3 优化逻辑

(1)汽包水位测量信号若在MCS该系统中,则应将水位保护逻辑判断也做在MCS系统中,FSSS系统中只进行汽包水位主燃料跳闸(main fuel trip,MFT)动作条件。

(2)锅炉汽包水位保护的定值和延时值随炉型和汽包内部结构不同而各异,其数值应由锅炉制造厂负责确定。为防止虚假水位引起保护的误动作,延时值在制造厂未提供或经运行证明偏差较大的情况下,可在计算试验的基础上,设置不超过10 s的延时,并设置不加延时的动作二值(请核实)。

(3)采用外置式平衡容器的差压式水位测量系统,在未更换内置式平衡容器前,应在汽包水位计算公式中对参比水柱平均温度,设置3种不同环境温度,以便在不同季节中通过人工选择进行温度修正。

3.4 采用测量新技术,优化运行工况

(1)根据对国内一些电厂实际运行情况的调研,采用内置式平衡容器、笼式内加热器电接点水位计和低偏差云母水位计,可以消除环境温度变化产生的偏差,提高测量准确性、并在延长使用寿命、减少维护工作量方面都有较大的改进,使同侧各汽包水位计间的偏差在任何工况下均小于30 mm的要求实现成为可能,建议基建机组选用,运行机组在检修中可逐步进行改造使用。

(2)采用新的测量技术测得的汽包水位数据,验证了汽包水位南北两侧的水位确实存在偏差,其原因是炉内燃烧引起,建议研究,探讨通过改变运行工况来减小两侧的水位偏差的方法。

4 结语

为保证汽包水位测量系统的准确性和可靠性,正确的安装和可靠的测量系统环境是基础,及时的检修和维护是保证,本文基于浙江省电厂汽包水位测量问题专题研究后提出的上述技术措施,在浙江省各电厂实施后取得初步效果,现已作为电力行业热工自动化技术委员会的《火电厂热控系统可靠性配置与事故预控》技术措施内容发布。

5 参考文献

[1]孙长生. 浙江省火电厂锅炉汽包水位测量保护系统运行现状分析及技术措施研究报告

[R].杭州:浙江省电力试验研究,2008.

[2]朱北恒.热工自动化系统试验[M].北京:中国电力出版社,2006.

[3]孙长生,王建强.浙江省电厂分散控制系统故障原因、处理与建议[J].电力建设,2006,

27(2):66-69.

[4]DL/T 774—2004 火力发电厂热工自动化系统检修运行维护规程[S].北京:中国电力出

版社,2004

[6] 侯子良等.锅炉汽包水位测量系统[M].北京:中国电力出版社,2004,37(2):1-6

[5]孙长生等火电厂热控系统可靠性配置与事故预控[J].北京:中国电力出版社,2010.

[6]DRZ火力发电厂锅炉汽包水位测量系统技术[S]2004

[7]杨震力,张龙明,邵军伟.汽包水位测量系统误差分析处理与完善建议[J].自动化博览,

2008(Z2):104-107.

收稿日期:2010-03-24 修回日期:2010-08-05

作者简介:

孙长生(1954),男,安徽桐城人,高级工程师,从事热工监督管理与热工自动化技术应用与研发工作,E-mail:scs54@https://www.doczj.com/doc/0c576924.html,

蒋健,男,硕士,工程师,从事火力发电厂热工调试工作;E-mail:jiang gian jazz@https://www.doczj.com/doc/0c576924.html,

刘卫国(1971),男,黑龙江牡丹江人,高级工程师,从事电厂热工自动化技术管理工作,E-mail:mdj1151@https://www.doczj.com/doc/0c576924.html,;

丁俊宏(1974)男,安徽肥东人,工程师,从事热工监督管理与热工自动化技术应用与研发工作,E-mail:dingjh324@https://www.doczj.com/doc/0c576924.html,;

