当前位置:文档之家› 不同的高原海拔高度对身体损害程度

不同的高原海拔高度对身体损害程度

不同的高原海拔高度对身体损害程度
不同的高原海拔高度对身体损害程度

不同的高原海拔高度对身体损害程度

通常,医学上会把海拔3000米以上的高原称为医学高原。高原科学家把3000米定义为人的反应临界高度,为“不损害健康的高度”。

这个不损害健康的主题就是缺氧的高原反映,以及海拔升高带来的底温度、强紫外线、宇宙电粒辐射和低湿度等一系列的自然因素对人体的伤害。

不损害健康的海拔(无须药物。该海拔一般不列入高原反应范畴):

2000米——2700米以上对极少数人有轻微良性反应。

2700米——3000米对部分人有微小适应性反应,有危急性疾病的人勿进(估计也不会到这里折腾)。

比较损害健康的海拔(药物可以减弱):

3000米——3300米对多数人有轻中度持续性高原反应,个别重度反应。有慢性病或身体特别虚弱的人勿进!

3300米——3600米大部分人有轻中度持续性反应,部分人重度反应,身体虚弱的人和有家族遗传史的人勿进!

3600米——4000米对绝大多数人都有中度以上的反应。身体一般以下的人慎入!

严重损害健康的海拔:

4000米——5000米:都有中度以上反应,先服用药物可以减轻至中度或轻度(看体质),不要离氧气瓶的地方太远。

5000米以上,被定为特高海拔,为障碍临界高度,是生命禁区,最好谨慎冒险!

7000米为危险临界高度,海拔7000米以上机体不能代偿,为高山死亡带,最好不要去!

按一般人来说,3000米时,各方面的思维能力全面下降,其中判断力下降尤为明显,4000米时,书写字迹拙劣、造句生硬、语法错误。超过 7000米时,有相当一部分人可在无明显症状的情况下突然出现意识丧失。

温度上,按常理讲,海拔高度每升高150米,气温会下降1度。一般海拔高度每升高1000米,气温下降6.5度。所以海拔越高,温度也越低。

同时海拔越高,紫外线、电粒辐射越高;大气压、湿度越低。

浅谈青藏高原对我国气候的影响

浅谈青藏高原对我国气候的影响 地形是影响气候的主要因素之一。被称为“世界屋脊” 的青藏高原,雄踞在亚洲的中部,位于我国的西南部。它南起27° N ,北止40° N ,纵跨纬度13° ;总面积约230 万平方千米;平均海拔4500 米。地域之广阔,地势之高峻,是世界上其它高原所无法比拟的。如此雄姿,不仅使它本身形成了非地带性的高原气候,而且由于它的存在,对北半球西风气流的东进、东亚的季风环流起屏障作用;同时它又对造成我国东部地区大雨或暴雨的西南低涡的产生起着重要的作用。 限于篇幅,本文仅就其对我国气候的影响作一肤浅的阐述。 首先,在冬季,北半球的西风带南移。由于高大的青藏高原的存在,使三四千米以下的西风气流分成南北两支急流。北支在高原西北部形成西南气流,给高原北侧,新疆中部的天山地区带来一定的湿度。当这支气流再绕过新疆北部以后和南下的极地大陆气团汇合,转为强劲的西北气流,使我国冬季风的势力增强,并向南伸展得很远。南支气流在高原的西南部形成西北气流,使本来就很干燥的南亚西北部雪上加霜,更加干燥(在世界气候类型困上,那里属于热带沙漠气候)。当这股气流绕过高原南侧以后,又转为西南气流,掠过我国的云贵高原以后,继续向东北方向运动,直至长江中下游地区。这股来自低纬度的暖性气流又往往是造成我国江南地区“暖冬”天气的重要因素。这两支气流在长江中下游地区汇合东流,形

成北半球最强大的西风带。这支西风对我国东部地区的天气变化起着重要的作用(我们在卫星云图上所看到的过往我们上空的云,总是自西向东运动,其动力就是这股西风)。与此同时,位于我国青藏高原东侧的四川盆地和汉中一带,恰在这南北两支气流之间,风力微弱,空气稳定,成为“死水区”,多云雾天气。 在夏季,北半球的西风带北移,西风南支气流消失,夏季风迅速向北推进,气旋活动频繁,我国东部季风区自南向北先后进入雨季。到了10 月以后,西风又逐渐南移,南支西风气流又重新出现,夏季风复退,冬季风又控制了我国东部南北。综上所述,如果没有青藏高原的阻挡,我国大部分地区均能受到盛行西风带的影响,如是那样,我国的气候将会是另一番景象。 其次,由于青藏高原本身所产生的明显的热力作用,这种热力作用直接影响着东亚的季风环流。冬季,巨大的高原,因地势高,冰雪面积大,空气稀薄,辐射冷却快,降温迅速,成为一个低温高压中心。此中心一方面使高原南侧的西风南支气流得到加强;另一方面,这个低温高压中心又迭加在蒙古高压之上,更加强了冬季风的势力,使我国东部南北温差增大。夏季,青藏高原上为一热低压。这个热低压又强烈吸引着来自南亚地区的西南暧湿气流,使西南季风的势力加强,给江南北部、江淮地区送去大量的降水。特殊年份也能影响到川西、陇东地区。同时,在高原的高空,又常形成一个暖性高压。这个暖性高压在东移时,常给川、陕、云、贵各省带来干旱天气,使长江中下游地区的梅雨结束,转为伏旱。这个暖性高压,如果

