当前位置:文档之家› 一种氨敏配合物的合成与气敏特性

一种氨敏配合物的合成与气敏特性

气敏材料敏感机理研究进展

摘要:为研究气敏材料的敏感机理,获得提高材料气敏性能、开发新 型气敏材料的理论指导,介绍了气敏材料的概念、 分类,并从气体与敏感材料的物理、化学等相互作用出发,结合气敏材料电学性质的变化,对其敏感机理及模型进行了较为详细的阐述,指出气敏机理研究对于解决气敏材料选择性、稳定性差以及工作温度高等现存问题有着重要的意义。 关键词:气敏材料;气敏机理;模型中图分类号:TP212.2 文献标识码:A 文章编号:1008-5548(2007)04-0042-04 ResearchDevelopmentofSensitiveMechanismofGasSensingMaterials LIUHai-feng,PENGTong-jiang,SUNHong-juan, MAGuo-hua,DUANTao (InstituteofMineralMaterials&Application,SouthwestUniversityof Science&Technology,Mianyang621010,China) Abstract:Inordertostudythesensitivemechanismofgassensing materials,improveitssensitivityanddevelopnewgassensingmaterials,thedefinitionandclassificationofgassensingmaterialwereintroduced.Thesensitivemechanismsandmodelsofgassensingmaterialswerereviewedbasedontheelectricchangeofsensingmaterialscausedbyactionsbetweengasesandmaterials. Itispresentedthatstudyingthe sensitivemechanismofgassensingmaterialsisimportanttoimproveitsunstablesensitivityandhighworktemperature. Keywords:gassensingmaterials;sensitivemechanism;model 气敏材料是一种对某种环境中某种气体十分敏感的材料,一般都是某种类型的金属氧化物,通过掺杂或非化学计量比的改变而使其半导化,其电阻随其所处环境的气氛而变。不同类型的气敏材料,对某一种或几种气体特别敏感,其阻值将随该种气体的浓度(分压)有规律地变化,其检测灵敏度为百万分之一的量级,个别可达十亿分之一的量级,远远超过动物的 嗅觉感知度,故有“ 电子鼻”之称[1 ̄3]。目前,对于各种气敏材料的研究已经引起许多研究者的关注,但对气敏机理的认识还较为模糊。有学者提出了表面电阻控制模型、体电阻控制模型、吸附气体产生新能级模型、隧道效应模型、控制栅极模型和接触燃烧模型等气敏模型[4]。本文主要从气体与敏感材料的相互作用出发,结合气敏材料电学性质的变化,对气敏材料的敏感机理进行较为详细的阐述。 1吸、 脱附模型吸、脱附模型是指利用待测气体在气敏材料上进行物理或化学吸、脱附,引起材料电阻等电学性质变化从而达到检测目的的模型。该模型建立较早,是最为公认的气敏机理模型。通常情况下,材料对气体的物理和化学吸附不可分离的,只是对于不同的材料,起主导作用的吸附方式不同。1.1物理吸、 脱附模型物理吸、脱附模型是利用气体与敏感材料的物理吸、脱附进行检测的。如水蒸气(湿敏)传感器就是利用物理吸附的水分子引起材料表面的电导率发生变化进行检测,也可利用吸附的水分子引起材料电容变化而进行检测。 严白平等[5]通过对MgCr2O4-TiO2湿敏陶瓷的机理进行微观研究表明,材料表面颗粒存在电子电导,产生这种电子电导的原因不是水的化学吸附,因为水的化学吸附在低温下是不可逆的,其化学反应式是: H2O+O-→2OH+e。反应生成的OH不会在低温下还 原成H2O。显然,湿敏材料表面电子电导产生的原因 是物理吸附水。物理吸附水在湿敏材料表面是以弱氢键的形式吸附于表面OH上,由于水分子的强极性,水分子的物理吸附等效于表面上吸附了电偶极子。物理吸附水是容易脱附的,水分子的吸附、脱附等效于表面电偶极子的偶极矩增大、减小。这种表面偶极矩的变化使表面能变化,表面与材料内部实现电子转移。 收稿日期:2006-11-28。 基金项目:国家高技术研究发展计划(863计划)资助项目,编号: 2004AA302032。 第一作者简介:刘海峰(1983-),男,硕士研究生。 气敏材料敏感机理研究进展 刘海峰,彭同江,孙红娟,马国华,段 涛 (西南科技大学矿物材料与应用研究所,四川绵阳 621010)

倍氨敏固体饮料说明

固体饮料 固体饮料是指以糖、乳和乳制品、蛋或蛋制品、果汁或食用植物提取物等为主要原料,添加适量的辅料或食品添加剂制成的每100克成品水分不高于5克的固体制品,呈粉末状、颗粒状或块状,如豆晶粉、麦乳精,速溶咖啡、菊花晶等,分蛋白型固体饮料、普通型固体饮料和焙烤型固体饮料(速溶咖啡)3类。 蛋及蛋制品等其他动植物蛋白等为主要原料,添加或不添加辅料制成的、蛋白质含量大于或等于4%的制品,常见的有豆奶粉、核桃 蛋白质含量低于4%的制品。常见的有酸梅粉、菊花精、速溶茶粉、茅根精等。 一直以来,固体饮料因品种多样、风味独特、易于存放而备受消费者青睐,尤其是那些富含维生素、矿物质等营养成分的固体饮料,可以及时补充人体代谢所需营养,更成为了许多人生活中离不开的好伴侣。 为了保障消费者的合法权益,促进固体饮料行业健康发展,国家质检总局近3年来每年均进行了固体饮料产品质量国家监督抽查。2004年固体饮料质量抽查合格率为95%;2005年抽查合格率为95%;2006年抽查合格率为92%。国家质检总局历次抽查报告显示,所有产品的感官指标、蛋白质、细菌总数、大肠菌群、致病菌等项目均未