王蕙(1974),女,高级工程师,从事热工自动化系统调试以及热工监督工作,E-mail:wanghui_hz@https://www.doczj.com/doc/0c576924.html,。

(责任编辑:何鹏)

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

锅炉汽包水位控制系统设计

西安建筑科技大学课程设计(论文)任务书 专业班级: 自动化1002 学生姓名: 马千云 指导教师(签名): 一、课程设计(论文)题目 锅炉汽包液位控制 二、本次课程设计(论文)应达到的目的 本次课程设计是自动化专业学生在学习了《计算机控制技术与系统》和《过程控 制及仪表》两门专业必修课程及《单片机原理与应用》、《可编程控制器》等相关专业 选修课程之后进行的一次全面的综合训练,其主要目的是加深学生对计算机控制技术 相关理论和知识的理解,进一步熟悉计算机控制系统工程设计的基本理论、方法和技 能;掌握工程应用的基本内容和要求,整合各专业课程的理论知识和方法,做到理论 联系实际;培养学生分析问题、解决问题的能力和独立完成系统设计的能力,并按要 求编写相关的设计说明书、技术文档和总结报告等。 三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术 参数、设计要求等) 锅炉汽包液位的阶跃响应曲线数据如下表所示,控制量阶跃变化5u ?=。试根据 实验数据设计一个超调量 25%p δ≤的无差控制系统。 具体要求如下: (1) 根据实验数据选择一定的辨识方法建立对象的数学模型; (2) 根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3) 根据设计方案选择相应的控制仪表;

对设计的控制系统进行仿真,整定运行参数。 (4)撰写课程设计报告一份,要求字数3000~5000字。 四、应收集的资料及主要参考文献: 1.王再英等.过程控制系统与仪表.机械工业出版社,2006 2.潘新民,王燕芳.微型计算机控制技术.高等教育出版社,2001 3.王锦标.计算机控制系统.清华大学出版社,2008 五、审核批准意见 教研室主任(签字) 摘要 锅炉是典型的复杂热工系统,目前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安全、稳定运行的重要指标,保证水位控制在给定范围内,对于高蒸汽品质、减少设备损耗和运行损耗、确保整个网络安全运行具有要意义。 锅炉汽包水位高度,是确保安全生产和提供优质蒸汽的重要参数,对现代工业生产来说尤其是这样。因为现代锅炉的特点之一就是蒸发量显著提高,汽包容积相对变小,水位变化速度很快,稍不注意就容易造成汽包满水或者烧成干锅。在现代锅炉操作中,即使是缺水事故,也是非常危险的,这是因为水位过低,就会影响自然循环的正常进行,严重时会使个别上水管形成自由水面,产生流动停滞,致使金属管壁局部过热而爆管。无论满水或缺水都会造成事故,因此,必须严格

亚临界锅炉汽包水位的测量问题

亚临界锅炉汽包水位的测量问题 一、汽包水位的特性 1.汽包正常水位 汽包正常水位(Normal Water Level, NWL)指的是锅炉正常运行过程中汽包中的水位应该保持的高度,一般称为汽包的零水位。随着汽包内部各个部件加汽水分离器等的结构和布臵方式差异,不同锅炉厂生产的各种亚临界锅炉汽包正常水位的高度有相当大的差别。表1列出了国内外主要锅炉厂生产的亚临界锅炉汽包水位的特性。表中NWL项所列数字为汽包正常水位与汽包机械中心线之间的距离,负值表示汽包正常水位在汽包机械中心线以下。 为了保证锅炉的安全和经济性,在锅炉运行过程中汽包水位必需保持在正常水位(NWL)。它的允许波动范围一般为±50mm。当锅炉运行不稳定,负荷变动较大或自动控制系统失灵时,汽包水位有时会超出上述允许范围。但只要汽包水位没有上升到影响汽水分离器正常工作的程度,或者下降到破坏锅炉水 亚临界锅炉汽包水位特性表1 循环的程度,还是允许锅炉继续运行的。但是水位变动范围过大就应该引起值班人员的重视,采取相应措施恢复水位正常。如果水位继续变动,达到不能允许的范围时就应该立即停止锅炉的运行,以保证设备安全。为此锅炉厂还规定了汽包水位的高、低报警值和跳闸值。如表1所示,表中所列报警值和跳闸值都是以正常水位(NWL)为基准的。即从NWL为0考虑的。

