当前位置:文档之家› 天然气处理工艺和轻烃回收简介

天然气处理工艺和轻烃回收简介

天然气处理工艺和轻烃回收简介
天然气处理工艺和轻烃回收简介

天然气处理工艺和轻烃回收技术

目录

一、天然气基础知识

二、天然处理工艺

三、天然气轻烃回收工艺技术

煤、石油和天然气是当今世界一次能源的三大支柱。随着经济的发展,世界能源结构正在改变,由以煤为主改变为以石油、天然气为主。天然气是一种高效、清洁、使用方便的优质能源.也是重要的化工原料。具有明显的社会效益、环境效益和经济效益。天然气的用途越来越广,需求不断增加。

一、天然气基础知识

什么是天然气?

中文名称:天然气

英文名称:natural gas

定义1:一种主要由甲烷组成的气态化石燃料。主要存在于油田和天然气田,也有少量出于煤层。

定义2:地下采出的,以甲烷为主的可燃气体。它是石蜡族低分子饱和烃气体和少量非烃气体的混合物。

(一)、天然气组成分类

1、烃类

烷烃:绝大多数天然气是以CH4为主要成分,占60%~~90%(V)。同时也含有一定量的乙烷、丙烷、丁烷。有的天然气还含有戊烷以上的组分,如C5~C10的烷烃。

(2) 烯烃和炔烃:天然气有时含有少量低分子烯烃如乙烯和极微量的低分子炔烃(如乙炔)。

(3) 环烷烃:天然气中有时含有少量的环戊烷和环已烷

(4) 芳香烃:天然气中的芳香烃多为苯、甲苯和二甲苯。

2、非烃类

(1) 硫化物:H2S、CS2、COS(羰基硫)、RSH(硫醇)、RSR(硫醚)、R-S-S-R(硫代羧酸和二硫化物)、C4H4S(噻吩)。

(2) 含氧化合物:CO2、CO、H2O。

(3) 其它气体:He、N2。H2。

3、天然气的分类

天然气的分类方法通常有三种。

(1)按照油气藏的特点和开采的方法不同,天然气可分为三类,即气田气、凝析气田气和油田伴生气。

①气田气是指从纯气田开采出来的天然气,它在开采过程中没有或只有较少天然汽油凝析出来。这种天然气在气藏中,烃类以单相存在,其甲烷的含量约为80%~90%(体积分数),还古有少量的乙烷、丙烷和丁烷等,而戊烷以上的烃类组分含量很少。

②凝折气田气是指在开采过程中有较多天然汽油凝析出来的天然气,这种天然气中戊烷以上的组分含量较多,但是在开采中没有较重组分的原油同时采出,只有凝析油同时采出。

③油田伴生气是指油田中与石油起开采出来的天然气。在开采过程中随着压力下降到低于饱和压力时天然气从石油中分离出来。这种天然气是油藏中烃类以液相或气液两相共存.开采时与石油同时被采出,天然气中的重烃组分较多。

(2)按照天然气中戊烷以上烃类组分的含量多少,天然气可分为干气和湿气。

①干气是指戍烷以上烃类(天然汽油)可凝结组分的含量低于100g/m3的天然气。干气中的甲烷含量一般在90%(体积分数)以上,乙烷、丙烷、丁烷的含量不多,戊烷以上烃类组分很少。大部分气田气都是干气。

②湿气是指戊烷以上烃类(天然汽油)可凝结组分的含量高于100g/m3的天然气湿气中的甲烷含量一般在80%(体积分数)以下,戊烷以上的组分含量较高,开采中可同时回收天热汽油(即凝析油)。一般情况下,油田气和部分凝析气田气可能全是湿气。

(3)按照天然气中的含硫量差别,天然气可分为洁气和酸性天然气。

①洁气通常是指不含硫或含硫量低于20mg/m3的天然气,洁气不需要脱硫净化处理,即可以进行管道输送和供一般用户使用。

②酸性天然气通常是指含硫量高于20mg/m3的天然气。酸性天然气中含硫化氢以及其他硫化物组分。一般具有腐蚀性和毒性,影响用户使用。酸性天然气必须经过脱硫处理后才能进入输气管线,否则会造成金属腐蚀。在供用户使用前一般应予脱除。

(二)、天然气处理与加工的原因

1、所有的酸气(H2S、CO2)必须脱除,从经济和环境上考虑,H2S通常转换成元素硫;

2、所有的游离液体(液烃、水)必须脱除,因为液烃和水的存在对天然气的输送影响很大;

3、所有比丙烷重的烃类也应该除去,一方面可以增加经济效益,另一方面可满足管输标准。另外,从地层中开采出来的天然气可能携带有固体杂质,也必须除去。

从以上几方面考虑,井口气必须经过加工和处理以后才能成商品气。

(三)、天然气处理与加工的范畴

天然气处理与加工指从井口到输气管网的全部过程。包括采气管线、井场分离、集气管线、净化处理、脱水、轻烃回收、输气管网等,如下图。

单元过程:节流、闪蒸、吸收、解吸、精馏、换热、反应、吸附等。

(四)、天然气产品质量指标

1、天然气产品:

商品气(sales gas)、液化石油气(LPG)、稳定轻烃等。

2、产品技术指标

(1)热值(heat value)

(2)含硫量(sulfur content)

(3)烃露点(hydrocarbon dew point)

(4)水露点(water dew point)

(5)含水量(moisture content)

热值(heat value)

单位体积或质量天然气的高发热量或低发热量。

为使天然气用户能恰当地确定其加热设备,确定热值是必要的。

天然气质量的一个重要指标就是沃泊数(Wobbe number),它是天然气最高热值与相对密度的平方根的比值。

含硫量(sulfur content )

常以H2S含量或总硫(H2S及其它形态的硫)含量来表示。

为了控制天然的腐蚀性和出于对人类自身健康和安全的考虑,一般而言,H2S含量不高于6~24mg/m3。

油田气由于往往不含硫,故一般不进行脱硫处理。

烃露点(hydrocarbon dew point)

在一定压力下从天然气中开始凝结出第一滴液烃时的温度,它与天然气的压力和组成有关。

为防止天然气在输配管线中有液烃凝结并在管道低洼处积液,影响正常输气甚至堵塞管线,目前许多国家都对商品天然气规定了脱油除尘的要求,规定了一定压力条件下天然气的最高允许烃露点。

水露点(water dew point)

水露点指在一定压力条件下,天然气与液态水平衡时(此时,天然气的含水量为最大含水量,即饱和含水量)所对应的温度。

一般要求天然气水露点比输气管线可能达到的最低温度低5~6℃。

含水量((moisture content))

在地层温度和压力条件下,水在天然气中通常以饱和水蒸气的形式存在,水蒸气的存在往往给天然气的集输和加工带来一系列的危害,因此,规定天然气的水蒸气含量是十分重要的。

天然气的含水量以单位体积天然气中所含水蒸气量的多少来表示,有时也用天然气的水露点来表示。

天然气综合利用

天然气处理工艺技术

(一)、天然气脱水的主要原因

1、天然气会与其中所带的液体或水形成固体化合物,造成堵塞

阀门,设备甚至是整个管线。

2、造成腐蚀,特别是在CO2和H2S存在的情况下。

3、水会在管线中冷凝,从而造成段塞流。

4、对于长输管线,会降低管线的输气能力。减少天然气的热值。

5、外输气必须满足气体质量标准。

6、脱水能保证天然气在深冷的条件下装置能正常运行。

因此必须把大部分水脱除。

在一定温度和压力条件下、天然气的某些组分与液态水生成的一种外形像冰、但晶体结构与冰不同的笼形化合物称为天然气水合物。

1、物理性质

①白色固体结晶,外观类似压实的冰雪;

②轻于水、重于液烃,相对密度为;

③半稳定性,在大气环境下很快分解。

天然气水合物

2、结构

采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:I、II、H型。

3、生成条件

(1)气体处于水蒸汽的过饱和状态或者有液态水,即气体和液态水共存;