出现不合格。因此,从总体上讲,固体饮料的质量是值得消费者信赖的。究其原因,主要有两点:一是固体饮料市场占有率较高的大型企业拥有先进的喷雾干燥、自动包装成套连续生产线及完善的质量管理体系,产品质量一直较为稳定。二是固体饮料产品实施市场准入制度,从源头控制了产品质量。 据据显示,随着人们消费观念的转变以及国内固体饮料企业的精耕细作,由于固体饮料方便、快捷、品类繁多的特点,受到越来越多消费者的追捧,固体饮料行业步入快速发展通道,行业内企业数量和行业产销规模不断扩大。至2010年行业更是出现了跳跃式的增长,市场增速和产值增速均达到30%以上,实现销售收入261.27亿元,同比增长32.12%;工业总产值262.77亿元,同比增长30.70%,行业收入和产值及其增速均为近6年之最。 以速溶咖啡、速溶茶、奶粉、奶茶、果粉为代表的产品占据了固体饮料行业主要的市场份额。咖啡和豆奶粉稳健发展的同时,奶茶产品成为固体饮料的新主力发展迅猛尤为突出,2010年全国市场总额将约为60亿元左右,并形成了香飘飘等品牌企业和销售额达几十个亿的规模企业。奶茶产品的热销也带动了整个固体饮料行业的快速发展。固体饮料已进入快速发展的关键期,但行业发展中还存在竞争无序、企业规模较小、生产相对落后等问题,行业亟待规范和产业升级。 材料及包装材料的质量控制、生产车间尤其是冷却和包装车间的卫生控制、设备的清洗消毒、配料计量、脱水和包装工序的控制、操

气敏元件测试

实验??气敏材料性能检测 一、实验目的 1.了解气敏材料性能的测试方法 2.了解气敏材料测试仪的基本操作方法 二、概述 气体传感器属于化学传感器,它是利用传感器与被测气体进行化学反应,并把反应结果转换成电信号再加以检测。气体传感器种类繁多,分类方式也不少。可以按照使用的材料来分.如半导体气体传感器,固体解质气体传感器等。气体传感器中最核心、最重要的部件就是传感元件中的气体敏感材料,气体敏感材料对特种气体的灵敏度和选择性以及稳定性等等性能的好坏是这种气体传感器优劣的标志,所以气敏材料的研究是科技工作者的研究重点。 一种良好的气体传感器需要在以下几个方面体现其优越性,这几种主要参数特性如下: (1)灵敏度:气敏元件的灵敏度是表征气敏元件对于被测气体的敏感程度的指标,它是气敏传感器的一个重要参数。灵敏度表示气体敏感元件的电参量与被测气体浓度之间的依从关系,一般采用电阻比(或电压比)来表示灵敏度S:S=Ra / Rg = Vg / Va (对n型半导体) S=Rg / Ra = Va / Vg (对p型半导体) (其中Ra表示电阻型气敏元件在洁净空气中的电阻值,称为气敏元件的固有电阻值, Rg表示在被测气体中的电阻值称为实测电阻值) (2)响应时间与恢复时间:气敏元件的响应时间表示在工作温度下、气敏元件对被测气体的响应速度,一般指气敏元件与一定浓度被测气体开始接触时,到气敏元件电阻变化值达到[Ra – Rg]值的80%所需的时间。一般用符号t res表示。而恢复时间表示在工作温度下,被测气体从该元件上解吸的速度。一般从气敏元件脱离被测气体开始计时,直到其电阻变化值达到[Ra – Rg]值的80%为止,所需的时间称为恢复时间。通常用符号t rec表示。 (3)选择性:在多种气体共存的条件下,气敏元件区分气体种类的能力称为选择性。对某种气体的选择性好就表示气敏元件对它有较高的灵敏度。选择性是气敏元件的重要参数。

氨泄漏危险性分析及处置(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 氨泄漏危险性分析及处置(最新 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

氨泄漏危险性分析及处置(最新版) 一、引言 近年来,氨泄漏事故在国内时有发生,据统计,江苏省某市近5年来共发生氨泄漏事故17起,造成1人死亡、8人受伤。2005年7月6日上海市南汇区某镇发生液氨泄漏,周围几百户居民家中受到氨气侵蚀,百余人中毒并被送往医院救治。氨的泄漏危害,给国家和人民生命财产造成严重损失,引起全社会的广泛关注。因此,氨泄漏事故的处置是消防部队一项十分重要而艰巨的任务。 二、氨泄漏的危害 氨又称液氨,它是有毒可燃气体,是一种重要的化工原料,在高温、高压和催化剂的作用下,氢和氮直接化合制得。氨的用途较为广泛,可制作铵盐、硝酸铵和尿素,还可用做冷藏库的制冷剂等等,氨易溶于水,能形成氢氧化铵的碱性溶液,氨在20℃水中的溶

解度为34%,1份水能溶700份液氨,氨的水溶液叫氨水。为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨,在生产、储存、运输、使用过程中如发生泄漏、易引起燃烧爆炸或中毒事故,处置不慎,将会造成严重后果。 (一)易气化扩散 氨(NH3)为无色、有刺激性和恶臭味的气体,分子量17.03,气态比重0.59,液态比重0.82,扩散系数0.198,沸点-33.5℃,氨在常温下呈气态,在常温加压1.554MPa或冷却到-33.4℃就可变成液态,液态氨是在高压或低温状态下储存的,发生泄漏时,由液相变为气相,液氨会迅速气化,体积迅速扩大,没有及时气化的液氨以液滴的形式雾化在蒸气中;在泄漏初期,由于液氨的部分蒸发,使得氨蒸气的云团密度高于空气密度,氨气随风飘移,易形成大面积染毒区和燃烧爆炸区,需及时对危害范围内的人员进行疏散,并采取禁绝火源措施。2002年7月8日,山东某化肥厂一个储存为二十立方液氨储罐,向一辆液氨槽车充装液氨时,由于车载金属软管发生爆裂,液氨迅速扩散,仅几分钟时间,氨气就笼罩了整个厂区,危

催化燃烧式气敏元件.