气压

气压专题 一 基本点 (一)气压高低 1 气压:单位面积空气柱子的重量。同一垂直方向上,气压值随高度增加而降低。 2 高、低气压“高”、“低”比较的前提条件是都在同一海拔高度上。近地面,一般气温高气压值低,气温低气压值高。近地面和高空的高、低气压正好相反。 3 受气温变化(海陆比热的差异)的影响,大陆上(较海洋)夏季气压偏低,冬季气压偏高,气温和气压的年较差大。 4 高、低气压的形成原因有两种:一是热力原因(如赤道低压、极地高压、热低压、冷高压等),另一是动力原因,由大气运动造成(如副热带高压、副极地低压等)。 5 太阳辐射是大气运动的原动力。太阳辐射高低纬度的差异引起的热量差异,是形成大气运动的根本原因。 6 万能公式:上升气流==近地面低气压==阴雨天气 下沉气流==近地面高气压==晴燥天气 (二)风力和风向 1 风力(即风速)与水平气压梯度(气压差/距离)呈正相关,与地面摩擦系数呈负相关。 2 气压场中的空气质点,一般受到三个力的作用:水平气压梯度力(垂直于等压线,高压指向低压)、地转偏向力(北半球垂直于风向右偏,南半球垂直于风向左偏。随纬度增高而变大。只改变风向,不能改变风速)、摩擦力(与风向方向相反。不仅能改变风向,还可以减小风速)。 3 风向即风吹来的方向。受地转偏向力影响,风向相对于水平气压梯度力北半球右偏,南半球左偏。在高空,摩擦力可以忽略不计,风向偏转90度,最终与等压线平行;在近地面,风向偏转角度小于90度,最终斜穿等压线,指向低气压。 4 摩擦力大,风速小,风向偏转角度小,与等压线夹角大。反之亦然。 (三)热力环流与大气环流 1 热力环流-地面冷热不均引起的大气运动。例如一般的空气对流运动、海陆风、山谷风以及城市热岛环流。 2 三圈环流:熟悉三圈环流的形成过程;了解气压带和风带的位置和名称,性质及其季节移动(大致1月前后南移,7月前后北移);理解气压带风带的分布和移动对各地气候成因的影响。 3 季风环流:熟悉东亚、东南亚、南亚地区季风的风向、性质、成因。 (四)天气系统

青藏高原的隆起对全球气候的影响

青藏高原的隆起对我国气候的影响 学院:资源与坏境学院 班级:10农业资源与环境 学号:2010084023 姓名:石继龙

青藏高原是世界上最大的高原,地势高峻,平均海拔4000~5000米,有许多耸立于雪线之上高逾6000~8000米的山峰。高原的外缘,高山环抱,壁立千仞,以3000~7000米的高差挺立于周围盆地、平原之上,衬托出高原挺拔的雄伟之势。高原面积250万平方公里,东西长3000 公里,南北宽1500公里,跨15个纬度。而且高原几乎占冬季中纬度对流层厚度的1/3以上,成为中纬度大气环流中的一个庞大的障碍物。对中国气候的形成无疑起着巨大的作用。 青藏高原的平均高度在4公里以上,是全球最高最大且具有复杂地形的巨大台地,其主体呈椭圆形。 青藏高原对我国气候的影响有三个方面: 一、对气温的影响 1.机械阻挡作用 青藏高原海拔高、面积大、矗立在29°-40°N间,南北约跨10个纬度,东西约跨35个经度,有相当大的面积,海拔在5000m以上,有一系列的山峰超过7000-8000m,占据对流层中低部,犹如大气海洋中的一个巨大岛屿,对于冬季层结稳定而厚度又不大的冷空气是一个较难越过的障碍。从西伯利亚西部侵入我国的寒潮一般都是通过准噶尔盆地,经河西走廊、黄土高原而直下东部平原,这就导致我国东部热带、副热带地区的冬季气温远比受西藏高原屏障的印度半岛北部为低。冬季西风气流遇到青藏高原的阻障被迫分支,分别沿高原绕行。从冬季北半球700hPa与500hPa月平均气温图上可以清楚地看出,在高原北部冬季各月都是西北侧暖于东北侧,高原南半部,则东南侧暖

于西南侧,这显然是受到上述分支冷暖平流的影响所致。因西风在高原西侧发生分支,于是高原西北侧为暖平流,西南侧为冷平流,绕过高原之后,气流辐合,东北侧为冷平流,东南侧为暖平流。 夏季青藏高原对南来暖湿气流的北上,也有一定的阻挡作用,不过暖湿气流一般具有不稳定层结,比冷空气易于爬越山地。从夏季月平均气温分布图上可以看出,由巴基斯坦北部和东北部阿萨姆两个地区总是有两个伸向西藏方向的暖舌,其中有一部分暖湿气流越过高原南部的山口或河谷凹地,流入高原南部,这是形成雅鲁藏布江谷地由东向西伸展的暖区的重要原因。 青藏高原阻滞作用对气温的影响,不仅出现在对流层低层,并且波及到对流层中层。根据我国衢县与同纬度德里各高度上月平均气温的比较,可以看出在500hPa及其以下各层的气温皆是衢县低于德里,尤其是冬半年的差异更大。 2.热力作用 将青藏高原地面的气温与同高度的自由大气相比,冬季高原气温偏低,夏季则偏高。根据观测资料分析计算表明,从11月至翌年2月是四周大气向高原地-气系统提供热量,这时青藏高原是个冷源,其强度以12月、1月份为最大,向四周自由大气吸收热量600多J/cm2d。春夏季青藏高原是个强大的热源,其强度以6、7月份为最大,向四周大气提供热量850J/cm2d以上。就全年平均而论,青藏高原地-气系统是一个热源。冬季青藏高原的冷区偏于高原的西部。夏