(2)一定的压力温度条件——高压、低温;

(3)气体处于紊流脉动状态,如:压力波动或流向突变产生搅动,或有晶种(固体腐蚀产物、水垢等)存在都会促进产生水合物。因此,在孔板、弯头、阀门、管线上计量气体温度的温度计井等处极易产生水合物。

4、防止水合物生成的方法

破坏水合物的生成条件即可防止水合物的生成。主要有三种方法

(1)加热气流,使气体温度高于气体水露点;

(2)对天然气进行干燥剂脱水,使其露点降至操作温度以下;

(3)向气流中注入抑制剂。

目前广泛采用的抑制剂是水合物抑制剂,90年代以后开发的动力学抑制剂和防聚剂也日益受到重视和使用。动力学抑制剂和防聚剂的共同特点是不改变生成水合物的压力、温度条件,而是通过延缓水合物成核和晶体生长或阻止水合物聚结和生长,从而防止水合物堵塞管道。

(二)、天然气脱水方法

天然气脱水可以采用的方法有:甘醇吸收脱水、固体干燥剂吸附脱水、冷凝脱水以及国内外正在研发的膜分离脱水等。其中甘醇脱水和固体干燥剂脱水是油气田最常用的天然气脱水方法。

液体吸收法

固体吸收法

冷冻法

1、液体吸收法

甘醇脱水原理流程

甘醇脱水工艺主要由甘醇高压吸收和常压加热再生两部分组成。

2、固体吸收法

1)、吸附剂种类

用于天然气脱水的吸附剂主要有三种:硅胶、活性氧化铝和分子筛。

(1)、硅胶

主要成分为SiO2,含微量Al2O3和水。用于脱水的硅胶有粉状、圆柱条状和球状三种,并有细孔(20~40?,600~700m2/g)和粗孔(80~100 ? ,300~500 m2/g)之分。

缺点:①与液态水接触易炸裂,因此除尽量防止液态水外,通常需要在气体进口处加一层不易为液态水破坏的吸附剂。②若气流内存在防腐剂,由于硅胶的再生温度不足以使防腐剂脱附,造成防腐剂在硅胶上结焦,影响脱水效果。③易于为液态烃堵塞。

(2)、活性氧化铝

主要成分为Al2O3,并含有少量其他金属化合物(Na2O、Fe2O3等)和水。活性氧化铝也有细孔(约72 ? )和粗孔(120~130 ?)之分,商用活性氧化铝做成粒径3~7 mm 的球状和圆柱条状。活性氧化铝的比表面积210~350m2/g。

缺点:①处理酸性天然气时,氧化铝能促使H2S与气体生成COS。吸附剂加热再生时,吸附床内残留固态硫,造成堵塞,影响正常脱水。②易于为液态烃堵塞。

(3)、分子筛

分子筛是一种人工合成的碱金属或碱土金属的硅铝酸盐晶体。其分子式的通式为:

SiO2分子数与Al2O3分子数之比称为硅铝比,在数值上等于x。

(Ⅰ)分子筛的类型

根据硅铝比的不同,分子筛分为三种类型:A型(硅铝比为2),X型(硅铝比为2.5)和Y型(硅铝比为3~6)。

对于相同的类型(即硅铝比相同),形成分子筛的金属离子不同,分子筛的孔径不同,在几到十几个? 。

(Ⅱ)分子筛的吸附特性

①选择吸附性:

分子筛的孔径小于硅胶和活性氧化铝的孔径,只有分子直径小于筛孔直径的气体分子才能进入筛孔内被吸附,因此分子筛的吸附具有很强的选择性。

②优选吸附性:

分子筛表面具有大量较强的局部电荷,为极性物质。因而,对于那些能够进入筛孔内的分子,其优先吸附其中极性强的分子。水是强极性分子,所以分子筛是干燥脱水的优良吸附剂。

③高效吸附性:

如图,三种吸附剂的湿容量与相对湿度的关系。可见,相对湿度愈小,湿容量愈小。但当相对湿度较低时分子筛仍有很好的吸附性能。

2)、吸附剂的再生

吸附剂的再生是为了除去吸附质,恢复吸附剂活性。吸附剂的再生过程就是吸附剂的脱附过程。工业上常用的再生方法是升温脱附,因为温度愈高,湿容量愈小。

通常是用脱过水的天然气作为再生气体,将其加热到一定高温,从塔底进入,自下而上穿过整个床层,利用再生气所具有的高温使吸附剂在吸附过程中所吸附的水分汽化,并被再生气携带从顶部出塔。

脱附完成后,吸附床层的温度很高,不利于吸附。因此需要用冷干气进行冷却,这一过程称为冷吹。冷却后的塔方可进行吸附操作。

再生气和冷吹气都是从塔底进入,这样可以确保在吸附操作中未吸附脱水的床层区域在再生操作中没有含水气流过,使吸附床层底部的吸附剂得到完全再生。

3)、吸附塔的内部结构

支撑隔栅:支撑吸附剂和瓷球重量。

瓷球:使气流比较均匀分布,再生时顶部瓷球还有压住吸附剂、防止吸附剂被吹跑的作用。

支撑隔栅上的丝网:防止瓷球和吸附剂漏下。

吸附剂床层上的浮动丝网:防止吸附剂漏出。

4)、吸附脱水原理流程

为保证连续生产,流程中必须包括吸附、再生和冷吹三道工序。可以采用两塔流程或三塔流程。如图为两塔流程。

再生气量为原料气质量流量的5%~10%。一般情况下采用脱过水的干气作为再生气。

3、冷冻法(低温分离法)

由于多组分混合气体中各组分的冷凝温度不同,在冷凝过程中高沸点组分先凝结出来,这样就可以使组分得到一定的分离。冷却温度越近,分离程度越高。现在气田上多采用高压天然气节流膨胀制冷后低温分离脱出天然气中一部分水分的方法—冷分离法。在油田伴生气脱水中采用的膨胀机制冷脱水也是一种冷分离。该方法流程简单,成本低廉。可达到的水露点略高于其降温所达到的最低温度,同时满足烃露点的要求。特别适用于高压气体;对要求深度脱水的气体,此法也可作为辅助脱水方法,将天然气中大部分水先行脱除,然后用分子筛法深度脱水。

(二)、酸性天然气脱硫

醇胺法脱硫工艺

选择性吸收脱硫工艺

其它脱硫方法介绍

硫磺回收(克劳斯法)

(三)、轻烃回收

目的:

1、为了控制天然气的烃露点以达到商品气质量指标,以避免气液两相流动;(输送要求)

2、回收下来的液烃能带来更大的经济效益,可以用作燃料和化工原料。(利益驱动)

3、如果对于要将气体回注地层以保持储层压力,提高油气采收率时,需要尽可能地脱除C2+。

原料:天然气(油田气、气井气、原稳气;炼厂气(催裂化气)

三、天然气轻烃回收工艺技术 1、概述

天然气的组成因油气田或层系不同而异。油田气、部分气田的气井气含有较多的乙烷(C 2H 6,常简略为C 2)、丙烷(C 3)、丁烷(C 4)、戊烷及戊烷以上(C 5+)的烃类,这些天然气称为“富气”。富气中的这些烃类可以以液体产品的形式从天然气中加以回收,这一过程称为天然气凝液(NGL )的回收,国内常称为轻烃回收。 2、轻烃回收的方法:

主要有油吸收法、吸附法和冷冻分离法。

冷冻分离法中,可使用的制冷方法有节流膨胀制冷、热分离机制冷、透平膨胀机制冷、外加冷源制冷等。冷冻分离法的典型工艺流程有三种类型:膨胀机制冷(或称为直接膨胀制冷)、外加冷源制冷和混合制冷。混合制冷是前两者的综合。

几种轻烃回收方法的典型收率(%)