MC115 催化燃烧式气敏元件 MC115型气敏元件根据催化燃烧效应的原理工作,由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时检测元件电阻升高,桥路输出电压变化,该电压变量随气体浓度增大而成正比例增大,补偿元件起参比及温度补偿作用。 特点 桥路输出电压呈线性 响应速度快 具有良好的重复性、选择性 元件工作稳定、可靠 抗H 2 S 中毒 应用 工业现场的天然气、液化气、煤气、 烷类等可燃性气体及汽油、醇、酮、苯等有机溶剂蒸汽的浓度检测。 可燃性气体泄漏报警器 可燃性气体探测器 气体浓度计 元件外形结构 基本测试电路 技术指标 电桥输出 测试电压: 3.0V

灵敏度特性及响应恢复特性 长期稳定性 在空气中每年漂移小于1个mV ,在1%CH 4中每年漂移小于2个mV 。短期储存(两周内)30分钟即可稳定,如长期储存(一年),则需老化5小时才可稳定。 注意事项 △元件的灵敏度要定期用标准气样校准。 △应尽量避免接触浓度为15%以上的可燃性气体。当偶然接触到高浓度的可燃性气体时, 应重新校准零点和灵敏度。 △在调试过程中, 应严格控制加热电压或电流, 不得超过4.8V 或220mA 以免烧毁元件。 △长期停止使用要放置在干燥、无腐蚀性气体的环境中。 △元件谨防振动、跌落及机械损伤。 使用元件前请详细参看本说明。 元件测试步骤 1、试验装置: a 、试验箱材料为金属或玻璃,不吸附气体,箱体积为每对元件大于1升。 b 、推荐红外气体分析仪测量气体浓度。 c 、箱内气体应搅拌,但不可直接对着元件。气流速度低于0.5m/s 。 d 、室外新鲜空气。 e 、直流稳压电源。毫伏表阻抗大于100K Ω。 f 、每次试验前,用排风扇换气,每分换气量大于10倍箱体积。 g 、元件安装在试验箱内,在水平方向,姿态相同。改变姿态将产生不同的热对流。 2、气体浓度调节: 150 135 120 105 90 75 60 45 30 15 0 气氛中 长期稳定性 时间(月) 48 40 32 24 16 8 0 -8

气敏材料

气敏材料 气敏材料指的是当某一种材料吸附某种气体后,该材料的电阻率发生变化的一种功能材料。它是用二氧化锡等材料经压制烧结而成的,对许多气体反映十分灵敏,可应用于气敏检漏仪等装置进行自动报警。在生活中,它的应用越来越多,可保障人们的生命财产。 在地球的表层,埋藏着大量的煤炭资源,勤劳勇敢的煤矿工人夜以继日地在井下作业,地下的“乌金”被源源不断地送往电厂、钢厂及千家万户,给人类送来光明和温暖。但是,在煤矿的矿井中有一种危害矿工生命的气体——瓦斯。它不仅会令人窒息,而且一旦爆炸,后果不堪设想。在寒冷的冬天,居民用煤炭取暖,稍不注意会造成煤气中毒。在许多城市中做饭烧水都用上了煤气,这种煤气主要是由一氧化碳和氢气组成的,煤气给人们的生活带来了方便,但是这种有毒、易燃、易爆气体一旦泄漏也会造成巨大的危害。如果能对这些有害气体早发现、早预报该多好啊!为此,科技工作者研制出了专门预报这些有毒、易燃、易爆气体的“电鼻子”。这种“电鼻子”学名叫气敏检漏仪。它的“鼻子”是一块“气敏陶瓷”,亦称气敏半导体。这种气敏陶瓷是用二氧化锡等材料经压制烧结而成的。它的表面和内部吸附着氧分子,当遇到易燃易爆的还原性气体时,这些气体就会与其吸附的氧结合,从而引起陶瓷电阻的变化。在这种情况下,气敏检漏仪就会自动报警。这种“电鼻子”对许多气体反映十分灵敏,如对百万分之一浓度的氢气即能显示。 有了这种“电鼻子”,矿井、工厂和家庭再也不会为这些还原性有害气体而提心吊胆了。因为只要空气中还原性气体超标,指示灯就会闪亮,报警器就会鸣响,人们就可以采取通风、检漏、堵漏等措施。这样,就会化险为夷,生命财产得到了保障。 产品由来编辑 人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵敏度非常高。如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。氧化铱系材料是测氧分压最常用的敏感材料。此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。 半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。 气敏陶瓷通常分为半导体式和固体电解质式两大类。 1)按制造方法又分为烧结型、厚膜型和薄膜型。 2)按材料成分分为金属氧化物系列(ZnO、材料成分分为金属氧化物系列(SnO2、ZnO和 复合氧化物系列(通式为A BO F e2O3、ZrO2)和复合氧化物系列(通式为ABO3)。 半导体气敏陶瓷的导电机理主要有能级生成理论和接触粒界势垒理论。按能级生成理论,当Sn O2、Zn O等N型半导体陶瓷表面吸附还原性气体时,气体将电子给予半导体,并以正电荷与半导体相吸,而进入N型半导体内的电子又束缚少数载流子空穴,使空穴与电子的复合率降低,增大电子形成电流的能力,使陶瓷电阻值下降;当N型半导体陶瓷表面吸附氧化性气体时,气体将其空穴给予半导体,并以负离子形式与半导体相吸,而进入N型半导体内的空穴使半导体内的电子数减少,因而陶瓷电阻值增大。接触粒界势垒理论则依据多晶半导体能带模型,在多晶界面存在势垒,当界面存在氧化性气体时势垒增加,存在还原性气体时势垒降低,从而导致阻值变化。

