当前位置:文档之家› 基于电涡流探伤传感器技术 课程设计

基于电涡流探伤传感器技术 课程设计

基于电涡流探伤传感器技术 课程设计
基于电涡流探伤传感器技术 课程设计

成绩评定:

传感器技术

课程设计

题目基于电涡流探伤

院系电子工程学院

专业

姓名

年级

指导教师

日期

摘要

所谓涡流探伤是基于电磁感应原理,当把通有交变电流的线圈(激磁线圈)靠近导电物体时,线圈产生的交变磁场会在导电体中感应出涡电流。涡电流本身也要产生交变磁场,通过检测其交变磁场的变化,可以达到对导体检测的目的。本设计利用涡流原理进行金属零部件质量的检测。如果检测电路设计成LC振荡电路形式,当检测线圈L对工件进行检测时,质量合格与不合格工件将使线圈的阻抗也将改变,也即电路中的振荡频率发生变化。

关键词:涡流探伤,电磁感应

目录

一、设计目的--------------------------

二、设计任务与要求----------------------

2.1设计任务--------------------------

2.2设计要求--------------------------

三、设计步骤及原理分析 ------------------

3.1设计方法-------------------------- 3.2设计步骤--------------------------

3.3设计原理分析-----------------------

四、课程设计小结与体会 ------------------

五、参考文献---------------------------

一、设计目的

利用涡流原理进行金属零部件质量的检测。

二、设计任务与要求

涡流探伤是涡流检测技术的最主要的应用,它可应用于导电材料表面及近表面缺陷的检测。由于涡流检测是基于电磁感应现象,不仅被检测材料或制件的电、磁性能发生变化会引起检测线圈的响应,而且被检测对象的形状、尺寸的变化也会引起感应磁场和涡流分布的改变,正确、可靠地将缺陷信号从多种干扰因素所产生的“噪声”信号中分离、提取出来时涡流检测的根本目的。对于组成机械的各种金属零部件,它们的质量决定整机的性能,为此需要设计检测装置来完成这项任务。本设计利用涡流原理进行金属零部件质量的检测。如果检测电路设计成LC振荡电路形式,当检测线圈L对工件进行检测时,质量合格与不合格工件将使线圈的阻抗也将改变,也即电路中的振荡频率发生变化。此时如果测量LC振荡电路中的频率并找出频率与金属工件质量之间的关系,即可获金属零部件质量的情况。被测体表面平整度对传感器的影响:不规则的被测体表面,会给实际的测量带来附加误差,因此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻痕、凹槽等缺陷。一般要求,对于振动测量的被测表面粗糙度要求在0.4um~0.8um之间;对于位移测量被测表面粗糙度要求在0.4um~1.6um之间。

三、设计步骤及原理分析

① 首先我们对电涡流进行一下了解。电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。

② 设计一个简易涡流探伤装置,能够实现简单的部件识别。可分为三个部分进行设计和实验。第一部分是LC 振荡电路,此部分运用电感、电容等元器件组成电容三点式振荡电路,以达到产生正弦波的目的;第二部分是整流滤波电路,此部分由555电路以及其它部件组成;第三部分是显示电路,此部分用单片机作为主控部件,用数码管进行显示。

其总体框图为

1.设计LC 振荡电路

LC 振荡器有基本放大器、选频网络和正反馈网络三个部分组成。为了维持震荡,放大器的环路增益应该等于1,而电容三点式振荡器的谐振频率为

LC 振荡电路 滤波电路

频率显示电路

单片机控制电路 显示电路

2

121021C C C C L

f +?=

π

在实验中可通过测量周期T 来测定谐振频率,即

T

f 10=

图中的振荡频率为

kHz Hz nF

nF nF nF mH C C C C L

f 568.56269104010401021

212

1210≈≈+??