3、低温分离法

低温分离法(冷凝分离法) 是利用原料气中各烃类组分冷凝温度不同的特点,通过制冷将原料气冷至一定温度从而将沸点较高的烃类冷凝分离并经凝液分馏分离成合格产品的方法。其最根本的特点是需要提供较低温位的冷量使原料气降温。按制冷温度的不同,低温分离法又分为浅冷分离和深冷分离工艺。冷量可有两种冷源产生,即外加冷源,膨胀机自身制冷。 4、冷源

外加冷源:一般采用氨制冷循环,丙烷制冷循环或氟里昂制冷循环,若单独采用外冷源时一般为浅冷工艺。

膨胀机制冷:采用膨胀机制冷的装置,靠膨胀机出口低温气体作为主要冷源,一般用于深冷工艺。

膨胀机制冷与外加冷源相结合:补充膨胀机冷量供给不足,降低高压气体的冷凝温度。

轻烃回收主要方法

油吸收法

低温分离法

常温油吸收法

低温油吸收法

直接膨胀制冷法

外加冷源制冷法

混合制冷法(透平膨胀机+外加冷源)

5、低温分离法流程

制冷方法一般分为 1)、相变制冷(外冷) 2)、气体膨胀制冷(内冷) 6、工艺流程的七个环节

原料气预处理-除油、游离水和泥砂; 原料气增压 净化 冷凝分离 制冷

凝液的稳定与切割 产品储罐

7、浅冷轻油回收工艺流程

8、膨胀机制冷深冷轻油回收工艺流程

原料气

质 乙烷 丙烷 丁烷

9、外冷源-膨胀机制冷深冷轻油回收工艺

伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术 蒋 洪 朱 聪(西南石油学院 四川省南充市 637001) 摘要 油气田存在丰富的伴生气资 源。为了提高油气综合利用水平,开展伴 生气轻烃回收工艺技术研究有十分重要的 现实意义。针对工艺流程设计、设备选型 和控制系统设计进行分析与探讨后指出, 在工艺设计中应正确选用制冷工艺,精心 组织工艺流程,合理利用外冷和内冷;设 备选型应体现技术先进和高效的原则;小 型浅冷装置的控制方案应着重简单实用, 大中型深冷装置则应选用先进的集散控制 系统。 主题词 伴生气 轻烃回收 工艺设 计 回收率 制冷 工艺 流程 在油气田开发中存在丰富的伴生气。为了合理利用这部分天然气资源,油田采用轻烃回收装置,取得了较好的经济效益。但国产化装置仍存在工艺方案不合理、产品收率低、能耗高等问题。针对伴生气轻烃回收工艺,本文对工艺流程设计、设备选型和设计、控制系统设计进行分析与探讨,提出工艺设计的基本思路和原则。 1.回收工艺过程和特点 目前,伴生气轻烃回收工艺都采用冷凝分离法。虽然冷凝分离法可采用冷剂制冷法、膨胀制冷和混合制冷法等多种制冷工艺,但从工艺原理上看,都是经过气体冷凝回收液烃和液烃精馏分离成合格产品这两大步骤。从流程组织上,回收工艺过程由原料气预处理、原料气增压、脱水、冷凝分离、制冷系统、液烃分馏、产品储配等7个单元组成。 一般来说,伴生气具有压力低,气质富的特性。为满足冷凝分离的工艺要求,伴生气回收工艺需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关,这是低压气轻烃回收工艺的特点。 2.优化工艺流程 工艺流程的变化是因原料气气源条件(气量、压力和组成)、产品要求和建设环境等因素的不同而引起的。工艺流程的合理与否是回收装置达到较高的技术经济效益的前提。 2.1 制冷工艺的选择 制冷工艺的选择主要考虑原料气的压力、组成、液烃回收率等因素。当伴生气处理量小、组成较富时,为了回收C3+烃类,可采用浅冷回收工艺,制冷方法主要采用冷剂制冷或冷剂制冷+节流膨胀制冷;当伴生气处理量较大、组成又比较贫、希望回收较多乙烷时,应采用深冷回收工艺,制冷方法主要采用复叠式制冷、混合冷剂制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷。国内技术成熟和开发应用广泛的制冷工艺有膨胀机制冷、混合制冷。 国内冷剂制冷工艺,为了满足环境保护的要求,现主要采用丙烷压缩循环制冷,制冷温度为-30~-35℃,制冷系数较大。丙烷冷剂可在轻烃回收装置中自行生产,无刺激性气味,该工艺将在我国广泛应用。采用冷剂制冷工艺的装置,所需要的冷量由独立的外部制冷系统提供,不受原料气贫富程度的限制,对原料气的压力无严格要求。装置在运行中,可以改变制冷量的大小以适应原料气量和组成的变化以及季节性的气温变化。 膨胀机制冷有透平膨胀机、热分离机、气波机制冷三种方式。由于透平膨胀机制造技术日趋完善,机组质量有保证,操作、维修方便,等熵效率高,处理量大,加之机组产品系列化,选用、更换都很容易,所以,凡是有自由压力能可供利用的场合,可优先考虑选用透平膨胀机,必要时再考虑设置外部冷剂制冷。在无供电条件的边远地区,使用热分离机或气波机制冷更为有利。对于低压气源,是否可采用膨胀机制冷,需对制冷工艺方案进行技术经济对比分析,才能作出决策。 4 油气田地面工程(OGSE) 第19卷第1期(2000.1)

天然气处理工艺和轻烃回收简介

天然气处理工艺和轻烃回收技术 目录 一、天然气基础知识 二、天然处理工艺 三、天然气轻烃回收工艺技术 序 煤、石油和天然气是当今世界一次能源的三大支柱。随着经济的发展,世界能源结构正在改变,由以煤为主改变为以石油、天然气为主。天然气是一种高效、清洁、使用方便的优质能源.也是重要的化工原料。具有明显的社会效益、环境效益和经济效益。天然气的用途越来越广,需求不断增加。 一、天然气基础知识 什么是天然气? 中文名称:天然气 英文名称:natural gas 定义1:一种主要由甲烷组成的气态化石燃料。主要存在于油田和天然气田,也有少量出于煤层。 定义2:地下采出的,以甲烷为主的可燃气体。它是石蜡族低分子饱和烃气体和少量非烃气体的混合物。 (一)、天然气组成分类 1、烃类 烷烃:绝大多数天然气是以CH4为主要成分,占60%~~90%(V)。同时也含有一定量的乙烷、丙烷、丁烷。有的天然气还含有戊烷以上的组分,如C5~C10的烷烃。 (2) 烯烃和炔烃:天然气有时含有少量低分子烯烃如乙烯和极微量的低分子炔烃(如乙炔)。 (3) 环烷烃:天然气中有时含有少量的环戊烷和环已烷 (4) 芳香烃:天然气中的芳香烃多为苯、甲苯和二甲苯。 2、非烃类 (1) 硫化物:H2S、CS2、COS(羰基硫)、RSH(硫醇)、RSR(硫醚)、R-S-S-R(硫代羧酸和二硫化物)、C4H4S(噻吩)。 (2) 含氧化合物:CO2、CO、H2O。 (3) 其它气体:He、N2。H2。 3、天然气的分类 天然气的分类方法通常有三种。 (1)按照油气藏的特点和开采的方法不同,天然气可分为三类,即气田气、凝析气田气和油田伴生气。 ①气田气是指从纯气田开采出来的天然气,它在开采过程中没有或只有较少天然汽油凝析出来。这种天然气在气藏中,烃类以单相存在,其甲烷的含量约为80%~90%(体积分数),还古有少量的乙烷、丙烷和丁烷等,而戊烷以上的烃类组分含量很少。