氨的理化性质对健康的危害及应急处理

氨的理化性质对健康的危害及应急处理 氨的理化性质 标识 中文名:氨;氨气(液氨) 英文名:ammonia 分子式:NH3 相对分子质量:17.03 CAS 号:7664-41-7 危险性类别:第 2.3 类有毒气体 化学类别:氨 理化性质 熔点(C): -77.7 沸点(C) : -33.5 液体相对密度(水=1): 0.82(-79C) 气体相对密度(空气=1): 0.6 饱和蒸汽压(kpa): 506.62 (4.7C) 临界温度(C): 132.5 临界压力(Mpa): 11.40 溶解性易溶于水、乙醇、乙醚 稳定性和反应活性 稳定性: 稳定 聚合危害: 不聚合 避免接触的禁忌物: 卤素、酰基氯、酸类、氯仿、强氧化剂。 燃烧(分解)产物: 氧化氮、氨。 在高温时会分解成氮和氢,有还原作用。在催化剂存在时可被氧化成一氧化氮。 主要组成与性状 主要成分: 纯品 外观与性状: 无色有刺激性恶臭的气体。 主要用途: 用做制冷剂及制取铵盐和氮肥。 液氨是无色的液体,是一种优良的溶剂,蒸发热很大,在沸点时是每克1369.08焦(327卡)。储于耐压钢

瓶或钢槽中。由气态氨液化而得。 爆炸特性与消防 燃烧性: 易燃 闪点「C):无意义 引燃温度「C): 651 爆炸下限(%) : 15.7 爆炸上限(%) : 27.4 最小点火能(mJ):至1000 mJ也不发火(氢气为0.02 mJ) 最大爆炸压力(Mpa): 0.580 危险特性 与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸,与氟、氯等接触会发生剧烈反应,若遇高 热,容器内压增大,有开裂和爆炸的危险。 灭火方法 消防人员必须穿戴全身防火防毒服,切断气源,若不能立即切断气源,则不允许熄灭正在燃烧的气体,喷水 冷却容器,可能的话将容器从火场移至空旷处。 灭火剂: 雾状水、干粉、二氧化碳、砂土。 对人体健康危害 侵入途径吸入 健康危害低浓度氨对粘膜有刺激作用,高浓度可造成组织溶解坏死。 急性中毒:轻度者出现流泪、咽痛、声音嘶哑、咳嗽、咯痰等;眼结膜、鼻粘膜、咽部充血、水肿;胸部X 线征象符合支气管炎或支气管周围炎。 中度中毒:上述症状加剧,出现呼吸困难、紫绀;胸部X线征象符合肺炎或间质性肺炎。 严重者可发生中毒性肺水肿,或有呼吸窘迫综合症,患者剧烈咳嗽、咯大量粉红色泡沫痰、呼吸窘迫、谵妄、 昏迷、休克等。可发生喉头水肿或支气管粘膜坏死脱落窒息。 高浓度氨可引起反射性呼吸停止。 液氨或高浓度氨可致眼灼伤;液氨可致皮肤灼伤。 急救措施 皮肤接触:立即脱去被污染的衣着,应用2%硼酸液或大量清水彻底冲洗,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟,就医。

QM-N5型气敏元件

QM-N5型气敏元件 QM-N5型气敏元件是以金属氧化物SnO2为主体材料的N 型半导体气敏元 件,当元件接触还原性气体时,其电导率随气体浓度的增加而迅速升高。 特点: 1、 用于可燃性气体的检测(CH4、C4H10、H2等) 2、 灵敏度高 3、 响应速度快 4、 输出信号大 5、 寿命长,工作稳定可靠 2当元件接触还原性气体时,其电导率随气体浓度的增加而迅速升高. ? 特点 用于可燃性气体的检测(CH 4,C 4H 10,H 2等) 灵敏度高 响应速度快 输出信号大 寿命长,工作稳定可靠 ? 技术指标 加热电压(V H ) AC 或DC 5±0.5V 回路电压(V C ) 最大DC 24V 负载电阻(R L ) 2K Ω 清洁空气中电阻(Ra) ≤4000K Ω 灵敏度(S=Ra/R dg ) ≥4(在1000ppmC 4H 10中) 响应时间(tres) ≤10S 恢复时间(trec) ≤30S 检测范围 50-10000ppm ? 基本测试电路

?使用方法及注意事项 ?元件开始通电工作时,没有接触可燃性气体,其电导率也急剧增加1分钟 后达到稳定,这时方可正常使用,这段变化在设计电路时可采用延时处理 解决. ?加热电压的改变会直接影响元件的性能,所以在规定的电压范围内使用 为佳. ?元件在接触标定气体1000ppm C4H10后10秒以内负载电阻两端的电压可 达到(V dg - Va)差值的80%(即响应时间);脱离标定气体1000ppm C 4 H 10 30 秒钟以内负载电阻两端的电压下降到(V dg - Va)差值的80%(即恢复时间). ?符号说明 检测气体中电阻- R dg 检测气体中电压- V dg R dg 与V dg 的关系: R d g=R L (V C /V dg -1) ?负载电阻可根据需要适当改动,不影响元件灵敏度. ?使用条件:温度-15~35℃;相对湿度45~75%RH;大气压力80~106KPa ?环境温湿度的变化会给元件电阻带来小的影响,当元件在精密仪器上使 用时,应进行温湿度补偿,最简便的方法是采用热敏电阻补偿之. ?避免腐蚀性气体及油污染,长期使用需防止灰尘堵塞防爆不锈钢网. ?元件六脚位置可与电子管七角管座匹配使用. ?使用元件前请详细参看本说明.