=

+?=

ππ

实际测试中显示的周期为 s kHz

f T μ18561

10≈==

2.整流滤波电路

此部分电路采用LM555CM 芯片可以简单的将正选信号滤波成方波信号。

3.频率显示电路

此部分电路应用单片机设计,主要功能是显示零部件的频率。

总体流程图为

开始

脉冲采集并开始定时

为各位变量赋值并存放到temp 变量中

判断比较temp 是否

在55kHz~65kHz 之间

报警且不显示频率

不报警仅显示频率 返回 返回

单片机 数码管(显示频率)

四、课程设计小结与体会

本课程设计基本实现了简易涡流探伤装置的设计,用电路仿真零部件引起的涡流变化,对具体的变化频率进行显示,并判断零部件是否满足条件,达到了设计要求。通过本次课程设计,我对通信电子电路、模拟电子线路以及单片机有了更深入的理解。

参考文献

[1] 谢沅清,通信电子电路,[M]北京:电子工业出版社,2007年

[2] 华成英、童诗白,模拟电子技术基础,[M]北京:高等教育出版社,2006年

[3] 李万臣,谢红编著.模拟电子技术基础实验与课程设计.哈尔滨:哈尔滨工程大学出版社,2001年

[4] 张咏梅,陈凌霄编著.电子测量与电子电路实验.北京:北京邮电大学出版社,2000年

[5] 张毅刚等编著.MCS-51单片机应用设计.哈尔滨:哈尔滨工业大学出版社,2003年

(完整版)工业机器人文献综述

工业机器人文献综述 生产力在不断进步,推动养科技的进步与革新,以建立更加合理 的生产关系。自工业革命以来,人力劳动己经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步时至今天,机电一体化,机械智能化等技术应运而生并己经成为时代的主旋律。 1.工业机器人的发展: 1.1 机器人概念的诞生 机器人技术一词虽然出现的较晚,但这一概念在人类的想象中却早已出现。自古以来,有不少科学家和杰出工匠都曾制造出具有人类特点或具有动物特征的机器人雏形。我国西周时期的能工巧匠就研制出了能歌善舞的伶人,这是我国最早的涉及机器人概念的文章记录,此外春秋后期鲁班制造过一只木鸟,能在空中飞行,体现了我国劳动人民的智慧。机器人一词由捷克作家--卡雷尔.恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首次提出,剧中描述了一机器奴仆Robot。此次Robot被沿用下来,中文译成机器人。1942年美国科幻作家埃萨克.阿西莫夫在他的科幻小说《我.机器人》中提出了“机器人三大定律”,这三大定律后来成为学术界默认的研发原则。现代机器人出现于20世纪中期,当计算机技术出现,电子技术的进步,数控机床的出现及与机器人相关的控制技术和零件加工技术的成熟,为现代机器人的发展打下了基础。 1.2 国内机器人的发展史 在我国目前采用工业机器人的行业主要有汽车行业、摩托车、电 器、工程机械、石油化工等行业。我国作为亚洲第三大的工业机器人需求国,对于工业机器人的需求量在逐年增加,从而吸引了大批工业机器人的制造商,加快了我国工业机器人技术的发展第一阶段是20世纪80年代,我国为t跟踪国际机器人技术的道路,当时以原机械工业部为主,航天工业部等部门联合组织国内的相关研究单位开展了工业机器人的研究,先后推出了弧焊、点焊、喷漆等多种工业机器人。直到90年代,通过国家863计划等的K77,我国具备t独!)设计不}}生产工业机器人的能力,培养了一批高水平的研究生产队伍进入21世纪,中国的工业机器人发展进入t一个崭新的阶段,其中最大的特点是以企业为主体,以市场为导向、赢利为目标的机器人产业开发群体止在形成。尽管国外大的工业机器人公司为了占领中国不断扩大的市场,加大了其在中国的经销力度,但是中国的机器人企业以自己独有的市场信息优势、售前售后的服}}c势、针对中国企业的工艺特点的专门化设计优势努力争取自己的市场地位随养全球经济的一体化发展,世界制造中心向中国转移的趋势,中国工业机器人的产业会快速的发展起来,特别重要的是研制单位必须和需求紧密结合,让机器人走进工厂,实现真止的产业化。 经过20多年的探索,我国的工业机器人自动化技术取得t长足的发展,但是与世界发达国家相比,还有不小的差距;机器人应用工程起步也较晚,应用领域窄,生产线系统技术落后随养我国制造业-尤其是汽车行业的发展,对工业机器人的需求日益增长,工业机器人的拥有量远远不能满足需求量。尤其是基础零部件和元器件生产和制造、机器人可靠性以及成木等问题,都存在很多问题。尤其在大负载工业机器人方而,不仅产品长期大量依靠从国外引进,在维护、更新改造方而对国外的依赖也相当严重。 1.3国内外工业机器人的发展方向