钓鱼用气压参照表及其例子

从感官上说气压: 雷雨前乌云密布,云层低,气压低,这时候我们感觉闷,闷就是气压低的感受,从视觉上我们看到云层低就是气压低(秋高气爽时节,云不是老高的嘛,所以秋天属于高气压,秋天是钓鱼的良季)。 从季节上说气压: 秋季(9月、10月、11月),冬季(12月、1月、2月),春季(3月、4 月、5月),夏季(6月、7月、8月)。 一年四季,春夏气压低,夏季气压最低,而且不稳定,24 小时当中气压会变化很大。早晨气压升高,中午气压下降。 秋冬气压高,冬天气压最高,所谓:秋高气爽是指秋天气压高、温度适宜、人舒服!一天中气压的变化: 一天中,气压有一个最高值,一个最低值,分别出现在9~10 时和15~16 时,还有一个次高值和次低值,分别出现在21~22时和3~4 时。 低纬度的热带地区日气压变化明显(前面说春夏气压低且不稳定),高纬度寒带地区日气压变化小。 钓鱼与气压的关系: 气压直接影响水中的含氧量,影响鱼的吃口。气压高则水中含氧量大,鱼儿舒畅活跃,吃口好。气压低则水中含氧量低,鱼儿缺氧、难受、无心吃食。 鱼儿对气压的敏感度比人更高,气压低于1000 百帕,水中溶氧量大大降 低,此时食欲(吃口)大减,甚至完全没有吃口,钓鱼收获不大。 所以一般来说,我们选择那些清凉的天气出钓,避免炎热闷热的天气,如果无可避免,那么随着气压的降低,钓层应渐渐上升,早晨钓底,到下午难钓了,可以钓浮,甚至可以钓半水。 气压对钓鱼的影响 有朋友提出一些问题:“1013气压的参数说明什么,什么气压值好钓鱼?”我

“也是这么查的。关键是气压在多少才好钓鱼?”要回答这样的问题,三言两语说不清楚。去年,我在《钓鱼》** 上发表过一篇文章《气压变化对鱼情有重要一影响》,是 我一两年对气压观察研究的心得体会。现在发表在这里,对于关心气压变化的钓友可能 会有一些帮助。 大家知道,钓效的好坏、鱼获的多少与钓场、钓位、钓法、钓技、饵料都有关系, 而天气的影响则是最大的、第一位的。气压变化和气温变化又是天气变化的两个主要因 素。 钓鱼人都知道雷雨之前,天色昏暗,燕子低飞,气压低难钓鱼。谚语云:“宁钓黄 昏后,不钓雷雨前”。但是,目前对气压变化如何影响钓鱼的认识还十分肤浅,需要多 一些关注,做一些研究。 我买了一个气压计。从前年开始,天天记录气压,同时注意自己钓鱼或者观看别人 钓鱼的一些情况,日积月累,搜集了一些资料。分析整理,似乎有了一些经验教训。愿 与广大钓友共享,并以此抛砖引玉。 一,对气压的简单认识 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由 的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为 大气压。气压的大小与高度、温度、空气密度有关。离地面越高气压越低。温度越高, 空气密度越小,气压越低。所以,炎热夏季气压比较低而寒冷冬季气压比较高。一天之 中,早晚气压比较高、下午气压比较低。潮湿空气密度比较小气压比较低而干燥空气密 度比较大气压比较高。气压还与风雨、天气好坏有关系,是一个重要的天气因素。 气压大小与水体溶氧有直接的关系,因而影响鱼情。水里氧气的溶解度与 两个因素有关:随温度升高而降低、随气压增大而增大。 一天之中,气压的变化值通常很小,只不过1-3 百帕而已。气压随气温波动而产生微小的波动是正常的现象。如果一天之中,气压的升降幅度在5 百帕以上,那就是异常现象了。一个月当中,很难得遇到一两次这样的异常情况。

青藏高原对气候

浅谈青藏高原对我国气候的影响地形是影响气候的主要因素之一。被称为“世界屋脊”的青藏高原,雄踞在亚洲的中部,位于我国的西南部。它南起27°N,北止40°N,纵跨纬度13°;总面积约230万平方千米;平均海拔4500米。地域之广阔,地势之高峻,是世界上其它高原所无法比拟的。如此雄姿,不仅使它本身形成了非地带性的高原气候,而且由于它的存在,对北半球西风气流的东进、东亚的季风环流起屏障作用;同时它又对造成我国东部地区大雨或暴雨的西南低涡的产生起着重要的作用。 首先,在冬季,北半球的西风带南移。由于高大的青藏高原的存在,使三四千米以下的西风气流分成南北两支急流。北支在高原西北部形成西南气流,给高原北侧,新疆中部的天山地区带