天然气轻烃回收工艺流程

轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。当前主要采用冷凝分离法实现轻烃回收。 1、吸附法 利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸附 容量不同,而,将吸附床上的烃类脱附,经冷凝分离出所需的 产品。吸使天然气各组分得以分离的方法。该法一般用于 重烃含量不高的天然气和伴生气的加工办法,然后停止吸 附,而通过少量的热气流附法具有工艺流程简单、投资少的 优点,但它不能连续操作,而运行成本高,产品范围局限性大, 因此应用不广泛。 2、油吸收法 油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。根据操作温度的不同, 油吸收法可分为常温吸收和低温吸收。常温吸收多用于中 小型装置,而低温吸收是在较高压力下,用通过外部冷冻装 置冷却的吸收油与原料气直接接触,将天然气中的轻烃洗 涤下来,然后在较低压力下将轻烃解吸出来,解吸后的贫油 可循环使用,该法常用于大型天然气加工厂。采用低温油吸 收法C3收率可达到(85~90%),C2收率可达到(20~6 0%)。 油吸收法广泛应用于上世纪60年代中期,但由于其工 艺流程复杂,投资和操作成本都较高,上世纪70年代后,

己逐步被更合理的冷凝分离法所取代。上世纪80年代以后, 我国新建的轻烃回收装置己较少采用油吸收法。 3、冷凝分离法 (1)外加冷源法 天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。 系统所提供冷量的大小与被分离的原料气无直接关系,故 又可称为直接冷凝法。根据被分离气体的压力、组分及分 离的要求,选择不同的冷冻介质。制冷循环可以是单级也 可以是多级串联。常用的制冷介质有氨、氟里昂、丙烷或 乙烷等。在我国,丙烷制冷工艺应用于轻烃回收装置还不 到10年时间,但山于其制冷系数较大,制冷温度为 (-35~-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无 刺激性气味,因此近儿年来,该项技术迅速推广,我国新建的 外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺, 一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工 艺。 (2)自制冷法 ①节流制冷法 节流制冷法主要是根据焦耳-汤姆逊效应,较高压力的原料 气通过节流阀降压膨胀,使原料气冷却并部分液化,以达到 分离原料气的目的。该方法具有流程简单、设备少、投资 少的特点,但此过程效率低,只能使少量的重烃液化,故只

天然气脱硫工艺介绍

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矶法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。 (2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H2S同时脱除相当量的CO2,原料气压力低,净化气H2S要求严格等条件下,可选择醇胺法作为脱酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H2S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③H2S含量较低的原料气中,潜硫量在d?5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1和图2分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。 图1脱硫方案选择与酸气分压的关系 图2脱硫方案选择与进、出口气质量指标的关系 (3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1原料气组分表

表2原料气工艺参数表 几种脱硫工艺方案如下: ①干法脱硫固定床吸附法 氧化铁固体脱硫是典型的干法脱硫工艺,处理原料气中的H2S含量一般在lOppm 到1%之间。工艺流程图如图3。 原料气首先进行过滤分离,除去固体杂质和游离水后,进入脱硫装置固体脱硫塔进行吸附脱除气体中含有的H2S,其余塔进行更换脱硫剂工作。脱硫后的净化气经过滤分离,除去化学反应产生的水和气流带出的脱硫剂杂质后输出。 氧化铁固体脱硫工艺所需要的主要设备见表3,常见脱硫装置见图4。 图3氧化铁固体脱硫工艺流程

石油炼化公司的各个装置工艺的流程图大全及其简介

炼化公司的各个装置工艺的流程图大全及其简介 从油田送往炼油厂的原油往往含盐(主要是氧化物)带水(溶于油或呈乳化状态),

可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。电脱盐基本原理: 为了脱掉原油中的盐份,要注入一定数量的新鲜水,使原油中的盐充分溶解于水中,形成石油与水的乳化液。 在强弱电场与破乳剂的作用下,破坏了乳化液的保护膜,使水滴由小变大,不断聚合形成较大的水滴,借助于重力与电场的作用沉降下来与油分离,因为盐溶于水,所以脱水的过程也就是脱盐的过程。 CDU装置即常压蒸馏部分 常压蒸馏原理:

精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。 原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。 在原油加工过程中,把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。 VDU装置即减压蒸馏部分

减压蒸馏原理: 液体沸腾必要条件是蒸汽压必须等于外界压力。 降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。 轻烃回收装置是轻烃的回收设备,采用成熟、可靠的工艺技术,将天然气中比甲烷或乙烷更重的组分以液态形式回收。

RDS即渣油加氢装置,渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。

(工艺技术)轻烃回收工艺技术发展概况

轻烃回收工艺技术发展概况 自20世纪80年代以来,国内外以节能降耗、提高液烃收率及减少投资为目的,对NGL回收装置的工艺方法进行了一系歹¨的改进,出现了许多新的工艺技术。大致说来,有以下几个方面。 (一) 膨胀机制冷法工艺技术的发展 1. 气体过冷工艺(GSP)及液体过冷工艺(LSP) 1987年Ovaoff工程公司等提出的GSP及LSP是对单级膨胀机制冷工艺(ISS)和多级膨胀机制冷工艺(MTP)的改进。典型的GSP及LSP流程分别见图5-16和图5-17。 GSP是针对较贫气体(c;烃类含量按液态计小于400mL/m3)、LSP是针对较富气体(C 2 +烃类含量按液态计大于400mL/m3)而改进的NGL回收方法。表5-10列出了处理量为283×104m3/d的NGL回收装置采用ISS、MTP及GSP等工艺方法时的主要指标对比。 表5-10 ISS、MTP及GSP主要指标对比 工艺方法ISS MTP GSP C 2 回收率/% 冻结情况 再压缩功率/kW 80.0 冻结 6478 85.4 冻结 4639 85. 8 不冻结

制冷压缩功率/kW 总压缩功率/kW 225 6703 991 5630 3961 1244 5205 美国GPM气体公司Goldsmith天然气处理厂NGL回收装置即在改造后采用了GSP法。该装置在1976年建成,处理量为220×104m3/d,原采用单级膨胀机制冷法,1982年改建为两级膨胀机制冷法,处理量为242×104m3/d,最高可达 310×104m3/d,但其乙烷收率仅为70%。之后改用单级膨胀机制冷的GSP法,乙烷收率有了明显提高,在1995年又进一步改为两级膨胀机制冷的GSP法,设计处理量为380×104m3/d,乙烷收率(设计值)高达95%。 2. 直接换热(DHX)法 DHX法是由加拿大埃索资源公司于1984年首先提出,并在JudyCreek厂的NGL 回收装置实践后效果很好,其工艺流程见图5-18。 图中的DHX塔(重接触塔)相当于一个吸收塔。该法的实质是将脱乙烷塔回流罐的凝液经过增压、换冷、节流降温后进入DHX塔顶部,用以吸收低温分离器进 该塔气体中的C 3+烃类,从而提高C 3 +收率。将常规膨胀机制冷法(ISS)装置改造成 DHX法后,在不回收乙烷的情况下,实践证明在相同条件下C 3 +收率可由72%提高到95%,而改造的投资却较少。

天然气脱硫工艺介绍

天然气脱硫工艺介绍公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矾法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。(2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H 2 S同时脱除相 当量的CO 2,原料气压力低,净化气H 2 S要求严格等条件下,可选择醇胺法作为脱 酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H 2 S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③ H 2 S含量较低的原料气中,潜硫量在d~5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1 和图2 分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。

图1 脱硫方案选择与酸气分压的关系 图2 脱硫方案选择与进、出口气质量指标的关系(3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1 原料气组分表 表2 原料气工艺参数表