因此,锅炉所配臵水位表的测量范围必须涵盖表中所列跳闸值并留有一定的裕度。 2.质量水位 锅炉运行过程中,汽包水容积中不可避免地存在汽泡,汽包中的水在运行工况下实际上是汽水混合物。使得汽包内的汽水分界面变得不十分明显。在这一情况下,汽包内的实际水位是无法直接准确测量的。为了测量汽包内的水位,引入了质量水位的概念。质量水位是指汽包中的饱和水密度所对应的水位,就是质量水位。而质量水位是可以用各种方法准确测量的。 在中低压锅炉中蒸汽是直接由汽包的水中分离出来的,使得水中含有较多的汽泡,这时汽包的实际水位会远大于质量水位。而对于现代化大容量高压锅炉,由于汽包中都设有汽水分离设备,而上升管来的汽水混合物直接送入汽水分离设备。分离后的水再回到汽包的水容积中。正常情况下,汽包水容积中的汽泡不多,汽包的实际水位就比较接近质量水位。 当锅炉的负荷快速增加时,汽包内的压力下降。由于水的饱和温度降低,比容增大。这时汽包水容积中会出现汽泡,造成实际水位的上升。这种现象称为虚假水位。 3.影响汽包水位的因素 从理论上讲,汽包内的水位是处于同一个水平面上的。随着锅炉负荷的变化和进入汽包给水量的变化,汽包内的水位会上升或下降。这时可以利用自动控制系统调节进入汽包的给水量以维持汽包的水位稳定在正常水位。 但是事实上汽包内的水位并非处于同一个水平面,而存在着高低不等情况。造成这一现象的原因是多方面的。 (1)下降管的影响 锅炉正常运行过程中汽包内的水是以很高的速度连续不断地进入下降管的。对于亚临界锅炉而言,下降管内的水流速度可以达到3m/s以上。这就使得汽包内的水面不再是一个理想的水平面,而会随下降管的布臵位臵而出现高低的差别,位于下降管正上方的水面必然会较低而其他部分则会较高。在自然循环锅炉上,汽包内水面高低分布的情况基本上是固定不变的。而在强制循环锅炉上情况就不同了。由于在下降管中增加了炉水循环泵,当泵的运行方式改变时,汽包内

锅炉汽包水位控制系统的设计说明

过程控制系统实验报告 专业 xxxxxx 班级 xxxxxxxxx 学生 xxxxxx 学号 xxxxxxxx

锅炉汽包水位控制系统设计 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 5.说明单回路控制系统4个环节的工作形式对控制过程 6.对控制进行PID控制说明其参数整定理论 7.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 8.总结实验课程设计的经验和收获

过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 - 1.1概述............................................ - 3 - 1.2锅炉生产蒸汽工艺简述 ............................ - 3 - 1.3锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 - 2.1 对被控对象进行特性分析 ............................ - 5 - 2.2汽包水位控制系统方框图和流程图..................... - 5 - 2.2.1液位控制系统的方框图.................................. - 5 - 2.2.2液位控制系统的方案图.................................. - 6 - 2.3选择被控参数和被控变量............................. - 6 - 2.4选择检测仪表,说明其选择原则和仪表性能指标 ......... - 7 - 2.4.1传感器、变送器选择 ..................................... - 7 - 2.4.2执行器的选择........................................... - 8 - 2.4.3关于给水调节阀的气开气关的选择。 ....................... - 8 - 2.4.4 关于给水调节阀型号的选择。............................. - 8 - 2.4.5 给水流量蒸汽流量..................................... - 8 - 2.5 四个环节的工作形式对控制过程............................... - 8 - ................................... - 10 - 3.1对控制进行PID控制.......................................... - 10 - ........................................... - 11 -