(五) 电涡流传感器位移实验

(五) 电涡流传感器位移实验 一、实验目的:了解电涡流传感器测量位移的工作原理和特性。 二、基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗 与导电体离线圈的距离有关,因此可以进行位移测量。 三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。 四、实验步骤: 1、根据图3-7安装电涡流传感器。 图3-7 电涡流传感器安装示意图 2、传感器结构,这是一个扁平绕线圈。 3、将电涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件(传感器屏蔽层接地)。 4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5、将实验模板输出端V 0与数显单元输入端Vi 相接。数显表量程切换开关选择电压20V 档。 6、用连接导线从主控台接入+15V 直流电源到模板上标有+15V 的插孔中。 7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm 读一个数,直到输 出几乎不变为止。将结果列入表3-4。 表3-4电涡流传感器位移X 与输出电压数据 8、根据表4-4数据,画出V-X 曲线,根据曲线找出线性区域及进行正、负位移测量时的佳工作点,试计 算量程为 1mm 、3mm 及5mm 时的灵敏度和线性度(可以用端基法或其它拟合直线)。 axis([10.5 18.5 0.66 7.9]); coords=[10.5:1:18.5,19.5;0.66,2.01,3.35,4.55,5.55,6.32,6.90,7.34,7.67,7.9]; grid; hold; plot(coords(1,:),coords(2,:),'*'); x=coords(1,:) y=coords(2,:)' 图3-8 电涡流传感器位移实验接线图

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

滚动轴承状态监测

轴承故障诊断 1.1、轴承状态检测的意义: 伴随着科学技术的发展,现代化设备日趋大型化、自动化和连续化。设备一旦发生故障将给产品的质量、乃至人员的生命安全构成严重威胁,因此,企业在设备的维护中花费了大笔费用,以保证其安全运行,如今,保证设备的正常运行,最大限度的减少费用,保证安全,设备故障诊断无疑成为解决这些问题的重要手段。例如滚动轴承,作为机电系统中非常重要的零件,同时又是极易受损的零件,而滚动轴承的状态对工业生产、交通运输等很多方面有很多影响。对于工业生产来说,如果能随时地检测到轴承的工作状态,并进行恰当的维护,将会给生产带来更大的经济效益。然而对于交通运输来说,只有保证列车滚动轴承工作在良好的状态下,才能保证旅客的安全,以及运输系统的正常运作。据统计,在使用滚动轴承的大多旋转机械中,约30%的机械故障是由滚动轴承造成的。文献①,由于设计不当和安装工艺不好或者是使用状态不佳,或突发载荷的影响,使轴承在正常运行一段时间之后,产生缺陷,并且在继续运行中进一步恶化,使轴承的运行状态发生变化。因此,对轴承故障的诊断就显得十分重要。 1.2、轴承状态检测常用方法: 1.2.1、温度法:用温度传感器检测轴承座或轴承外的箱体处的温度,来判断轴承的工作状态是否正常。温度检测对轴承载荷、速度和润滑情况的变化比较敏感,尤其对润滑不良而引起的轴承过热现象很敏感。但是,当轴承出现早期点蚀、剥落、轻微磨损等比较微小的故障时,温度检测就无能为力了。因此,这一方法有其明显的不足。文献① 1.2.2、油样分析法:从轴承所使用的润滑油中取出油样,通过收集和分析油样中金属颗粒的大小和形状来判断轴承的受损情况。但是这种方法只适用于润滑有轴承,对于脂润滑来说,就不适用了。同时,可能受到从外围部件上掉下的颗粒的影响,使判断结果的准确性受影响。这种方法也有其局限性。文献① 1.2.3、振动信号分析法:通过安装在轴承底座或箱体恰当位置上的振动传感器检测轴承的振动信号,并对采集到的信号进行分析和处理来判断轴承的状态,振动法具有如下优点:

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

电涡流传感器的设计

引言 电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。因而对于电涡流传感器的研究有着深远的理论和实践意义。 目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。 1 电涡流传感器的基本工作原理[1-2] 电涡流传感器的基本工作原理是基于电涡流效应。根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。如图1所示。 理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。 很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值 函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。 图1 电涡流传感器的工作原理 2 电涡流传感器电路设计 2.1 测量电路的选择[3-5] 电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。 调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。 调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。 在本设计中我们采用调幅式电路。2.2 滤波、稳压、同相比例放大电路的设计 该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。如图2所示。 2.3 振荡电路的设计[6] 电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。 电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦 波。振荡频率可以较高。符合本设计的要求,故采用。如图3所示。 图3 电容三点式振荡电路 在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施: 针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。 2.4 检波、滤波电路的设计 检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。检波、滤波电路如图4所示。 2.5 对数运算电路的设计[7] 电涡流传感器的设计 伍艮常 株洲职业技术学院,湖南株洲 412001 DOI :10.3969/j.issn.1001-8972.2011.12.076 图2 滤波、稳压、同相比例放大电路

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

参考文献

参考文献 [a] 侯桂庆,高殿荣,杨林杰.螺旋泵简介和锥形螺旋叶片泵的研究[J].液压与气动,2004,11:10~11 [1] Karassik,Igor J.,Joseph P.Messina,Paul Cooper,et a1.Pump Handbook(3rd Edition)[M],McGraw-Hill,New York 2001 [2] 许贤良,王传礼.液压传动[M].北京:国防工业出版社,2008 [3] 王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报,2000,40:508-511 [3a] 王沫然,李志信.基于MEMS的微泵研究进展[J].传感器技术,2002,21(6):59~61 [4] Michalicck M A.Introduction to microelectromechanical systems[R].New Mexico:Air Force Research Laboratory,2000 [5] SMITS J G.Piezoelectric Micropump with three valves working peristaltically[J].Sensors and Actuators,1989,20:203-206 [5a] 苏宇锋,陈文元. 基于MEMS的微泵研究进展[J].微纳电子技术,2004,5:33~40 [6] Yole Development,Status of the MEMS Industry[EB/OL].[2012-07].http://www.i-micro-news. com/upload/Rapports/Yole-Status-of-the-MEMS-Industry.July-2012-web.pdf [7] 许忠斌,杨世鹏,刘国林等.微泵的研究现状与进展[J].液压与气动,2013,6:7-12 [8] Kan Jun Wu,Yang Zhigang,Peng Taijiang,etc.Design and test of a high-performance piezoelectric micropump for drug delivery[J].Sensors and Actuators A,2005(121):156-161 [9] S.M.Ha,W.Cho,Y.Ahn.Disposable thermo-pneumatic micropump for bio lab-on-a-chip application[J].Micro-electronic Engineering,2009,86:1337-1339 [10] Melvin Khoo,Chang Liu. A novel micromachined magnetic membrane microfluid pump[C]. Proceeding of the 22nd Annual EMBS International Conference,Chicago,IL,2000:2394~2397 [11] William L.Benard,Harold Kahn,Arthur H.Heuer,etc. Thin-film shape-memory alloy actuated micropumps[J]. Journal of Microelectromechanical Systems,1998,(7)2:245~251 [12] E. Quandt. Giant magnetostrictive thin film materials and applications[J]. Journal of Alloy and Compound,1997(258):126~132 [12a] 施卫东,李伟,刘厚林等.国内泵业技术现状与发展趋势[J].农林化研究,2005(5):24~26 [12b] 王沫然,李志信.基于MEMS的微泵研究进展[J].传感器技术,2002,21(6):59~61 [12c] 任智惠.泵行业技术现状及发展趋势[J].机电产品市场,2004(9):86~87 [12d] 赵继宝.国内外水泵技术的研究现状与发展前景[J].鸡西大学学报,2008,8(2):110~111 [13] 王传礼,丁凡,许贤良.基于GMM转换器喷嘴挡板伺服阀的研究[M].徐州:中国矿业大学 出版社.2006 [13a0] 唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].浙江大学,2005 [13a1] 王福吉.正负超磁致伸缩复合薄膜静动态特性及控制关键技术[D].大连理工大学:2005 [13a] 王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003 [13b] 李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土,1990,11(6):52~59 [13c] 李扩社,徐静,张深根.稀土超磁致伸缩材料进展[J].金属功能材料,2003,10(6):30~33 [14] 宜振兴,邬义杰,王慧忠等.超磁致伸缩材料发展动态与工程应用研究现状[J].轻工机械,2011(29)1:116-119 [15]URAI T,SUGIY AMA T.Development of a direct-drive servovalve using a giant magnetostrictive material[J].Nippon Kikai Gakkai Ronbunshu,C Hen/Transactions of the Japan