气敏元件的制备技术4

气敏元件的制备方法1、气敏元件的结构 2、气敏元件制备流程

3、电子浆料的配制 电子浆料有多种分类方法,按用途可分为导体浆料、电阻浆料、介质浆料、磁性浆料;按主要材料与性能可分为贵金属浆料、贱金属浆料;按热处理条件可分为高温(>1000℃)、中温(1000~300℃)及低温(300~100℃)烧结浆,低温浆料又可称为导电胶。 电子浆料主要由导电相(功能相)、粘结相(玻璃相)和有机载体三部分组成。 (1)导电相(功能相) 导电相(功能相)通常以球形、片状或纤维状分散于基体中,构成导电通路。导电相决定了电子浆料的电性能,并影响着固化膜的物理和气敏性能。 电子浆料用的导电相有碳、金属、金属氧化物三大类。 (2)粘结相(玻璃相) 粘结相通常由玻璃、氧化物晶体或二者的混合物组合而成,其主要作用是在厚膜元件的烧结过程中连接、拉紧、固定导电相粒子,并使整个膜层与基体牢固地粘结在一起。粘结相的选择对成膜的机械性能和电性能有一定的影响。根据在玻璃相中的主要作用,氧化物大致可分为三类: 第一类为构成玻璃基本骨架的氧化物,如SiO2、B2O3等,它们能单独形成机械性能和电性能优良的玻璃; 第二类是调节玻璃的物理、化学性能的氧化物,如Al2O3、PbO、BaO、ZnO,它们可改善玻璃的热膨胀系数、机械强度、热和化学稳定性等; 第三类用于改进玻璃性能的氧化物,如PbO、BaO、B2O3、CaF2,它们能降低玻璃的熔化温度,同时还保证了玻璃的电性能和化学性能。 配方1(典型的硼硅酸铅玻璃粉配方) 氧化铅63%,氧化硼25%,二氧化硅12%。玻璃粉约占浆料配方的2%~3%(wt)。 配方2(改进配方) 氧化铋71%,氧化硼13%,氧化铅10%,二氧化硅5%,氧化锑1%。最高烧结温度为800度(要高于融化温度约100度,其融化温度约650度)。 配方3(无铅配方) 1#:二氧化硅50%,氧化铋20%,氧化锌20%,氧化硼10%,熔融温度814.8度 2#:二氧化硅40%,氧化铋30%,氧化锌10%,氧化硼20%,熔融温度772.5度 制备方法: 按1#所示称取各组分于刚玉坩埚中,加热至1200~1500℃熔化,熔制完成后将熔融态玻璃进行水淬处理水淬后烘干样品进行球磨,球磨3 h后,过筛制得所需的无铅玻璃粉。 使用方法: (1)该无铅导电银浆配方最佳质量分数w(银粉)72%,w(玻璃粉)3%和w(有机载体)25% (2)烧结峰值温度为580℃,保温时间为5min,烧结银膜可以获得最好的结构和电性能。 配方4 (Bi2O3-B2O3系玻璃的配方) w(Bi2O3) w(B2O3) w(ZnO) w(Sb2O3) w(Al2O3) 65 25 5 3.5 1.5

氨的危险特性

氨的危险特性 1.氨的危险特性 氨是一种无色透明的带刺激性臭味的气体,易液化成液态氨。氨比空气轻,极易溶于水。由于液态氨易挥发成氨气,氨气与空气混合到一定比例时遇明火能爆炸,爆炸范围的体积分数为15%~27%,车间环境空气中最高允许浓度为30 mg /m3。泄漏氨气可导致中毒,对眼、肺部黏膜、或皮肤有刺激性,有化学性冷灼伤危险。 2.按照《危险化学品重大危险源辨识》(GB18218—2009)标准规定氨临界储存 量>10 t就构成了重大危险源。液氨储罐属于三类压力容器, 3.液氨储罐的存储量超过储罐容积的85%, 4.液位计、压力表和安全阀等安全附件。控制在1/3~2/3指标范围内,防 止液位过低或过高 5.液氨储罐区,应设明显的防火警示标志,通道、出入口和通向消防设施的道路应保持畅 通。 6.消防道路的路面宽度不应小于4m,路面内缘转弯半径不宜小于12m,路面上净空高度不 应低于4m。供消防车停留的空地,其坡度不宜大于3% 7.防雷、防静电设 8.夏季或气温高时,液氨储罐未按要求设置遮阳棚、固定式冷却喷淋水等预防 性设施,会造成储罐超压泄漏 9.可燃有毒气体报警仪等装置 10.人员必须佩戴防毒面具和防护手套等方可作业;现场应配备消防、气防器材 (隔离式空气呼吸器)。个人防护器具,穿戴专用的防化服、隔离式空气呼吸器,防止中毒和冻伤。 11.储罐相连的根部阀、进出口阀、法兰、垫片及仪表管线等重要部位应登记建 档,定期检查 12.操作平台、楼梯、扶手等设置应符合要求。高处作业、进入受限空间作业应 按照有关作业安全规程办理许可票证。严禁在液氨罐区防爆区内动火、动土作业 13.液氨储存和装卸场所应设消火栓。水枪的充实水柱仍不小于10.0m。消防用水量不应小 于15 L/S 14.液氨储存和装卸场所应集中布置在厂区边缘地带。罐区内液氨储罐与架空电力线的最近 水平距离不应小于电杆(塔)高度的1.5倍。罐区与周围消防车道之间,不宜种植绿蓠或茂密的灌木丛。 15.液氨常温储存应选用球罐或卧罐。液氨储罐区应设置防火堤。 ①卧罐之间的防火间距一般为1.0倍卧罐直径且不宜大于1.5m; ②球罐之间的防火间距,有事故排放至火炬或吸收处理装置时,不应小于0.5倍球罐的直径;无事故排放至火炬的措施时,不应小于1.0倍球罐的直径; ③同一罐组内球罐与卧罐的防火间距,应采用较大值; ④两排卧罐的间距,不应小于3m; ⑤相邻罐组储罐间的距离,不应小于16m。 ⑥液氨储罐组或储罐区四周应设置高度不小于1.0m--2.2m的不燃烧实体防火堤 ⑦容积小于等于20m3的液氨储罐与其使用厂房的防火间距不限;