来一定的湿度。当这支气流再绕过新疆北部以后和南下的极地大陆气团汇合,转为强劲的西北气流,使我国冬季风的势力增强,并向南伸展得很远。南支气流在高原的西南部形成西北气流,使本来就很干燥的南亚西北部雪上加霜,更加干燥(在世界气候类型困上,那里属于热带沙漠气候)。当这股气流绕过高原南侧以后,又转为西南气流,掠过我国的云贵高原以后,继续向东北方向运动,直至长江中下游地区。这股来自低纬度的暖性气流又往往是造成我国江南地区“暖冬”天气的重要因素。这两支气流在长江中下游地区汇合东流,形成北半球最强大的西风带。这支西风对我国东部地区的天气变化起着重要的作用(我们在卫星云图上所看到的过往我们上空的云,总是自西向东运动,其动力就是这股西风)。与此同时,位于我国青藏高原东侧的四川盆地和汉中一带,恰在这南北两支气流之间,风力微弱,空气稳定,成为“死水区”,多云雾天气。 在夏季,北半球的西风带北移,西风南支气流消失,夏季风迅速向北推进,气旋活动频繁,我国东部季风区自南向北先后进入雨季。到了10月以后,西风又逐渐南移,南支西风气流又重新出现,夏季风复退,冬季风又控制了我国东部南北。综上所述,如果没有青藏高原的阻挡,我国大部分地区均能受到盛行西风带的影响,如是那样,我国的气候将会是另一番景象。 其次,由于青藏高原本身所产生的明显的热力作用,这种热力作用直接影响着东亚的季风环流。冬季,巨大的高原,因地势

高空低气压模拟试验箱

高空低气压模拟试验箱 高空低气压模拟试验箱简介 名称:高空低气压模拟试验箱-东莞美泰科 用途:又名电池高度模拟试验装箱,针对UL、EN、IEC等标准试验要求而设计,在短时间内达到样品的低气压存放状态,可自动控制试验周期,全程监控箱内气压变化,实现试验的自动终止。所有的被测样品均在11.6kPa(1.8psi)的负压下测试,测试最终结果要求电池不能爆炸或是着火。另外,电池不能冒烟或是漏液,电池保护阀不能被破坏。 本产品采用的真快计设计,自动精确控制真空度。对于真空度的控制可对真快计的功能进行设置。采用区域控制的办法。安全保护装置采用漏电保护开关、熔断器等。 高空低气压模拟试验箱参数 内箱材质:不锈钢(6MM厚) 外箱材质:SECC钢板高级烤漆处理(1.5MM厚) 计量器:三位显示999(H小时、M分钟、S秒可切换) 真空度(数显):0~101KPa(11.6 KPa,真空表指示值-89.7KPa) 使用电源:AC 单相三线 220V 50HZ

总功率:2.0KW 真空泵:标配 . 高空低气压模拟试验箱结构 1、箱体采用数控机床加工成型,造型美观大方,并采用无反作用把手,操作简便。 2、箱体内胆采用进口高级不锈钢(SUS304)镜面板,箱体外胆采用A3钢板喷塑,增加了外观质感和洁净度补水箱置于控制箱体右下部,并有缺 3、水自动保护,更便利操作者补充水源。大型观测视窗附照明灯保持箱内明亮,且利用发热体内嵌式钢化玻璃,随时清晰的观测箱内状况。 4、加湿系统管路与控制线路板分开,可避免因加湿管路漏水发生故障,提高安全性。 5、水路系统管路电路系统方便维护和检修。 6、箱体保温采用超细玻璃纤维保温棉,可避免不必要的能量损失。 7、箱体左侧配一直径50mm的测试孔,可供外接测试电源线或信号线使用

大气压和海拔的换算

大气压力与海拔高度怎么转换 标准大气压强Po= Pa= cmHg= mmHg Po=1.01325×10^5 Pa=76cmHg=760mmHg 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的 反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 海拔高度(m)0 1 000 2 000 2 500 3 000 4 000 5 000相对大气压力10.8810.7740.7240.6770.5910.514相对空气密度10.9030.8130.7700.7300.6530.583

青藏高原隆升的意义及其对气候的影响

青藏高原隆升的意义及其对气候的影响 青藏高原隆升的影响及其意义: 青藏高原和喜马拉雅山一带原是一片大海,后来大陆板块碰撞抬升才形成了今天的样子,而且还将继续增高。 青藏高原的隆起与新生代以来全球环境的重大变化具有明显联系。这些变化体现在亚洲季风环境的形成演化和亚洲内陆干旱化,比如,由此导致中国南方广大湿润地区和西北干旱区的出现,黄河中游地区出现大面积黄土堆积而形成黄土高原,奠定了我国乃至东亚地区现代环境的宏观格局。 如果没有青藏高原,该区降基本上都在西北气流控制下,盛行风没有明显的季节变化,属于副热带大陆气候,即干热类荒漠或沙漠气候;没有高原,也就没有了印度低压和蒙古高压,就不会形成现在的冬夏季风。当高原开始隆起,青藏地区干热气候就开始发生较明显的变化,降水增多,气温降低;当高度达到1000-2000m时,雨量增到最大,当高度达2000-3000m,高原季风形成,但较弱,气温继续降低;当高度达到3000-4000m时,夏季青藏热低压、冬季青藏冷高压更明显,高原季风也接近现在的情况,东亚季风也更明显,高原气温更低,降水量明显减少,高原湖泊逐渐干涸,于是青藏高原的隆升,经历了一个较暖湿到凉干的过程。值得详细说明的是,夏半年,西南季风控制着高原东南部、南部,形成暖湿气候,高原内部则形成雨影区,十分干旱,西南季风和西风环流交替控制着青藏高原。 水分入不敷出:高原北部、西北部刮到海洋的空气却又能带走部分水汽,使得高原内陆水分更加缺乏。从北部蒸发上高原的水分,无法从高原北沿流回北部,反而顺着高原的南坡流入印度洋或向东流入太平洋。塔里木盆地的低热与其南边紧邻的青藏高原的高寒恰成鲜明对照。盆地中蒸发出来的水汽随着热胀冷缩的空气而单向地漂移到高原。由于空气热胀冷缩以及盆地高温与高原低温,使得盆地相对于高原总是高压,造成常年的东北风将盆地的水汽吹往高原。水汽遇到高原低温冰川而凝聚。低海拔盆地中的水就这样被蒸发作用送到高原。这些从盆地吹往高原的水汽凝聚在高原广阔的地域,而不是限于高原北坡,这使得凝聚在高原上的水难以循环回盆地。空气中的水分近乎均匀地凝聚在高原群山的四周,