锅炉汽包水位计标定的方法

锅炉汽包水位计标定的方法 一、锅炉水位测量原理: 差压式水位计的水位------差压转换原理如图一所示: 图一、差压转换原理 我们在不考虑温度变化而造成水的密度的变化和汽包压力的变化导致水密度的变化等情况,及不考虑补偿的情况下,公式(2)可以简化为: g H L g H g L P P P 水水水ρρρ)(-=-=-=?-+ (3) 式中:L 为平衡容器中参比水柱的高度;H 为汽包实际水位高度;水ρ水的密度, g 为重力加速度;(由式中可知:L 、水ρ、g 是固定的常数,只有H 是瞬时值, 在变化中)。 从公式和图一我们知道(当找零位和满位时,要关闭与汽包的链接的两个阀门): (1)、当H=L 时,△P=0时;证明锅炉汽包处于满水状态,此时变送器输出为20mA;(可以这样理解,当冷凝罐和水侧引压管灌满水后,打开变送器中间阀时,H=L,L=L,P_=P + ,则说明汽包水位处于满水状态)

时;证明锅炉汽包处于缺水状态,此时变送(2)、当H=0时,△P=g L 水 器输出为4mA。(可以这样理解,当冷凝罐和水侧引压管灌满水后,关闭变送器中间阀时,H=0,L=L,则说明汽包水位处于缺水状态) 注:从满位和零位标定看,变化的只有H,且H的变化范围为0~L;L是一直处于满水状态,没有变化。 二、广西四合工贸锅炉水位计结构和变送器安装形式: 图二、锅炉水位计内部结构和变送器安装图 其中:A、B为水位计一次阀;C、D为入变送器的控制阀;E、F为引压管排污阀;P1、P2、P3为压差变送器自带阀门,P1为变送器正端入口切断阀;P2为变送器负端入口切断阀;P3为变送器正负端连通阀。 三、锅炉水位计标定步骤: 1、A、B两个一次阀首先关闭,切断与汽包之间的联系;然后关闭E、F、P3阀,打开C、D、P1、P2阀,准备好灌水工作; 2、把排气孔堵头打开,往单室平衡器内灌水,直到水从排气孔溢流;

DRZT01-2004火力发电厂锅炉汽包水位测量系统技术规定

DRZT 01-2004 火力发电厂锅炉汽包水位测 量 系统技术规定 1适用范畴本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行爱护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2汽包水位测量系统的配置 2.1锅炉汽包水位测量系统的配置必须采纳两种或以上工作原理共存的配置方式。锅炉汽包至少应配置1 套就地水位计、3 套差压式水位测量装置和2 套电极式水位测量装置。 新建锅炉汽包应配置1 套就地水位计、3 套差压式水位测量装置和3 套电极式水位测量装置或1 套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2锅炉汽包水位操纵和爱护应分别设置独立的操纵器。在操纵室,除借助DCS 监视汽包水位外,至少还应当设置一个独立于DCS 及其电源的汽包水位后备显示外表(或装置)。 2.3锅炉汽包水位操纵应分别取自3 个独立的差压变送器进行逻辑判定后 的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O) 模件或3条独立的现场总线,引入分散操纵系统(DCS)的冗余操纵器。 2.4锅炉汽包水位爱护应分别取自3 个独立的电极式测量装置或差压式水位测量装置(当采纳6 套配置时)进行逻辑判定后的信号。当锅炉只配置2个电极式测量装置时,汽包水位爱护应取自2 个独立的电极式测量装置以及差压式水位测量装置进行逻辑判定后的信号。 3个独立的测量装置输出的信号应分别通过3 个独立的I/O 模件引入DCS 的冗余操纵器。 2.5每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电