氨水

氨水4作用与用途 5使用注意事项 危险性概述 氨水 一、简介 二、名称 1、化学名称 氨水、阿摩尼亚水 2、商品名称 三、系统编号 EINECS号 215-647-6[2] 四、物质外观 1、颜色 无色透明且。 2、性状 3、相态 液体 4、臭味 有强烈的刺激性臭味。 5、挥发性

易挥发,氨水易挥发出氨气,随温度升高和放置时间延长而增加挥发率,且随浓度的增大挥发量增加。 五、化学结构 1、化学组成 含氨28%~29%,密度0.9g/cm3。最浓的氨水含氨35.28%,密度0.88g/cm3。工业氨水是含氨25%~28%的水溶液。 3种分子:氨水分子,氨气分子,水分子 3种离子:铵根离子,氢离子,氢氧根离子 其中 NH3(多) H2O(多) NH4+(少) OH- (少) H+ (很少) NH3·H2O(较多)。 2、化学式(分子式) NH3·H2O(NH4`OH) 3、分子量 35.05 4、分子结构(结构式) 5、分子结构数据 6、计算化学数据 7、生态化学数据 8、毒理学数据 有毒, 六、物化性质 1、物理性质

1)、溶解性 溶于水,乙醇。 2)、酸碱性 3)、熔点 4)、密度 含氨越多,密度越小。相对密度(水=1):0.91 5)、饱和蒸气压(kPa) 1.59(20℃) 6)、爆炸上下限 爆炸上限%(V/V):25.0;爆炸下限%(V/V):16.0 7)、凝固点 氨水凝固点与氨水浓度有关,常用的(wt)20%浓度凝固点约为-35℃。8)、比热容 比热容为4.3×10³J/kg·℃﹙10%的氨水) 2、化学性质 1)、性质 具有部分碱的通性, 2)、稳定性(化学反应) 氨水中仅有一小部分氨分子与水反应形成铵离子和氢氧根离子,即氢氧化铵,是仅存在于氨水中的弱碱。 与酸中和反应产生热。有燃烧爆炸危险。 腐蚀性

氨水的危险特性-《危险化学品技术全书》

中文名:氨溶液[10%<含氨≤35%];氢氧化铵;氨水 英文名:Ammonium hydroxide;Ammonia water 分子式:NH4OH 分子量:35.05 CAS号:1336-21-6 危险性类别:第8.2类碱性腐蚀品 化学类别:无机碱 主要组成与性状 主要成分:氨含量10%~35% 外观与性状: 无色透明液体,有强烈的刺激性臭味。 健康危害 侵入途径:吸入、食入。 健康危害:吸入后对鼻、喉和肺有刺激性,引起咳嗽、气短和哮喘等;重者发生喉头水肿、肺水肿及心、肝、肾损害。溅入眼内可造成灼伤。皮肤接触可致灼伤。口服灼伤消化道。 慢性影响:反复低浓度接触,可引起支气管炎。可致皮炎。 急救措施 皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:误服者用水漱口,给饮牛奶或蛋清。就医。 燃爆特性与消防 燃烧性:不燃爆炸上限:无意义 危险特性:易分解放出氨气,温度越高,分解速度越快,可形成爆炸性气体。

灭火方法:灭火剂:水、雾状水、砂土。 泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物,尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 储运注意事项 储存于阴凉、干燥、通风良好的仓间。远离火种、热源,防止阳光直射。保持容器密封。应与酸类、金属粉末等分开存放。露天储罐夏季要有降温措施。分装和搬运作业要注意个人防护。搬运时要轻装轻卸,防止包装及容器损坏。运输按规定路线行驶,勿在居民区和人口稠密区停留。 防护措施 工程控制:严加密闭,提供充分的局部排风和全面通风。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其蒸气时,应该佩戴导管式防毒面具或直接式防毒面具(半面罩)。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防酸碱工作服。 手防护:戴橡胶手套。 其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。保持良好的卫生习惯。 理化性质 相对密度(水=1):0.91 饱和蒸气压(kPa):1.59/20℃