低气压天气和高气压分类

低气压天气和高气压分类 低气压天气 气压跟天气有密切的关系。一般地说,地面上高气压的地区往往是晴天,地面上低气压的地区往往是阴雨天。这里所说的高气压和低气压是相对的,不是指大气压的绝对值。某地区的气压比周围地区的气压高,就叫做高气压地区;某地区的气压比周围地区的气压低,就叫做低气压地区。 在同一水平面上,如果气压分布不均匀,空气就要从高气压地区向低气压地区流动。因此某地区的气压高,该地区的空气就在水平方向上向周围地区流出。高气压地区上方的空气就要下降。由于大气压随高度的减小而增大,所以高处空气下降时,它所受到的压强增大,它的体积减小,温度升高,空气中的凝结物就蒸发消散。所以,高气压中心地区不利于云雨的形成,常常是晴天。如果某地区的气压低,周围地区的空气就在水平方向上向该地区流入,结果使该地区的空气上升,上升的空气因所受的压强减小而膨胀,温度降低,空气中的水汽凝结,所以,低气压中心地区常常是阴雨天。 由于气压跟天气有密切的关系,所以各气象哨所每天都按统一规定的时刻观测当地的大气压,报告给气象中心,作为天气预报的依据之一。 高气压分类 依成因可分为:动力高压、热力高压。例如:副热带高压、大陆冷高压。 依不同热力结构可分为:冷性高压、暖性高压。例如:大陆冷高压、热带海洋气团。 高气压按其热力结构又可分为两种: 最常见的是冷高压,它是因为地表散热、冷却所造成。地表降温后,近地面的空气温度也跟着降低,而冷空气缺乏热能,所以很难上升,是一个较重、密度较大的空气,而周围的空气较为温暖,空气较轻,所以气流就变成从冷空气吹向周围的方向,形成冷高压中心。如南极与西伯利亚的高气压。 而副热带高气压是由于位在赤道的强烈上升气流形成高空高压,向南、北气压较低的方向流动;因为地转偏向力作用,这些从赤道上空来的气流渐渐转向为由西向东,不再沿经线方向运动,在南北纬30度附近堆积下沉,形成高气压,它是较热的。

第一篇:电工电子产品运输包装件低气压试验简述

电工电子产品运输包装件低气压试验简述 随着各国经济向全球的扩展,航空航天事业、海洋事业的迅速发展,电工电子产品在各方面的广泛应用,众多产品在储运过程中所遇环境因素也变得日益复杂和多样。针对电工电子产品运输包装检测,需要进行低气压试验,以确定电工电子产品在低气压气候环境下储存、运输、使用的适应性。 一、试验背景 低气压对密封产品的影响主要是由于大气压的变化形成压差。压差引起一个从高压指向低压的力。在该力作用下,使气体流动来达到平衡。而对于密封产品,其外壳将承受此力。此力可以使外壳变形、密封件破裂造成产品失效。 海拨高度增加气压降低,对电工电子产品的电气性能也会产生影响。特别是以空气作为绝缘介质的设备,低气压对设备的影响更为显著。在正常大气条件下,空气可以是较好的绝缘介质,许多电工电子产品以空气为绝缘介质。这些产品用于高海拨地区或作为机载设备时,由于大气压降低,常常在电场较强的电极附近产生局部放电现象,称之为电晕。更严重的是,有时会发生空气间隙击穿。这意味着设备的正常工作状态被破坏。在低气压下,特别是伴随高温条件时空气介电强度显著降低,即电晕起始电压和击穿电压显著降低,从而使电弧表面放电或电晕放电的危险性增加。 由于大气压的降低,电工电子产品的机械性能和电气性能都会受到很大影响,可能导致产品的损坏。由于高度的增加,大气压的降低,大气密度的降低,空气也变得稀薄。在我们考虑得高度范围内(低于3000米),空气中得分子得平均自由程仍然很小,大气仍可看成是连续介质流体。空气的流动特性和热力学特性在低气压条件下于正常大气条件下一样遵循相同的物理规律。但低气压的情况于正常大气相比电工电子产品受到的影响不同。 二、低气压试验所引用的标准 GB2421-1989《电工电子产品基本环境试验规程总则》 GB/T2423.25-1992《电工电子产品基本环境试验规程试验Z/AM:低温/低气压综合试验方法》