锅炉汽包液位课程设计

锅炉汽包液位课程 设计

天津城建大学 课程设计任务书 - 第 2学期 控制与机械工程学院电气工程及其自动化专业班级电气12班姓名:学号: 课程设计名称:过程控制 设计题目:锅炉汽包液位控制 完成期限:自年 6 月 20 日至年 6 月 26 日共 1 周 设计依据、要求及主要内容: 一、设计任务 加热炉出口温度控制系统,测取温度对象的过程为:当系统稳定时,在温度调节阀上做3%变化,输出温度记录如下: 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要 p 求如下: (1)根据实验数据选择一定的辨识方法建立对象的数学模型;(2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。

二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社, [2] 邵裕森.过程控制工程.北京:机械工业出版社

[3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日 摘要 锅炉是典型的复杂热工系统,当前,中国各种类型的锅炉有几十万台,由于设备分散、管理不善或技术原因,使多数锅炉难以处于良好工况,增加了锅炉的燃料消耗,降低了效率。锅炉的建模与控制问题一直是人们关注的焦点,而汽包水位是工锅炉安

锅炉汽包水位测量误差分析

式中: h——汽包正常水位距水侧取样的距离,mm △h——水位计中的水位与汽包中水位的差值,mm Ps——饱和蒸汽密度,kg/m3 Pw——饱和水密度,kg/m3 Pa——水位计中水的平均密度,kg/m3 Ps'——水位计中蒸汽的密度,kg/m3 对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。 从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。 为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。 从表1所列数据,对于亚临界锅炉来说,在额定汽压下,就地水位计的水位比汽包内的水位要低100~150mm。下面以我厂(东方锅炉厂)在汽包额定压力18.2MPa下时汽包水位偏离正常水位的情况进行分析,根据式(1),取汽包水位为零时h=400mm,计算水位变化

±1OOmm时水位计显示情况。Pw、Ps为定值,假设Pa也为定值,取平均温度为300℃时的值。h'=h—△h,为就地水位计中的水柱高度,计算结果如表2所示。 从表中计算结果来看,汽包水位变化±100mm时,就地水位计的显示值只变化±68m m,还是假定水位计中水的温度不变,即Pa是定值的情况下计算的。实际上,当汽包内水位变化时,水位计中水的平均温度和密度均会随着变化的,汽包水位升高时,由于水的散热面增加,平均温度会下降,密度增大,水位计的指示也比表中计算的要低;而当汽包水位降低时,水的散热面减小,其平均温度升高,密度减小,水位计的指示应比表中计算的要高。当汽包水位变化±100mm时,就地水位计的变化还达不到±68mm,只是±50mm左右,并且就地水位计的误差并非是恒定值,在不同条件下有所变化,同一锅炉,在不同工况下,在不同的季节里,误差的变化还相当显著。所以依靠就地水位计来监视汽包水位是不安全、不准确的。必须改变运行中认为就地水位计的指示是准确的,并要求其它水位计的指示要与其一致。就地水位计可作为额定压力下核对其它水位计正常水位值(零位)的参考。 2 电接点水位计 电接点水位计的工作原理与就地水位计的完全相同,属于连通管式,利用与受压容器相连通的测量筒上的电接点浸没在水中与裸露在蒸汽中的导电率的差异,通过显示仪表显示水位。一般只配有一套,安装在汽包的一端,通过信号线传到集控室监视,也有的将接点信号引入停炉保护系统。 电接点水位计的工作原理与就地水位计相同,所以就地水位计存在的问题,它同样存在,即电接点水位计显示的水位与汽包实际水位存在偏差,且不是固定的,汽包水位波动时其显示不能与之对应。电接点水位计与就地水位计因结构、材料、形状、安装、散热情况的不同,它们之间的显示值也必然存在偏差;电接点水位计还存在电接点因挂水而误发信号的问题。所以在亚临界的锅炉上采用电接点水位计测量水位是不安全的、不准确的,作为保护用信号是更不可取的。 3 差压式水位计 差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包不位。经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。