气敏元件和传感器技术的发展现状

气敏元件和传感器技术的发展现状 在应用方面,目前最广泛的是可燃性气体气敏元件传感器,已普及应用于气体泄漏检测和监控,从工厂企业到居民家庭,应用十分广泛。仅以用于安全保护家用燃气泄漏报警器为例,日本早在1980年1月开始实行安装城市煤气、液化石油气报警器法规,1986年5月日本通产省又实施了安全器具普及促进基本方针。美国目前已有6个州立法,规定家庭、公寓等都要安装CO报警器。报警器种类也相当繁多,有用于一般家庭、集体住宅、饮食餐店、医院、学校、工厂的各种气体报警器和系统,有单体分离型报警器、外部报警系统、集中监视系统、遮断连动系统、防止中毒报警防护系统等。结构型式有袖珍型便携式、手推式、固定式报警等;工业用固定式报警又有壁挂式、台放式、单台监控式、多路巡检式等。气体检测技术与计算机技术相结合,实现了智能化、多功能化。美国工业科学公司(ISC)一台携带式气体监控仪可实现4种气体监测,采用了统一的软件,只需要换气体传感器,即可实现对特定气体监测。美国国际传感器技术(IST)公司应用一种“MegaCas"传感器和微程序控制单元,可检测100种以上毒性气体和可燃性气体,通过其“气体检索”功能扫描,能很快确定是哪一种气体。 一、气体传感器向低功耗、多功能、集成化方向发展 国外气体传感器发展很快,一方面是由于人们安全意识增强,对环境安全性和生活舒适性要求提高;另一方面是由于传感器市场增长受到政府安全法规的推动。因此,国外气体传感器技术得到了较快发展,据有关统计猜测,美国1996年—2002年气体传感器年均增长率为(27~30)%。 目前,气体传感器的发展趋势集中表现为:一是提高灵敏度和工作性能,降低功耗和成本,缩小尺寸,简化电路,与应用整机相结合,这也是气体传感器一直追求的目标。如日本费加罗公司推出了检测(0.1~10)×10-6硫化氢低功耗气体传感器,美国IST提供了寿命达10年以上的气体传感器,美国FirstAlert 公司推出了生物模拟型(光化反应型)低功耗CO气体传感器等。二是增强可靠性,实现元件和应用电路集成化,多功能化,发展MEMS技术,发展现场适用的变送器和智能型传感器。如美国GeneralMonitors公司在传感器中嵌入微处理器,使气体传感器具有控制校准和监视故障状况功能,实现了智能化;还有前已涉及的美国IST公司的具有微处理器的“MegaGas”传感器实现了智能化、多功能化。 二、国内现状与差距 气敏元件传感器作为新型敏感元件传感器在国家列为重点支持发展的情况下,国内已有一定的基础。其现状是: (1)烧结型气敏元件仍是生产的主流,占总量90%以上;接触燃绕式气敏元件已具备了生产基础和能力;电化学气体传感器有了试制产品; (2)在工艺方面引入了表面掺杂、表面覆膜以及制作表面催化反应层和修隔离层等工艺,使烧结型元件由广谱性气敏发展成选择性气敏;在结构方面研制了补偿复合结构、组合差动结构以及集成化阵列结构;在气敏材料方面SnO2和Fe2O3材料已用于批量生产气敏元件,新研究开发的Al2O3气敏材料、石英晶体和有机半导体等也开始用于气敏材料; (3)低功耗气敏元件(如一氧化碳,甲烷等气敏元件)已从产品研究进入中试; (4)国内气敏元件传感器产量已超过“九五”初期的400万支。产量超过20万支的主要厂家有5家,黑龙江敏感集团、太原电子厂、云南春光器材厂、天津费加罗公司(合资)、北京电子管厂(特种电器厂),其中前四家都超过100万支,据行业协会统计,1998年全国气敏元件总产量已超过600万支。 总的看来,我国气敏元件传感器及其应用技术有了较快进展,但与国外先进水平仍有较大的差距,主要

氨的危险性(安全知识题)

一、氨的危险性?氨在空气中爆炸极限为16~25%。氨属有毒类介质,毒性2级,对人的危害主要表现在对上呼吸道的刺激和腐蚀作用,直接接触高浓度氨时,接触部位可引起碱性化学灼伤,氨还可以引起呼吸道深部及肺部的损伤。车间空气中氨的最高容许浓度为30mg/m3,当氨蒸汽在空气中容积浓度达到0.5~0.6%时,人在其中停留半小时即可中毒。氨的上述性质决定了必须加强并落实对氨系统的安全技术措施,落实安全责任制,以确保安全。 二、氨的安全防护措施有哪些?1)、制冷设备上需安装压力继电器、压差继电器。2)、监视制冷站内氨气浓度的氨气浓度检测仪,可在空气中氨气浓度超过规定含量时及时报警。3)、针对氨气浓度比重比空气小的特点,泄漏的氨气易积聚于顶部,在屋顶处开设通风口。4)、车间的门应向外开,并最少留有两个进出口,以保证安全。5)、应配备带靴的防毒衣、橡皮手套、胶靴、氧气呼吸器等防护用具,妥善放置在机房进口的专用箱内,要专人管理、定期检查,确保使用。 三、氨中毒如何处理?对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。如果呼吸窘迫,应考虑进行气管插管。当病人的情况不能进行气管插管时,如条件许可,应施行环甲状软骨切开术。有支气管痉挛的病人,可给支气管扩张剂喷雾,如叔丁喘宁。如皮肤接触氨,会引起化学烧伤,需立即脱去污染的衣着,用流动清水冲洗至少30分钟。

四、氨泄漏如何处理?撤退区域内所有人员,并向上风向转移。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。 五、所有生产人员必须熟练掌握触电现场急救方法,所有职工必须掌握消防器材的使用方法。 六、防火重点部位是指火灾危险性大、发生火灾损失大、伤亡大、影响大的部位和场所。 七、发现有人触电,应立即切断电源,使触电人脱离电源,并进行急救。如在高空工作,抢救时必须注意防止高空坠落。 八、装卸高压保险器,应戴护目眼镜和绝缘手套,必要时使用绝缘夹钳,并站在绝缘垫或绝缘台上。 九、所有转动机械检修后的试运行操作,均由运行值班人员根据检修工作负责人的要求进行,检修工作人员不准自己进行试运行的操作。 十、防止触电、高处坠落、机器伤害、灼烫伤等类事故方面,应认真贯彻安全组织措施和技术措施,并配备经国家或省、部级质检机构检测合格的、可靠性高的安全工器具和防护用品。