海拔高度与大气压力对照表

海拔高度与大气压力对照表 高度气压高度气压 (米)(pa)(米)(pa)-500 107478 13000 16494 0 101325 14000 14088 500 95457 15000 12031 1000 89948 16000 10275 1500 84548 17000 8775 2000 79485 18000 7494 2500 74671 19000 6401 3000 70957 20000 5466 3500 65751 21000 4669 4000 61625 22000 3986 4500 57713 23000 3405 5000 54004 24000 2908 6000 47163 25000 2484 7000 41043 26000 2125 8000 35582 27000 1825 9000 30725 28000 1572 10000 26419 29000 1355 11000 22615 30000 1169 12000 19314

1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。 2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步 3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。 4. 岁月是无情的,假如你丢给它的是一片空白,它还给你的也是一片空白。岁月是有情的,假如你奉献给她的是一些色彩,它奉献给你的也是一些色彩。你必须努力,当有一天蓦然回首时,你的回忆里才会多一些色彩斑斓,少一些苍白无力。只有你自己才能把岁月描画成一幅难以忘怀的人生画卷。

低气压试验

温度/低气压试验的试验机理及国标试验方法的应用 江苏省电子产品监督检验所唐永革 关键词:低气压温度 随着人们在地球上活动范围的扩大,随着航天航空和海洋开发事业的迅速发展,随着电工电子产品在各个方面的广泛应用,产品所遇到的环境条件变得日益复杂和多样。 大气压力的变化就是其中之一。, 而大气压只要取决于海拔高度,随着高度增加,大气压逐渐降低,大气逐渐变得稀薄,高度接近5.5km处时,大气压降低到海平面标准大气压的一半;接近16km处的大气压为标准海平面值的1/10;接近31km处的大气压为标准海平面值的1/100。.地球表面有相当大的地区的地势较高,我国约有50%的面积高于1000m, 约有25%的面积高于2000m,地势较高的地区的气压较沿海地区的气压要低。对于航空产品,由于飞机最低也要飞几千米,一般均要在万米及万米以上,最高可达30km,故机载设备将承受着更低的气压作用。气压的降低势必对高原地区使用的电工电子产品及机载设备产生影响。 许多产品的试验报告及实地考察都反映了气压降低对性能的影响。气压降低对产品的直接影响主要实气压变化产生的压差作用。这对于密封产品的外壳会产生一个压力,在这个压力的作用下会使密封破坏。然而气压降低的主意作用还在于因气压降低伴随着大气密度的降低及空气的平均自由程增大,有次会使产品的性能受到很大影响。 散热产品的温升随大气压降低而增加。电工电子产品有相当一部分是发热产品,如电机、变压器、接触器、电阻器等。这些产品在使用中要消耗一部分电能变成为热能,这样产品会发热,温度升高。产品因发热而使温度升高,这温度升高部分称之为温升。散热产品的温升随大气压的降低而增加,随海拨高度的增加而增加。导致产品的性能下降或运行不稳定等现象出现。 低气压对密封产品的影响。 低气压对密封产品的影响主要是由于大气压的变化形成压差。压差引起一个从高压指向低压的力。在该力作用下,使气体流动来达到平衡。而对于密封产品,其外壳将承受此力。此力可以使外壳变形、密封件破裂造成产品失效。 低气压对电性能的影响。海拨高度增加气压降低,对电工电子产品的电气性能也会产生影响。特别是以空气作为绝缘介质的设备,低气压对设备的影响更为显著。在正常大气条件下,空气可以是较好的绝缘介质,许多电气产品以空气为绝缘介质。这些产品用于高海拨地区或作为机载设备时,由于大气压降低,常常在电场较强的电极附近产生局部放电现象,称之为电晕。更严重的是,有时会发生空气间隙击穿。这意味着设备的正常工作状态被破坏。 在低气压下,特别是伴随高温条件时空气介电强度显著降低,即电晕起始电压和击穿电压显著降低,从而使电弧.表面放电或电晕放电的危险性增加。 低气压试验的目的。

海拔高度大气压对照表

泵制造厂只能给出H s值,而不能直接给出H g值。因为每台泵使用条件不同, 和值,所以,只能由使用单 吸入管路的布置情况也各异,有不同的 位根据吸入管路具体的布置情况,由计算确定H g。 在泵样本或说明书中所给出的H s是指大气压为10mH2O,水温为20℃状态下 的数值。如果泵的使用条件与该状态不同时,则应把样本上所给出的H s值,换 算成操作条件下的H s’值,其换算公式为 H s’=H s+(H a-10)-(H v-0.24) (2-11) 式中 H s—操作条件下输送水时允许吸上真空高度,mH2O; H s—泵样本中给出的允许吸上真空高度,mH2O; H a—泵工作处的大气压,mH2O; H v—泵工作温度下水的饱和蒸汽压,mH2O; 0.24—水的饱和蒸汽压,mH2O。 泵安装地点的海拔越高,大气压力就越低,允许吸上真空高度就越小。若 输送液体的温度越高,所对应的饱和蒸汽压就越高,这时,泵的允许吸上真空 高度也就越小。不同海拔高度时大气压力值如表2-1所示。 表2-1不同海拔高度的大气压力 2.汽蚀余量 汽蚀余量Δh是指离心泵入口处,液体的静压头与动压头之和超过液 体在操作温度下的饱和蒸汽压头p v/p g的某一最小指定值,即 (2-12) 此式中—汽蚀余量,m;