防止汽包锅炉缺满水技术措施示范文本

防止汽包锅炉缺满水技术措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

防止汽包锅炉缺满水技术措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 汽包锅炉汽包是蒸发受热面与过热受热面的分界面, 汽包水位是锅炉汽水流量是否平衡的标志。水位高于正常 运行水位的上限为满水,低于下限为缺水。大容量电站锅 炉汽包容积相对较小(计算表明一台600MW机组的汽包 上下水位间的容积等于8.4s与额定蒸发量的乘积),在高 加故障跳停、锅炉出力或负荷突变以致汽压骤变时,给水 自动控制装置的性能难,以满足维持水位的基本功能,汽 包水位便发生大幅度波动。汽包锅炉严重满水使汽温急剧 下降,危及汽轮机安全;严重缺水时水冷壁得不到应有的 冷却,膨胀不畅导致水冷壁变形甚至过热爆管,特别是亚 临界参数汽包炉蒸发受热面的循环倍率一般只有3~4,水 冷壁管出口处介质含汽量相当高,在异常工况下有发生第

汽包水位测量系统应合理配置

高维信1,荆予华 2 (1.淮安维信仪器仪表有限公司,江苏淮安 223001; 2.焦 作电厂,河南焦作 454001) 摘要:分析汽包水位监控保护测量系统按2套就地水位表、3套差压水位计配置(简称“5套配置”)的缺陷及采用“5套配置”的客观原因。介绍“多测孔接管”技术不需在汽包上开孔而增加独立取样测孔,解决了汽包原有水位测孔过少影响合理配置的难题,以及新型电接点水位测量筒高精度取样、高可靠性传感,使电接点水位计可靠地用于监视主表和保护。简介汽包水位测量系统优化配置原则与效果,建议尽早修订有关“5套配置”的规定。 关键词:电厂锅炉;汽包水位;监控保护;测量系统;优化配置 中图分类号:TK316 文献标识码:B 文章编号:1004-9649(2004)04-0000-00 0 引言 大型锅炉汽包内各局部汽流、水流及汽水混合物的流速分布往往不均匀,导致水位高 低不平,水位测量易受各种干扰。这是准确、稳定测量水位的困难之处及要实施多点测 量的原因所在。 汽包水位监控的任务是:将水位准确控制在0线附近,使饱和蒸汽品质最佳;事故水 位时手动或自动停炉;特殊操作监控,如停炉后汽包满水快冷的上水操作和满水状态的 监视,缺水停炉后及时判断可否补水,尽快恢复运行等。 满足汽包水位安全监控和事故处理的需求是水位测量技术进步的动力。仪表行业采取 化难为易的策略,针对监视、自动调节、保护的不同功能系统要求,研制了各种水位计,其性能又各有长短,形成在用水位计多样化。显然,监控保护系统设计应针对水位计的 现状,扬长避短,按不同功能需求优选、冗余配置水位计[1]。 长期以来,水位计测量与配置问题导致运行人员误判断、误操作,水位预警失灵,停 炉保护拒动,造成锅炉多起重大水位事故,而保护误动事故更多。因此要求尽快解决水 位测量问题的呼声很高。借助于分散控制系统(DCS)技术,差压水位计在一定程度上提 高了性能,所以2001年《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用若 干规定(试行)》正式出台。尽管这一规定中的“安装和使用”等条款对防止重大水位事 故有重要作用,但由于受到汽包水位测孔少、普通电接点水位计不足以用于监视主表(基 准表)和保护仪表等客观技术条件的限制,对于至关重要的测量系统配置问题,采取了 简化处理(按“5套配置”),遗留问题较多,难以收到预期效果。 汽包水位测量技术的进步必然促进监控保护测量系统配置的更新。先进的测量技术 与装置如多测孔接管技术和新一代电接点水位计的成功应用,使得原本认为相对合理的 配置有了新的认识。目前来看,“5套配置”及相应的原则性条款已限制了汽包水位测量 系统更合理的配置改进,影响监控保护系统设计进一步满足运行需求,这一问题已引起 电厂和热控专家的密切关注。 收稿日期:2003-09-19;修回日期:2004-02-05 作者简介:高维信(1942-),男,江苏睢宁人,高级工程师(教授级),从事火电厂热工自动化工作。 E-mail:webmaster@https://www.doczj.com/doc/0c576924.html,