伴生气轻烃回收工艺技术

伴生气轻烃回收工艺技术 摘要 油气田存在丰富的伴生气资源。为了提高油气综合利用水平,开展伴 生气轻烃回收工艺技术研究有十分重要的现实意义。针对工艺流程设计、设备选型和控制系统设计进行分析与探讨后指出,在工艺设计中应正确选用制冷工艺,精心组织工艺流程,合理利用外冷和内冷;设备选型应体现技术先进和高效的原则;小型浅冷装置的控制方案应着重简单实用,大中型深冷装置则应选用先进的集散控制系统。 主题词伴生气轻烃回收工艺设计回收率制冷工艺流程 在油气田开发中存在丰富的伴生气。为了合理利用这部分天然气资源,油田采用轻烃回收装置,取得了较好的经济效益。但国产化装置仍存在工艺方案不合理、产品收率低、能耗高等问题。针对伴生气轻烃回收工艺,本文对工艺流程设计、设备选型和设计、控制系统设计进行分析与探讨,提出工艺设计的基本思路和原则。 回收工艺过程和特点 目前,伴生气轻烃回收工艺都采用冷凝分离法。虽然冷凝分离法可采用冷剂制冷法、膨胀制冷和混合制冷法等多种制冷工艺,但从工艺原理上看,都是经过气体冷凝回收液烃和液烃精馏分离成合格产品这两大步骤。从流程组织上,回收工艺过程由原料气预处理、原料气增压、脱水、冷凝分离、制冷系统、液烃分馏、产品储配等几个单元组成。 一般来说,伴生气具有压力低,气质富的特性。为满足冷凝分离的工艺要求,伴生气回收工艺需设置压缩机增压过程,增压值大小与干气外输压力、制冷温度、分馏塔塔压、产品收率等因素有关,这是低压气轻烃回收工艺的特点。 优化工艺流程 工艺流程的变化是因原料气气源条件(气量、压力和组成)、产品要求和建设环境等因素的不同而引起的。工艺流程的合理与否是回收装置达到较高的技术经济效益的前提。 制冷工艺的选择 制冷工艺的选择主要考虑原料气的压力、组成、液烃回收率等因素。当伴生气处理量小、组成较富时,为了回收烃类,可采用浅冷回收工艺,制冷方法主要采用冷剂制冷或冷剂制冷+节流膨胀制冷;当伴生气处理量较大、组成又比较贫、

天然气处理与加工工艺

天然气处理与加工工艺 第一章 1,天然气的主要成分是甲烷,此外还有乙烷,丙烷,丁烷,戊烷及己烷以上的烃类 2,天然气的分类(1)按产状分类,游离气和溶解气(2)按经济价值分类,常规天然气和非常规天然气(3)按来源分类,于油有关的气,与煤有关的气,天然沼气,深源气,化合物气(4)按组成分类,干气,湿气,贫气,富气或净气,酸气(5)我国习惯分法,伴生气,气藏气和凝析气 3.天然气的主要产品;液化天然气,液化石油气,天然气凝液,天然气油,压缩天然气 4.天然气处理与加工含义(1)天然气加工是指从天然气中分离,回收某些组分,使之成为产品的那些工艺过程(2)天然气处理是指使天然气符合商品质量和管道运输要求所采取的工艺过程 5.烃露点;在一定压力下,天然气中烃类开始冷凝的温度 水露点;在一定压力下,天然气中水蒸气开始冷凝的温度 6.华白指数;是代表燃气特性的一个参数,是燃气互换性的一个判定指数,只要一种燃气于燃具所使用的另一种燃气的华白指数相同,则此燃气对另一种燃气具有互换性 第二章 1.相图 2.预测天然气水含量的方法,图解法和状态方程法 3.引起水合物形成的主要条件是(1)天然气的温度等于或低于露点温度,有液态水存在(2)在一定压力和气体组成下,天然气温度低于水合物形成的温度(3)压力增加,形成水合物的温度相应增加 4.水合物形成的条件预测;相对密度法,平衡常数法,Baillie和Wichert法,分子热力学模型法,实验法 5.天然气水合物的结构;体心立方晶体结构,金刚石型结构,结构H型水合物 在形成水合物的气体混合物体系中,可能出现平衡共存的相有气相,冰相,富水液相,富烃液相和固态水合物相 6.吸附负荷曲线(吸附波);在吸附床层中,吸附质沿不同床层高度的浓度变化曲线,称为吸附曲线 7.破点;床层出口气体中水的浓度刚刚开始发生变化的点,为破点 8.透过(穿透)曲线;从破点到整个床层达到饱和时,床层出口端流体中吸附质的浓度随时间的变化曲线 9.吸附剂平衡吸附量;当床层达到饱和时,吸附剂的吸附量 10.动态(有效)吸附(湿容)量,吸附过程达到破点时,吸附剂的吸附量 11.天然气脱水方法,天然气绝对含水量;每标准立方米天然气的实际含水量 12.天然气饱和含水量;在一定温度压力下,天然气与液态水达到平衡时气体的绝对含水量 13.天然气的相对湿度;天然气中实际含水量与饱和含水量之比 14.天然气的水露点;在一定压力下,天然气中的水蒸汽开始冷凝的温度 第三章 热力小学抑制剂,动力学抑制剂的作用机理及应用特点? 向天然气中加入水合物动力学抑制剂后,可以改变水溶液或水合物相的化学位,从而使水合物形成的条件向较低的温度或较高的压力范围;动力学抑制剂注入水后在溶液中的浓度

轻烃回收基本知识

轻烃回收基本知识 1、天然气:主要由碳氢化合物组成的气体混合物,并含有少量的惰性气体。主要成分:甲烷、乙烷、丙烷、正(异)丁烷、正(异)戊烷等烷烃,及少量的二氧化碳、氮气、硫化氢等。 2、富气:(湿气)甲烷含量在低于90%以上、丙烷以上成分含量大于10%以上的天然气,称为富气。(通常指未处理的伴生气或原料气) 3、干气:甲烷含量大于90%以上的天然气,成为干气。(通常指轻烃装置处理后的外输气) 4、轻烃回收:对伴生气经过加工处理,获得液体轻烃的过程。 5、原油稳定:对(未处理)原油进行加工脱出易挥发组分。主要脱出溶解在原油中的戊烷以下的易挥发组分 6、油田混合烃(液化石油气):主要成分丙烷、正(异)丁烷。(冬、夏季乙烷、戊烷含量有标准要求) 7、轻质油:主要有戊烷以上成份组成液体混合物。 8、回收轻烃的手段:提高气体分离压力和降低气体分离温度。(升压、降温) 9、原油稳定回收轻烃的手段:本站采用降压(负压)、升温.(负压稳定) 10、影响干燥器脱水效果的主要因素 (1)天然气的温度和湿度(2)天然气的流动速度(3)吸附剂层的高度及再生的完善程度 11、吸附剂使用后(反复再生)变劣的主要原因 (1)吸附剂的表面被碳、聚合物、化合物所覆盖(2)由于半融熔是部分细孔破坏而消失(3)由于化学反应使结晶细粒遭到破坏。 12、吸附剂失效的危害 造成天然气的露点升高,低温区形成水化物,使低温设备、管线冻堵,引起系统压力升高造成事故。(丛压力差的大小判断分析并及时采取解冻处理) 问题处理 13、稳定气与伴生气的有效(回收)成分区别:一般稳定气比伴生气高3倍左右。优先处理稳定气。 14、影响装置轻烃产量的因素(1)原料气中的有效成分(2)原料气量(3)分离压力、温度(4)脱乙烷塔(脱乙烷气的效果)(5)轻质油中的丁烷以下成分含量(液化气塔混合烃分离效果) 15、轻烃装置增加轻烃产量的措施 (1)优先处理稳定气(2)提高处理量(满负荷运行)(3)提高分离器压力、降低分离温度(4)降低脱乙烷气中的有效成分(5)减少轻质油中丁烷以下成分含量(切割效果) 16、脱乙烷塔压高的原因 (1)塔温高(2)脱乙烷气量少 17、脱乙烷气的影响 (1)易造成塔操作压升高(2)轻烃储罐压力高 18、稳定装置增加轻烃产量的措施 (1)提高稳定塔进料温度、降低塔压(2)提高原油稳定量(3)增加补气量(4)降低正负压冷凝器温度 19、液化气塔压力建立不起来的原因:

天然气处理工艺

第一篇天然气处理工艺

一、天然气基本概念 1.天然气的利用 天然气发电清洁民用燃料作为化工原料天然气用作发动机燃料 2.天然气的组成与分类 (1)天然气的组成 天然气是以甲烷为主的碳氢化合物的混合物,而且这些化合物大部分是烷烃,其组成如下 CH4 C2H6 C3H8 C4H10 C5+ N2 CO2 H20 H2S He Ar Xer (2)天然气的分类 (1) 按天然气的来源可分为: ①气田气(气藏气;气层气)在地下储层中呈均一气相存在, 采出地面仍为气相的天然气。从气田中开采出来的,主要成分是甲烷和乙烷。 ②伴生气在地下储层中伴随原油共生,或呈溶解气形式溶解在原油中,或呈自由气形式在含油储层游离存在的天然气。与油共生,甲烷含量一般为70~80%。 (2)按甲烷含量可分为: ①干气(贫气)一般甲烷含量在90%以上,轻烃含量少。 ②湿气(富气)一般甲烷含量在90%以下,轻烃含量较高。 3.天然气加工的目的(4个) (1)燃气管网供气:主要内容包括,①脱除天然气中的硫化氢和二氧化碳,解决空气污染和热值问题,②脱重烃和水,解决输入过程的重烃和水的冷凝问题。 (2)天然气液化:主要解决天然气的远距离输送问题, 特别是跨海运输问题。由于液化(常压,-162℃)天然气的体积为其气体(20℃,101.325kp)体积的1/1625,故有利于输送和储存。(3)供应石油化工原料:①提供较纯的原料甲烷作为制氢、生产尿素和甲醇的原料;②回收轻烃,作为裂解、脱氢、异构化、芳构化及氧化等生产化学品的原料。 (4)提供石油液化气和天然气凝析油:石油液化气为城市提供燃料,凝析油经物理加工生产系列溶剂油。 5.天然气加工过程

天然气轻烃回收简述

天然气轻烃回收简述 摘要:本文简述了天然气类型对轻烃回收的影响、天然气轻烃回收的目的和方法。 关键词:轻烃;轻烃回收;露点控制;冷凝分离 天然气作为一种宝贵的资源在人民生活和工业中有着广泛的应用,天然气中除含有甲烷外,还含有一定量的乙烷、丙烷、丁烷、戊烷已经更重烃类。为了满足商品气或者管输气对烃露点的质量要求,或为了获得宝贵的化工原料,需将天然气中除甲烷外的一些烃类予以分离与回收。由天然气中回收的液烃混合物成为天然气凝液,习惯上称为轻烃。从天然气中回收凝液的过程称之为天然气凝液回收或者天然气液回收,习惯上称为轻烃回收。回收的天然气凝液或是直接作为商品,或是根据有关商品的质量要求进一步分离成乙烷、丙烷、丁烷(或丙丁烷混合物俗称液化气)及天然汽油等产品。 轻烃回收是天然气处理和加工中一个十分重要的而又常见的工艺过程,但并不是在任何情况下惊醒轻烃回收都是经济合理的。它取决于天然气的类型和数量、轻烃回收的目的、方法及产品价格等,特别是取决于那些可以回收的烃类组分作为液体产品还是作为商品气时的经济效益对比。 1天然气类型对轻烃回收的影响 天然气分为气藏气、伴生气和凝析气三种类型,类型不同,其组成也有很大差别,因此天然气类型决定了天然气中可以回收的烃类组成及数量。 气藏气主要由甲烷组成,乙烷及更重烃类含量很少,因此,只是将气体中乙烷及更重烃类回收作为产品高于其在商品气中的经济效益时,才考虑进行轻烃回收。我国川渝、长庆和青海气区有的天然气属于乙烷及更重烃类含量很少的干天然气(即贫气),故应进行技术经济论证以确定是否需要回收凝液。此外,塔里木、长庆气区有的天然气则属于含少量C5+重烃的湿天然气,为了使进入输气管道的气体烃露点符合要求,必须采用低温分离法将少量的C5+重烃脱除,其目的只要是控制天然气的烃露点。伴生气中通常含有较多乙烷及更重烃类,为了获得液烃产品,同时也为了符合商品气或管输气的烃露点要求,必须进行轻烃回收。 凝析气中一般含有较多的戊烷以上烃类,当压力降低至相包络线以下时,就会出现反凝析现象。因此除需要回收因反凝析而在井场和处理厂获得的凝析油外,由于气体中仍含有不少可以冷凝回收的烃类,无论分离出凝析油后的气体是否要经压缩回注地层,通常都应回收天然气凝液,从而额外获得一定数量的液烃。 2轻烃回收的目的 轻烃回收的目的只要为:①使商品气质量达标;②满足管输气质量要求;③

天然气净化厂工艺.docx

龙岗天然气净化厂概况 1龙岗天然气净化厂简介 龙岗天然气净化厂位于四川省南充市仪陇县阳通乡二郎庙村 1 社二郎庙,位于仪陇县西北面边沿山区,距仪陇县老城区直线距离约54km,西南距仪陇县新城区直线距离约71km,北侧距立山镇直线距离约。设计的原料天然气处理能力 4 3 为 1200×10 m/d ,设计的原料气压力~,单列装置的原料天然气处理能力为 43 600×10 m/d ,共 2 列,装置的操作弹性为50~ 100%,年运行时间 8000 小时。龙岗天然气净化厂主要包括主体工艺装置、辅助生产设施和公用工程几部分。 其原料气组成如下表所示: 组分摩尔分率,mol%组分摩尔分率,mol% H2S i-C4H10 CO2n-C4H10 H2O N2+He CH4H2 C2H6O2+Ar 注: 1)原料气不含有机硫 2)原料气温度 30~36℃ 2生产工艺 由集气总站来的原料天然气先进入脱硫装置,在脱硫装置脱除其所含的几 乎所有的 H2S 和部分的 CO2,从脱硫装置出来的湿净化气送至脱水装置进行脱水 处理,脱水后的干净化天然气即产品天然气,经输气管道外输至用户,其质量 按国家标准《天然气》(GB17820-1999)二类气技术指标控制。脱硫装置得到的酸气送至硫磺回收装置回收硫磺,回收得到的液体硫磺送至硫磺成型装置,经 冷却固化成型装袋后运至硫磺仓库堆放并外运销售,其质量达到工业硫磺质量 标准( GB2449-92)优等品质量指标。为尽量降低 SO2的排放总量,将硫磺回收装置的尾气送至尾气处理装置经还原吸收后,尾气处理装置再生塔顶产生的酸 气返回硫磺回收装置,尾气处理装置吸收塔顶尾气经焚烧炉焚烧后通过 100m高烟囱排入大气。尾气处理装置急冷塔底排出的酸性水送至酸水汽提装置,汽提 出的酸气返回硫磺回收装置,经汽提后的弱酸性水作循环水系统补充水。总工 艺流程方框图见图 2-1 。

天然气轻烃回收工艺介绍

天然气轻烃回收工艺 一.轻烃回收工艺 从天然气中回收轻烃凝液经常采用的工艺包括油吸收法,吸附法,冷凝法。国内外近20多年已建成的轻烃回收装置大多采用冷凝法。冷凝法回收轻烃工艺就是利用天然气中各烃类组分冷凝温度的不同,在逐步降温过程中依次将沸点较高的烃类冷凝分离出来的方法。该法的基点是在于:需要提供较低温位的冷量使原料气降温。按制冷温度不同,又可分为浅冷分离和深冷分离工艺。浅冷是以回收丙烷为主要目的,制冷温度一般在-15~-25℃左右,深冷则以回收乙烷为目的或要求丙烷收率大于90%。制冷温度一般在-90~-100℃左右。 常用的制冷工艺主要有三种:①冷剂循环制冷工艺;②膨胀制冷工艺;③冷剂制冷与膨胀制冷的联合制冷工艺。 常用的原料气脱水工艺主要采用分子筛(3A或4A)脱水法和甘醇脱水法。 二.轻烃回收工艺选择 1.选择依据 含量及自身可利用的压力降大小等多方面因素来选择合适根据油气田中C 2 的制冷工艺。根据原料气预冷温度要求的脱水深度及天然气组成等多方面因素来选择合适的天然气脱水工艺。 2.制冷工艺的选择 ① 冷剂制冷工艺 冷剂制冷是利用某些物质(制冷工质)在低温下冷凝分离(如融化、汽化、升华)时的吸热效应产生的冷量。在NGL(Natural Gas Liquids天然气凝液)回收中常用乙烷、丙烷、氨、氟里昂等由液体汽化吸热冷。这就需要耗功,用压缩机将气体压缩升压,冷凝液化、蒸发吸热、产生冷量必须消耗热能。 冷剂制冷工艺流程比较复杂,投资较高,但稳定性比较好。 ② 膨胀机制冷工艺 膨胀机制冷是非常接近于等熵膨胀的过程,气体经过膨胀降压之后温度降低(可能有凝液产生)。这部分气体与原料气换冷或通过别的途径放出冷量。膨胀机制冷可以回收一部分功,一般匹配同轴压缩机。