氨磺必利

【通用名称】 氨磺必利片 【商品名称】 索里昂 Solian 【英文名称】 Amisulpride Tablets 【成份】 本品主要成份为氨磺必利 其化学名称为: (S)-2-氨甲基-N-乙基吡咯烷 其结构式为: 分子式:C17H27N3O4S 分子量:369.48 主要成份相关链接:氨磺必利 【性状】 本品为白色或类白色片。 【适应症】 氨磺必利用来治疗精神疾患,尤其是伴有阳性症状(例如:谵妄,幻觉,认知障碍)和/或阴性症状(例如:反应迟缓,情感淡漠及社会能力退缩)的急性或慢性精神分裂症,也包括以阴性症状为主的精神病患。 【规格】 0.2g 【用法用量】 通常情况下,若每天剂量小于或等于400mg,应一次服完,若每天剂量超过400mg,应分为两次服用。 阴性症状占优势阶段 推荐剂量为50至300mg/天。剂量应根据个人情况进行调整。最佳剂量约为100mg/天。 阳性及阴性症状混合阶段 治疗初期,应主要控制阳性症状,剂量可为:400-800mg/天。 然后根据病人的反应调整剂量至最小有效剂量。 急性期 治疗开始时, 可以先以最大剂量400mg/天进行几天肌肉注射,然后改为口服药物治疗。 口服推荐剂量为400-800mg/天,最大剂量不应超过1200mg。 然后 可根据病人的反应情况维持或调整剂量。 任何情况下,均应根据病人的情况将维持剂量调整到最小有效剂量。 肾功能不全:由于氨磺必利通过肾脏排泄,故对于肾功能不全,肌酐清除率为30-60ml/min的患者,应将剂量减半,对于肌酐清除率为10-30ml/min的患者,应将剂量减至三分之一。 由于缺乏充足的资料,故氨磺必利不推荐用于患有严重肾功能不全的病人(肌酐清除率<10ml/min)(见禁忌)。 肝功能不全:由于氨磺必利代谢较少,对于患有肝功能不全的患者不需调整剂量。 【不良反应】 经常发生的不良反应: -血中催乳素水平升高,可引起以下临床症状:乳溢,闭经,男子乳腺发育,乳房肿胀,阳痿,女性的性冷淡。停止治疗,可恢复。 -体重增加; -可产生锥体外系综合症(震颤,肌张力亢进,流涎,静坐不能,运动功能减退)。使用维持剂量时,这些症状通常处于中等程度,无需停药,使用抗胆碱能类抗震颤麻痹药物治疗,症状即可部分缓解。

液氨的火灾危险性

液氨的火灾危险性 液氨的火灾危险性分类应定性为乙类第2项,具体理由如下: 一、依据规范: 1、《常用危险化学品的分类及标志》GB13690-92 2、《建筑设计防火规范》GB50016-2006 二、详细说明 (1)《建筑设计防火规范》(GB50016-2006)条文说明第3.1.3对本规范如何界定储存物品火灾危险性说明部分摘抄如下: 1.28℃≤闪点<60℃的易燃、可燃液体;2.爆炸下限≥10%的可燃气体; 3.助燃气体和不属于甲类的氧化剂; 4.不属于甲类的化学易燃危险固体; 5.助燃气体; 6、常温下与空气接触能缓慢氧化,积热不散引起自燃的物品 同时表3列举储存物品的火灾危险性分类举例中也仅将氨气划为乙类火灾危险性物品。 (2)查找《常用危险化学品的分类及标志》(GB13690-92)中关于液氨(含氨量≥50%)特性的描述,摘抄如下:1)受热后瓶内压力增大,有爆炸危险。 2)受热后容器内压力增大,泄漏物质可导致中毒。 3)对眼、粘膜或皮肤有刺激性,有烧伤危险。 4)有毒,不燃烧。 5)有特殊的刺激性气味。 这里的不燃烧是指其在液化状态下(即-33度以下)的不燃烧,-33度是其蒸发温度,一旦泄漏在室外条件下可马上形成气态氨气,所以仍有燃烧爆炸危险。 三、液氨的理化性能 液氨,是一种有刺激臭味的无色有毒气体,极易溶于水,水溶液呈碱性,易液化,一般液氨可作致冷剂,接触液氨可引起严重冻伤。氨气爆炸极限为15.7~27.4%,其火灾危险性属于乙类2项物品。液氨为液化状态的氨气,是在适当压力下由氨气液化成液氨,一般储存于钢瓶或储罐中,在储存、运输、使用等环节,应当采取必要的防火措施,防止发生泄漏爆炸事故。因此、氨气与空气或氧气混和会形成爆炸性混合物,储存容器受热时也极有可能发生爆炸。氨气能侵袭湿皮肤、粘膜和眼睛,可引起严重咳嗽、支气管痉挛、急性肺水肿,甚至会造成失明和窒息死亡。 综上,液氨的火灾危险性分类应定性为乙类第2项。 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。 液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。为了促进对液氨危害和处置措施的了解,本文特介绍液氨的理化特性、中毒处置、泄漏处置和燃烧爆炸处置4个方面的基础知识。 一、氨的理化性质

相关主题
文本预览
相关文档 最新文档