火力发电厂锅炉汽包水位测量系统技术规定

火力发电厂锅炉汽包水位测量系统技术规定 A 01 备案号:0401-2004 DRZ 电力行业热工自动化标准化技术委员会标准 DRZ/T 01-2004 火力发电厂锅炉汽包水位测量系统技术规定 Code for level Measuremet System of Boiler drum in Fossil Fuel Power Plant 2004-10-20发布2004-12-20实施 电力行业热工自动化标准化技术委员会发布 前言 本标准根据电力行业热工自动化标准化委员会的安排进行编制。 本标准为电力行业热工自动化标准化技术委员会颁发的新编标准。 本标准由电力行业热工自动化标准化技术委员会提出并归口。 本标准主要起草单位:电力行业热工自动化标准化技术委员会标准起草工作组。 本标准主要起草人:侯子良。 本标准由电力行业热工自动化标准化委员会解释。 目次 1 适用范围 2 汽包水位测量系统的配置 3 汽包水位测量信号的补偿 4 汽包水位测量装置的安装 5 汽包水位测量和保护的运行维护 编制说明

1 适用范围 本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行维护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2 汽包水位测量系统的配置 2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式。 锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置。新建锅炉汽包应配置1套就地水位计、3套差压式水位测量装置和3套电极式水位测量装置或1套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2 锅炉汽包水位控制和保护应分别设置独立的控制器。在控制室,除借助DCS监视汽包水位外,至少还应设置一个独立于DCS及其电源的汽包水位后备显示仪表(或装置)。 2.3 锅炉汽包水位控制应分别取自3个独立的差压变送器进行逻辑判断后的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O)模件或3条独立的现场总线,引入分散控制系统(DCS)的冗余控制器。 2.4 锅炉汽包水位保护应分别取自3个独立的电极式测量装置或差压式水位测量装置(当采用6套配置时)进行逻辑判断后的信号。当锅炉只配置2个电极式测量装置时,汽包水位保护应取自2个独立的电极式测量装置以及差压式水位测量装置进行逻辑判断后的信号。3个独立的测量装置输出的信号应分别通过3个独立的I/O模件引入DCS的冗余控制器。 2.5 每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电极式测量装置的信号间应在DCS中设置偏差报警。 2.7 对于进入DCS的汽包水位测量信号应设置包括量程范围、变化速率等坏信号检查手段。 2.8 本标准要求配置的电极式水位测量装置应是经实践证明安全可靠,能消除汽包压力影响,全程测量水位精确度高,能确保从锅炉点火起就能投入保护的产品,不允许将达不到上述要求或没有成功应用业绩的不成熟产品在锅炉上应用。汽包水位测量系统的其它产品和技术也应是先进的、且有成功应用业绩和成熟的。 3 汽包水位测量信号的补偿 3 .1 差压式水位测量系统中应设计汽包压力对水位-差压转换关系影响的补偿。应精心配置补偿函数以确保在尽可能大的范围内均能保证补偿精度。 3.2 差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响。 应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

关于蒸汽锅炉汽包水位控制的建议实用版

YF-ED-J9455 可按资料类型定义编号 关于蒸汽锅炉汽包水位控制的建议实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