天然气处理站危险因素的分析(通用版)

天然气处理站危险因素的分析 (通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0147

天然气处理站危险因素的分析(通用版) 天然气处理站是石油天然气生产中重要的生产装置,其主要任务是在一定的温度、压力下,将天然气中的重组分及其杂质脱出,工艺中有高温、低温、高压、伴随生产过程的天然气和凝液属甲类易燃易爆气体和液体,所以天然气处理站是危险性较大的生产装置和生产场所,安全生产极其重要。本文就中石化西北分公司某天然气处理站存在的危险因素进行分析。 一、工艺流程简介 工艺流程如图1所示。 图1天然气处理工艺流程框图 原料气以0.20~0.30MPa、25℃进入生产分离器进行气液分离,然后经压缩机两级增压至3.0MPa、150℃后,经空冷器冷却至50℃、水冷换热器冷却至30℃,以气液混相状态进入压缩机出口分离器,

分离出的凝液经节流降压后输至液烃分离器,脱水后的天然气以2.5MPa、30℃进膨胀机增压端增压至4.0MPa、62℃,进水冷换热器降温至30℃后进入三股流换热器,与初级吸收塔顶低温外输干气及来自低温分离器经节流降压后的低温液相换热,降温至-40℃进入低温分离器。低温分离器顶部气相以4.0MPa、-40℃进入膨胀机降压至1.3MPa、-80℃。低温分离器底部液相以1.3MPa、-64℃进入三股流换热升温至25℃后去分馏装置。经膨胀机膨胀制冷后的低温气体以1.3MPa、-80℃进入初级吸收塔顶部。脱乙烷塔塔顶气以1.3MPa、0℃进初级吸收塔低部。初级吸收塔塔顶气以1.3MPa、-80℃进三股流换热器升温至21℃,再与液化气塔塔底轻油换热升温至32℃,作为合格产品外输。初级吸收塔塔底液相进入脱乙烷塔顶部。 二、处理站主要危险因素的辨识与分析 1.工艺、设备设施的火灾爆炸危险因素 天然气站在连续性生产过程中,天然气、液化气、稳定轻烃等易燃易爆工程物料的干燥、分离、过滤、增压、降温,液化以及储运等工艺状态以及设备设施的状况构成发生火灾爆炸事故的基础条

轻烃回收安全规程

轻烃回收安全规程 SY/T6562-2003 The safety code of recovering light hydrocarbon 前言 本标准由石油工业安全专业标准技术委员会提出并归口。 本标准起草单位:胜利石油管理局河口采油厂、安全环保处。 本标准主要起草人:王彦春、孙现东、高圣新、王光卿、王登文、李俊荣、陈建设。 1 范围 本标准规定了油田伴生气、气田天然气轻烃回收安全管理的基本要求。 本标准适用于陆上油气田轻烃回收厂(站)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 50183—1993 原油和天然气工程设计防火规范 SBJ 12—2000 氨制冷系统安装工程施工及验收规范 SY 6278—1997 天然气净化厂安全规范 3 术语和定义

下列术语和定义适用于本标准。 轻烃回收light hydrocarbon recover 从石油天然气(包括油田伴生气或气田天然气)中,经过初加工处理获取烃类产品的过程。 4 投产准备 4.1 岗位配置 4.1.1 应建立健全各项安全管理制度,包括但不限于: a)岗位安全生产职责; b)设备安全技术操作规程; c)消防网络; d)事故应急预案 4.1.2 人员:岗位人员应经安全主管部门培训合格,取得上岗操作证。 4.1.3 工具:岗位应配备各类防爆工具。 4.1.4 劳动保护用品:工作人员应穿戴劳动防护用品,并符合岗位防爆、防静电、防中毒的要求。 4.2 吹扫 4.2.1 制定吹扫程序和要求,吹扫介质采用压缩空气。 4.2.2 吹扫时空气压力,中压系统宜为0.25MPa~0.40MPa(表压),低压系统宜为0.04MPa~0.05MPa(表压)。 4.2.3 吹扫应反复多次冲击进行(塔、设备除外)。 4.2.4 采用白色滤纸或白布放在吹扫口处验证,当滤纸或白布

轻烃回收系统事故原因及预防

轻烃回收系统事故原因及预防 轻烃回收系统是指通过油田伴生气输送和初加工以及原油稳定而得到天然气凝析液的过程。 1.输气管线及站内天然气工艺管线泄漏或爆裂 输气管线及站内天然气工艺管线泄漏或爆裂的原因有:管线腐蚀穿孔;人为破坏;管线冻堵造成憋压;工艺流程切换失误,造成憋压;管线超限运行;天然气增压装置失控。 输气管线及站内天然气工艺管线泄漏或爆裂的预防措施为:严格执行工艺设施操作及维护保养规程;严格执行巡回检查制度;严格执行《输气工操作规程》;定期对管线进行维护;加强阴极保护管理;定期进行管线巡护;制定事故处理应急预案;配备正压式呼吸器和防火服。 2.压力容器泄漏、着火 压力容器泄漏、着火的原因有:压力容器有裂缝、穿孔;容器超压;安全附件、工艺附件失灵或与容器结合处渗漏;工艺流程切换失误;容器周围有明火;周围电路有阻值偏大或短路等故障发生;雷击起火;有违章操作(如使用非防爆手电,使用非防爆工具,不按劳保服装等)现象。 压力容器泄漏、着火的预防措施为:压力容器应有使用登记

和检验合格证;制定事故处理应急预案;一旦发生泄漏、着火,要立即切断油源、火种;按压力容器操作规程进行操作;对压力容器定期进行维护保养;工艺切换严格执行相关操作规程;严格执行巡回检查制度;严格执行各类安全操作规程;定期检验安全附件,并有检验合格证;防雷和防静电设施性能良好,有检验合格证;容器周围严禁明火,需要明火作业时,需经安全技术部门批准,采取一定预防措施后,方可动(用)火;定期对容器周围电路进行维护保养;定期检修各种工艺附件;配备正压式呼吸器和防火服。 3.压缩机装置爆炸着火 压缩机装置爆炸着火的原因有:压缩机装置启运前,未置换工艺流程内的空气;压缩机装置有渗漏点;压缩机装置发生机械故障;安全附件、工艺附件失灵或与压缩机装置结合处渗漏;工艺流程切换失误;压缩机装置周围有明火;压缩机装置电路有阻值偏大或短路等故障;未按照压缩机操作规程操作;有违章操作(如使用非防爆手电,使用非防爆工具,不按规定穿戴服装等)现象。 压缩机装置爆炸着火的预防措施为:新投运、检修后投运或长时间停产后投运的压缩机装置,要用惰性或天然气对工艺流程内的气体进行置换;制定事故处理应急预案;一旦发生爆炸着火,要立即切断气源、火种;按压缩机装置操作规程进行操作;定期对压缩