p v—操作温度下液体饱和蒸汽压,N/m2。 将式(2-9)与(2-12)合并可导出汽蚀余量 与允许安装高度H g之间 关系为 (2-13) 式中p0为液面上方的压力,若为敞口液面则p0=p a。 应当注意,泵性能表上的 值也是按输送20℃水而规定的。当输送其它 液体时,需进行校正。具体校正方法可参阅有关文献[14]。 由上可知,只要已知允许吸上真空高H s与汽蚀余量中的任一个参数,均可确定泵的安装高度。 例2-2某台离心泵从样本上查得允许吸上真空高度H s=6m,现将该泵安装在海拔高度为500m处,若夏季平均水温为40℃。问修正后的H s’应为多少?若吸入管路的压头损失为1mH2O,泵入口处动压头为0.2mH2O。问该泵安装在离水面5m高度处是否合适? 解当水温为40℃时,H v=0.75m。由表(2-1)查得H a=9.74m。根据式(2-11),则 H s’=H s+(H a-10)-(H v-0.24) =6+(9.74-10)+(0.75-0.24) =5.23m 根据式(2-10)泵的安装高度为 H s=H s’--ΣH f =5.23-0.2-1 =4.93m<5m

青藏高原对气候的影响

青藏高原对气候的影响 青藏高原是世界上最大最高的高原,有世界屋脊之称。它南起27°N,北止40°N,纵跨纬度13°;总面积约290万平方千米;平均海拔4500米,几乎占冬季中纬度对流层厚度的1/3以上,成为中纬度大气环流中的一个庞大的障碍物。对我国及世界气候环境的变迁起了十分重要的作用。 青藏高原对气候的影响主要表现在以下几方面: 1、青藏高原西风带路径的影响 巨大的青藏高原就像河流中央没有露出水面的大石头对河流的影响一样,使冬季500mb (3~4公里)以下的西风带发生分支、绕流,而形成南北两支气流。北支气流一部分沿阿尔金山成东风吹入塔里木盆地,一部分沿祁连山成西或偏西北风吹入河西走廊,二者在高原东部汇合成西北气流,流线呈反气旋弯曲,形成动力高压背,使高原地面冷高压进一步加强,并有利于冬季风南下。高原的约束使冬季风的势力较强。南支气流在高原西南面为西北气流,绕过高原南侧转为西南气流,流线呈气旋性弯曲,产生动力性低压槽,在槽前暖湿气流的影响下,我国南方与北方冬季气候有较大差异。南北两支气流在长江中下游汇合,形成北半球最为强大的西风带。青藏高原的存在使冷空气由于受高原地形的阻挡和挤压,向我国东部地区倾泻到更南的纬度。高原东侧的西南地区,地处高原西风带的背风位置,风速较小,天气、气候别具一格。青藏高原的动力作用还表现在它对于近地面气流的屏障作用。东西方向上,它阻滞了随西风气流东移的天气系统,南北方向上它直接阻挡着我国西部对流层冷暖空气的南北交流。冬季高原阻挡冬季风南下,使南侧的印度与同纬度其它地区相比温度高,气压低,气温年较差小。同时西风带气压系统受高原阻挡在其西侧停留、减弱、消亡,而东侧的四川盆地一带则又相对平静,气流扰动较少,风力较弱。高原北侧又不易受南来暖湿气流影响。有利于冷空气堆积,进一步加强蒙古高压的势力,进而产生对我国东部地区的强寒流影响。而高原阻挡海洋湿润气流进入我国西北盆地,形成少雨的燥热天气,使我国新疆极端干旱,成为少有的少雨区和无流区。 2、青藏高原对亚洲季风形成的影响 亚洲季风区是世界上最显著的季风区。季风区雨热同季,利于植物的生长,养育着 众多的人口(中国和印度为世界上两个人口最多的国家)。分析发现,亚洲季风系统中存在着

大气压 海拔高度

自然环境中,大气压和氧分压受到各种因素的影响,如温度、湿度、风速和海拔等方面的改变,都将导致大气压和氧分压发生相应的变化。其中以海拔的影响最为显著,它与大气压及氧分压是反比关系。海拔每升高100米,大气压就下降5毫米汞柱(0 67千帕),氧分压亦随之下降1毫米汞柱左右(0.14千帕)。我区平均海拔高度达4,000米以上,享有世界屋脊之称。高海拔导致了低大气压、低氧分压的形成,这也是青藏高原为"世界屋脊"空气稀薄、氧气缺乏的根本原因所在。当然,氧气在大气中的含量比例并没有变,仍为21%。 在海拔3000米以内每升高十米大气压减小(100pa ) 冬天大气压比夏天大气压(高) 气温低空气密度更高,因此冬天温度低气压高。 阴雨天大气压比晴天(低) 阴雨天因为气压低大气才承受不住雨滴重量落到地面上。 不同的海拔高度大气压和氧分压的变化对比 我国幅员辽阔,海拔3000米以上的高原、高山地区,约占全国总面积的六分之一。这些地区大多分布在边疆省区,具有重要的国防意义。高原地带气候多变,寒冷、风大、空气稀薄,对人体构成了一个特殊的自然环境。其中空气稀薄,大气压和氧分压降低,是高原环境对机体影响的主要因素。 在高原地区世居的少数民族,对高原环境已经适应,但一般人口稀少,对这些地区的经济建设需要内地支援。我军有守卫边疆的任务,内地人员进入高原地区日渐增多,因此如何保证进入高原的人员健康,我是军卫生工作的重要任务。 在海平地区,空气在每平方厘米上所形成的压力为101.3kPa(760毫米汞柱),在干燥空气中氧占20.40%,故氧分压为21.15kPa(159毫米汞柱)。空气中氧所占比例基本不受高原影响,当大气压力因海拔增高而降低时,则氧分压按比例降低。下面选择几个不同高度的大气压和氧分压的改变列表如下(表3-2)。 初抵3000米以上高原地区,由于大气压中氧分降低,肺泡气和动脉血氧分压也相应的降低,毛细血管血液与细胞线粒体间氧分压梯度差缩小,从而引起缺氧。如果逐渐登高,有一个锻炼适应过程,在低氧分压环境中,机体可发生一系列代偿适应性变化,如通气加强,肺泡膜的弥散能力提高;循环功能加强,输送氧的能力增加;红细胞和血红蛋白含量增加,红细胞中2,3-二磷酸甘油酸增多,氧离曲线右移,通过这些代偿作用,以便使组织可利用氧达到或接近正常水平。机体具有一定的适应能力,可以较长期居住高原地区。一般地说,长期居住可适应的最大高度为5000米。但有人适应能力较弱,在5000米以下一定高度就失去了适应能力,而出现高原适应不全症。 在高原地区除了大气压降低对机体的主要作用,还有气候的影响,如寒冷、大风、雨雪以及紫外线照射等。这些因素降低机体适应能力,往往是高原适应不全症的诱发和加重因素。因此在相同高度的不同地区,由于气候不同,因而引起