关于蒸汽锅炉汽包水位控制的建 议实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1997-12-16,1台SG-1025/18.3锅炉发生 了缺水干锅,汽包低水位保护拒动,导致水冷 壁大面积变形、多处爆管的事故。此后,国家 电力公司颁布的《防止电力生产重大事故的25 项重点要求》列出了防止锅炉缺、满水事故的 要求,又编写了辅导教材。《电力安全技术》 杂志相继发表了一些与之相关的文章,其中 《汽包全充水启动》一文提出全充水启动以解 决启动中汽包温差控制的建议,部分内容涉及 对《电站锅炉监察规程》的理解与执行。笔者

对锅炉汽包水位控制的建议如下。 1 水位控制的意义 蒸汽锅炉水位是锅炉运行控制的重要参数之一,稳定工况下,撇开假水位因素,汽包水位的升降标志锅炉给水(包括减温水)流量与蒸汽流量的平衡状况,给水流量偏大则水位升高,反之亦然。广义的水位控制可以包括直流炉中间点温度的控制以及超临界、超超临界锅炉相变点位置的控制,因为它们都标志着对给水与蒸汽流量平衡的控制,决定着省煤器、蒸发受热面(或高比热区)和过热器的分界线,只是直流炉不存在假水位问题,而以其界面的变动显示其动态不平衡。 从水转变为汽有一个过程,管内介质汽化的同时发生膨胀,贮水量减少,这种现象称为

双室平衡容器汽包水位测量

双室平衡容器汽包水位测量及其补偿系统的应用来源:中国论文下载中心 [ 06-02-27 13:38:00 ] 作者:吴业飞时敏编辑:studa9ngns 摘要:本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 关键词:水位测量汽包水位双室平衡容器补偿 1.摘要 本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 2.前言 汽包水位是锅炉及其控制系统中最重要的参数之一,双室平衡容器在其中充当着不可或缺的重要角色。但是由于一些用户对于双室平衡容器及其测量补等方面缺少全面的必要的了解或者疏漏,致使应用中时有错误发生,甚至形成安全隐患。例如胜利油田胜利发电厂一期工程,该工程投入运行早期其汽包水位测量系统的误差竟达70~90mm,特殊情况下误差将会更大(曾因此造成汽包满水停机事故)。迄今为止,据不完全了解,目前仍有个别用户存在一些类似的问题或者其它问题。汽包水位是涉及机组安全与和运行的重要参数和指标,因此不允许任何人为的误差。为使用户能够更好地掌握双室平衡容器在汽包水位测量中的应用,谨撰此文。不足之处,请不吝指正。 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

锅炉汽包水位控制系统

1.汽包水位的动态特性描述 (1) 1.1.汽包在给水流量作用下的动态特性 (1) 1.2.汽包水位在蒸汽流量扰动下的动态特性 (2) 2.汽包水位控制方案的选择及其原理 (4) 2.1.三冲量控制原理及各部分的作用 (4) 2.1.1.控制原理 (4) 2.1.2.各部分的作用 (5) 3.前馈-串级控制系统的特点和调节器作用方式判断 (7) 3.1.控制系统的特点 (7) 3.1.1.前馈控制系统的特点 (7) 3.1.2.串级控制系统特点 (7) 3.2.调节器作用方式判断 (7) 3.2.1.判断副调节器的作用方式 (7) 3.2.2.判断主调节的作用方式 (7) 4.控制仪表及技术参数 (8) 4.1.控制仪表的选定 (8) 4.2.各元器件的型号及参数 (8) 5.总结与体会 (10) 参考文献 (11)

在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉发生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。 锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统,讨论了目前通常采用的控制方法,分析了水位对象模型的动静特性。首先从锅炉汽包内水的热平衡、物质平衡原理出发,推导出了用来描述锅炉水位对象的通用机理控制模型,通过对几种控制方案的分析、研究与比较,选三冲量系统作为最佳控制方案,并着力研究三冲量系统的特点。 关键词:锅炉汽包水位控制三冲量控制系统

相关主题
文本预览
相关文档 最新文档