轻烃回收装置的作用及特点

轻烃回收装置的作用及特点 顾名思义,轻烃回收装置就是专门回收轻烃的装置。其采用成熟、可靠的工艺技术,集中处理炼油四套常减压装置的瓦斯气及初顶汽油。碳三、碳四轻烃回收率高达10.69%,每年可回收16.13万吨,增创效益1.08亿元。 轻烃回收装置的作用: 轻烃回收装置的作用就是回收轻烃,轻烃又称为天然气凝液(NGL),在组成上覆盖C2~C6+,含有凝析油组分(C3~C5)。轻烃回收是指天然气中比甲烷或乙烷更重的组分以液态形式回收的过程。 其目的一方面是为了控制天然气的烃露点以达到商品气质量指标,避免气液两相流动;另一方面,回收的液烃有很大的经济价值,可直接用作燃料或进一步分离成乙烷、丙烷、丁烷或丙丁烷混合物(液化气)、轻油等,也可用作化工原料。 轻烃回收装置技术性能及特点: 1、脱水分离系统:本系统是天然气经过分离装置,通过低速,旋转分离,金属过滤丝网等工序,使水、重油、泥沙等充分分离,大大减轻了后道工序系统的载荷及繁琐维修,该系统显著特点是增加有旋转分离及金属丝网过滤装置,分离效果明显增加。 2、压缩净化系统:本压缩系统采用无油压缩机,蒸发式冷凝器降温具有耗能低、维修方便的特性,我公司自主研发的蒸发式冷却器节水98%,节电55%,自投放市场以来,给用户带来明显的经济效益,深受用户的好评。 3、干燥系统:本系统采用4A分子筛,燃气加热还原,自动交换等特性,节能效果好,操作工人劳动强度得到了降低。 4、制冷系统:装置采用氨制冷循环系统,压缩机为活塞制冷压缩机,电机功率自动变频,辅机采用蒸发式冷凝器,铝片式蒸发器,具有节能、节水、换热效果好等功能,且占地面积小。所采用氨阀门均为焊接阀门,减小了密封不严而泄露的几率。 5.冷却分离系统:本系统采用四级换热,能源利用充分,所用预热器、氨蒸发器、气气换热器均为铝片管材质,换热效果好,预冷可使水份完全脱除,避免照成冰堵,分离器采用液位自动排放,减轻工作劳动强度。 洛阳润成石化设备此系统还增加一脱乙烷塔,利用预冷轻烃加热,既充分利用了热能还净化了混烃里的轻组分。 6.自动控制系统:本装置采用DSC自动控制系统,实现分散控制、集中显示和操作,具有显示、监控、报警等功能,代替了人工操作,提高了生产效率。 由于油田气里主要成分是甲乙烷、还含大量的液化石油气和轻烃油,直接燃烧排放不但造成资源浪费,还造成大气的严重污染,对大气质量产生影响。所以说,轻烃回收装置的作用日益明显并且很有必要!

轻烃制冷回收工艺

轻烃制冷回收工艺 摘要:自20世纪80年代以来,国内外以节能降耗、提高轻烃收率及减少投资为目的,对NGL 回收装置的工艺方法进行了一系列的改进,出现了许多新的工艺技术从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。制冷工艺主要采用冷剂循环制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷,单级膨胀机制冷工艺应用广泛,深冷装置较少,装置能耗高,自控水平较低。在深冷回收装置中,以冷剂制冷作为辅助冷源,膨胀机制冷作为主冷源的混合制冷方法,因制冷温度低,液烃回收率高,对气源条件变化适应性强,将得到推广和应用。 从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。本文通过采用轻烃回收工艺方法和工艺过程结合在一起进行研究在工艺设计中,针对不同的原料状况,应积极采用和开发新工艺、新技术以达到节能降耗、提高轻烃收率、有效的利用能量、降低消耗起着关键性的作用。 关键词:轻烃回收膨胀机制冷天然气 1 烃回收工艺 在气体处理厂内,通过改变气体条件,破坏各组分间的平衡,在达到新的平衡状态时会有一些组分凝析、另一些组分蒸发,从而实现从天然气内回收液态烃。改变的条件可能是压力或温度,也可能是将不同的物质引入气流,更可能是上述三种方法的结合。 早期从天然气内回收液态烃的方法是采用压缩和冷却。工程师们发现,压缩天然气至较高压力并冷却至接近环境温度,会从气流中形成并分离出一定数量的烃液,还知道采用平衡蒸发常数和天然气(组分)分析能预测烃液的回收量。压缩和冷却工艺一直是最简单的方法。然而,这种方法却不如后来开发的一些方法有效。压缩和冷却法常受周围空气或使用冷却水的制约。用制冷进一步降低气流温度并回收更多的液体产品,是传统压缩和冷却方法合乎逻辑的发展。用氨或烷为制冷剂的机械制冷系统是最早使用的制冷类型。当然,在早期的尝试中曾遇到许多与生成水合物有关的问题。在气体深冷(蒸发)器以及深冷器下游的分离器内发生过冰冻。向气流内注甲醇或乙二醇溶液能解决冰冻问题,在一些情况下,在

天然气工艺简介

教案 编号: 培训班名称:深冷初级操作工授课题目:工艺专业 授课日期: 授课教师: 天然气分公司培训中心

第一章概述 原油和天然气统称为石油。原油只是以液态形式天然形成的比较重的烃类组分,而天然气指的是以气态形式存在的比较轻的烃类组分。来自气井的天然气叫气井气,来自油井从原油中分离出来的天然气叫伴生气。 第一节天然气的组成分类和性质 1.1.1天然气的组成 天然气是一种烃类气体的混合物,其中也含有水和其他杂质,主要是由碳、氢、硫、氮、氧及微量元素组成的,以碳、氢为主,碳约占65%~80%,氢约占12%~20%,各种地区生产的天然气组成是不同的,甚至同一储层中不同的两口井产出的天然气组成也是不同的,而且,随着油田开采的程度不同,同一口井产出的天然气组成也会发生变化。 天然气中含有的烃主要是甲烷,同时含有乙烷、丙烷、丁烷、戊烷以及少量的己烷、庚烷等更重的气体。 1.1.2 天然气的分类 天然气有三种分类方法: (1)按照矿藏特点分:主要分为气井气和伴生气。 伴生气:指的是来自油井从原油中分离出来的天然气。 气井气:指来自气井的天然气。 (2)按照天然气的烃类组成(即按天然气中液烃含量)的多少来分类,可分为干气、湿气或贫气、富气。 C5界定法——干、湿气的划分 干气:指在1标准立方米天然气中,C5(戊烷)以上重烃液体含量

低于13.5立方厘米的天然气。 湿气:指在1标准立方米天然气中,C5以上烃液含量高于13.5立方厘米的天然气。 C3界定法——贫、富气的划分 贫气:指在1标准立方米天然气中,C3以上烃液含量低于94立方厘米的天然气。 富气:指在1标准立方米天然气中,C3以上烃液含量高于94立方厘米的天然气。 (3)按照酸气含量多少,天然气可分为酸性天然气和洁气。 酸性天然气:指含有显著量的硫化物和二氧化碳等酸气,这类物质必须经处理后才能达到管输标准或商品气气质指标的天然气。 洁气:指硫化物含量甚微或根本不含的气体,它不须净化就可外输和利用。 1.1.3 天然气的物理性质 由于天然气是烃类混合物,而且这种混合物的组成经常变化,所以其物理性质也将发生变化,天然气加工中最常用的物理性质是:分子量、冰点、沸点、密度、浓度、粘度、临界温度、临界压力、汽化热、比热、热值、蒸汽压。 天然气的相关概念: 1、天然气的爆炸极限:天然气与空气形成的混合物中,当天然气在空气中的含量达到一定的比例范围,这种混合气体具有爆炸的可能,这种比例范围的高低限制即天然气的爆炸极限,当天然气的体积分数为5%~1

相关主题
文本预览
相关文档 最新文档