电涡流传感器位移实验

实验二十电涡流传感器位移实验 一、实验目的 了解电涡流传感器测量位移的工作原理和特性。 二、实验内容 用铁圆片检测电涡流传感器的位移特性。 三、实验仪器 电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。 四、实验原理 电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。 五、实验注意事项 被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。 六、实验步骤 1、根据图20-1安装电涡流传感器。 2、观察传感器结构,这是一个平绕线圈。 3、将涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。

图20-1 电涡流传感器安装示意图 图8-2 电涡流传感器位移实验接线图 4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。 5、将实验模板输出端Vo与数显单元输入端Vin相接。数显表量程切换到选择电压20V 档。 6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。 7、使测微头与传感器线圈端部接触,开启主控台电源开关,此时数显表读数为最小,然后每隔0.1mm读一个数,直到输出几乎不变为止。将结果列入下表。(实验结论:1、本实验每隔0.1mm是相对位置,起始值看做0.1mm即可,无需从测微头上读绝对位置。每旋转0.1mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点, 导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始

位移电涡流传感器测量电路设计)

成绩评定:_______ 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

电涡流传感器由于具有对介质不敏感、非接触的特点, 广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量范围, 采用恒频调幅式测量电路, 引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mn电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量范围接近90mm验证了该系统工作的稳定性,证明设计达到了预期效果。关键词: 电涡流传感器; 测量电路;大位移; 线性化

一、设计目的-------------------- 1 二、设计任务与要求- --------------------- 1 2.1 设计任务 ---------------------- 1 2.2 设计要求 ---------------------- 1 三、设计步骤及原理分析--------------- 1 3.1 设计方法----------------------- 1 3.2 设计步骤 ---------------------- 2 3.3 设计原理分析 -------------------- 6 四、课程设计小结与体会--------------- 6 五、参考文献- ------------------------- 6

一、设计目的 1. 了解电涡流传感器测量位移的工作原理和特性。 2. 了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用范围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持不变,则传感器

电缆探测仪的文献综述

东海科学技术学院 毕业论文(设计)文献综述 题目:电缆探测仪器 系: 学生姓名: 专业: 班级: 指导教师: 起止日期:

金属探测仪器 本次设计的主要任务是设计金属探测仪,金属都有个共同特性,即导电性。由于此性质,在当高频电磁波辐射到金属后,引起涡流效应[3],从而使辐射体的参数变化,如阻抗、等效电感量[9]等变化,再将这些参数的变化转化成电压、电流[11]、音调的变化效果作为输出指示地下电缆探测仪是电缆维护、电缆施工者的必备工具,地下电缆探测仪,它具备电缆探测中的四大功能,地埋电缆探测仪全面满足各项地下电缆探测的全面需求。带电电缆的路径查找及寻踪、运行电缆的路径查找及寻踪、运行电缆的识别和判断、施工过程中的电缆检测、直埋电缆的故障查找、多种方法电缆深度的准确判读。多年来我们通过全国范围的调研、创新型的研发,用最新的方法、独特的技术研制出了地埋电缆探测仪。光/电缆路[8]由探测仪的研制成功填补了我国在电力电缆探测仪方面的空白,地下电缆路由探测仪使电缆探测技术达到了崭新的高度[3]。 使用地下电缆路径仪(地下电缆探测仪)可以轻松解决了带电电缆路径查找的问题.地埋线探测仪还可直接查找50Hz运行电缆的路径。带电的电缆的路径查找是该带电电缆路径仪的一大特点,该地下电力电缆探测仪器可探测各种高压电缆、低压电缆、光缆的路径。将测量耦合夹钳夹住待测的电缆,通过耦合夹钳在目标电缆上直接产生感应信号。此时沿电缆路径即可接收到信号。此种工作方式可以探测电缆深度不小于3.5米,探测电缆长度不小于3公里。 运行电缆路径仪接收机[8]能够探测运行电缆的50Hz频率。这种工作方式对于区分地下带电电缆及带电电缆、不带电的电缆和金属管探测有很实用的用处。将便携式电缆寻踪仪接收机的工作频率选择为50Hz频率。由于这种工作方式快捷而有效,因此十分的实用。在这种方式中,不需要使用发射器。 在道路施工和建筑施工中,对地面进行开挖是经常的事情。但施工方往往不能及时准确地掌握开挖地区内地下管线及电力电缆的位置和深度等相关资料。目前,由于盲目开挖而导致的各种事故屡见不鲜,供水管路的被挖破、电力电缆、光缆被挖断等等,不但给社会生活造成了很大的影响,同时也给施工方造成很多不必要的损失。开挖前对工作区域内地下管线和电缆的探查已经成为一项必不可少的而且非常有价值的工作。电缆路由探测仪是专门针对“开挖前的电缆、光缆、金属管道探测”这一目的而研发。"这里能不能进行开挖?" 作为施工单位,会经常面对这样的问题? 地下电缆探测仪操作简单,地下电缆探测仪可快速探明开挖区域内地下管线的状况,避免盲目开挖带来的不必要的损失.此种工作方式可探测电缆深度不小于2米[15]。 在建设房子和房屋装修,对于电缆的排布也要清楚它的电缆走向,在装修过程中,如果对电缆走向不明确,很容易出现施工过程中电缆被意外切断,造成意外事故。本次设计中就设计一个电缆探测仪,来检查墙壁中的电缆走向,在开关断的电缆接线头输入一个高频,通过一个信号接收器在电缆周围来回移动,接收到的信号强弱来判断电缆的位子,接近电缆信号强,远离电缆则信号弱。 金属探测器有很多种型号,双线圈金属探测器[14],能耗型金属探测器[7],频差式金属探测器等本次毕业设计通过对粗略的一些方案进行预测,最后确定一个具体方安,即就是要做的设计,对一个通有高频信号的导线用金属探测器[7]来检测,通过探测电路的信号F1和检测电路信号F2的频差经过放大输出得到一个让人能听到的声音,用耳机接听来判断电缆的位置。。本次设计用到两个振荡电路,即探测电路的电压反馈振荡电路和固定频率信号的方

电涡流式传感器

第四章电涡流式传感器 教学要求 1.了解电涡流效应和等效阻抗分析。 2.熟悉电涡流探头结构和被测体材料、形状和大小对灵敏度的影响。 3.熟悉电涡流式传感器的测量转换电路。 4.掌握电涡流式传感器的应用。 5.掌握接近开关的分类和特点。 教学手段多媒体课件、各种电涡流传感器演示 教学课时3学时 教学内容: 第一节电涡流传感器工作原理 一、电涡流效应(演示) 从金属探测器的探测过程导出电涡流传感器的电涡流效应。从金属探测器的结构来说明图4-1电涡流传感器工作原理。 二、等效阻抗分析 图4-1中的电感线圈称为电涡流线圈。分析它的等效电路:一个电阻R和一个电感L 串联的回路。电涡流线圈受电涡流影响时的等效阻抗Z的函数表达式(分析其实际价值)Z=R+jωL=f(i1、f、μ、σ、r、x)(4-1)结论:电涡流线圈的阻抗与μ、σ、r、x之间的关系均是非线性关系,解决方法:必须由微机进行线性化纠正。 第二节电涡流传感器结构及特性 一、电涡流探头结构(实物演示) 电涡流传感器的传感元件是一只线圈,俗称为电涡流探头。 线圈结构:用多股较细的绞扭漆包线(能提高Q值)绕制而成,置于探头的端部,外部用聚四氟乙烯等高品质因数塑料密封,(图4-2)。CZF-1系列电涡流探头的性能: 表4-1 CZF-1系列传感器的性能 提问:请同学由上表分析得出结论:探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。 二、被测体材料、形状和大小对灵敏度的影响 线圈阻抗变化与哪些因素有关:金属导体的电导率、磁导率等。 第三节测量转换电路 (简单介绍调幅式和调频式测量转换电路。) 一、调幅式电路 调幅式:以输出高频信号的幅度来反映电涡流探头与被测金属导体之间的关系。图4-3:高频调幅式电路的原理框图。 ?

气体传感器文献综述

` 气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545 Word文档

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

电涡流位移传感器的原理及其静态标定方法

电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。 实验目的: 了解电涡流位移传感器的结构和工作原理。 了解电涡流位移传感器的静态标定方法。 实验原理 结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。 工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。 测量电路 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。由于输出电压的频率始终恒定,因此称为定频幅式。这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证

稳定的输出。 实验仪器与材料 电涡流位移传感器静态标定系统 Hz-8500探头前置器 8511型电涡流探头 电涡流传感器测量装置 高精度数字万用表。 实验内容: 实验一:被测金属板采用铝质板,测量U-x 关系曲线。 实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。 实验三:被测金属板采用铁板,测量U-x 关系曲线。 5、实验数据: 实验一数据: 6、实验要求: 1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。答:线性工作范围:由画出的U-X关系曲线可以看出其线性工作范围在0~13 灵敏度:(15.4-1.78)/13=1.048

位移电涡流传感器测量电路设计-)

位移电涡流传感器测量电路设计-)

————————————————————————————————作者:————————————————————————————————日期:

成绩评定: 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

摘要 电涡流传感器由于具有对介质不敏感、非接触的特点,广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mm电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量范围接近90mm,验证了该系统工作的稳定性,证明设计达到了预期效果。关键词:电涡流传感器;测量电路;大位移;线性化

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务 ----------------------- 1 2.2设计要求 ----------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法 ----------------------- 1 3.2设计步骤 ----------------------- 2 3.3设计原理分析 -------------------- 6 四、课程设计小结与体会 ----------------- 6 五、参考文献-------------------------- 6

一、设计目的 1.了解电涡流传感器测量位移的工作原理和特性。 2.了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电 路作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用范围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用,但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励,在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持

相关主题
文本预览
相关文档 最新文档