大气压和海拔的换算参考资料

大气压力与海拔高度转换一个地方气压值经常有变化→ 其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成 正比关系任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m ,气压平均降低12.7hPa ,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。1、静力学方程假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273 ) /P ( m/hPa ) 其中h 是气压高度差,t 是摄氏温标,P 是气压从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400 ( 1+t/273 )log( P1/P2) 式中P1 、P2分别是高度Z2 、Z1的气压值,t是摄氏温标从公式可以看出 ①气压随高度增加按指数规律递减②高度越高,气压减小得越慢这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3 。从表中可以看出,海拔高度每 升高 1 000 m,相对大气压力大约降低12%,空气密度降 低约10%,绝对湿度随海拔高度的升高而降低。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温

青藏高原的气候特征

青藏高原的气候特征及对我国的影响 张庆奎200621059 气象学2班 一、大气干洁、太阳辐射强 青藏高原海拔高,空气稀薄干洁,太阳辐射通过的大气路程较短,所以太阳辐射被削弱的少,太阳总辐射量高居全国之冠,年总量在5000-8000MJ/m2。较同纬度东部地区大2000-3000MJ/m2。年总辐射量的分布趋势自东南向西北增多,藏东南地区小于5000MJ/m2,为低值区,藏北高原、阿里地区、柴达木盆地的年总辐射量可达7000-8000MJ/m2,为高值区。 太阳总辐射力入射到水平地面的太阳直接辐射和散射辐射之和。青藏高原直接辐射年总量在3000一6000MJ/m2之间,与同纬度平原地区相比较高出2000-3000MJ/m2其在高原分布趋势与年总辐射量一致,藏东南为低值区;青海的柴达木盆地、藏北高原和阿里地区为高值区。尤为突出的是,在青藏高原多次观测1249.IW/m2、1259.5W/ m2等非常大的直接辐射强度值,这种现象在东部平原地区是绝对不会出现的,由于海拔高度的影响,高原大气干洁,水滴、气溶胶、火山尘埃等少,因此晴天条件下,散射辐射值较东部平原地区小,其年总散射辐射量1700-2900MJ/m2。散射辐射量的分布形式不同于年总辐射量和直接辐射量,这主要是因为散射辐射量大小除取决于纬度、高度外,与大气干洁状况、云量的多少等有关,所以散射辐射量的高值区出现在戈壁荒漠多风沙的柴达木盆地和阴云天较多的那曲、玉树,而低值区出现在海拔高、干燥少雨的阿里地区和藏北高原。 众所周知,太阳辐射对气候以及作物生长和产量都有重要影响。太阳辐射主要包括紫外辐射、可见光和红外辐射三个波段。概括起来说,达到植物表面的红外辐射的能量约占太阳辐射总量的一半,其中仅有约0.5-1.0%用于光合作用。紫外辐射在总辐射中所占比例很小,但对植物的形状、颜色与品质的优劣起着重要作用。 尽管目前高原农耕措施和管理水平都很低,但冬小麦和青棵的单产能创全国最高纪录,可能与高原的橙红光、紫蓝光的辐射通量的百分比和辐射强度都高于其它地区有关。另外,通过计算表明,波长较短的波段,海拔越高时,其红外波段的能量越低。高原的紫外和可见波段的相对通量高于东部平原和西部干旱地区,尤以紫外波段更甚,而红外波段的相对通量低于东部平原和西部干旱地区。就各波段的绝对量而言,高原比东部平原要高得多,以紫外、可见、红外三个波段的能量为例,西藏高原分别是苏州的2.9、l.6和1.1倍。从太阳辐射资源来看,红外、可见光和紫外各波段太阳辐射4至9月的总量约占全年辐射总量的67%。也就是说太阳辐射资源主要集中在春末至秋初,与作物生长发育的季节同步,这对作物产量和质量都有很大影响。值得注意的是,紫外到辐射虽然在太阳辐射的总通量中所占比例不大,但在藏北、阿里地区观测到紫外辐射及其与总辐射的比值,与其它地区相比,都是较大的,那曲(海拔4500米)观测到晴天正午紫外辐射瞬时值达70W/m2,神仙湾(海拔5300米)为99W/m2,表明晴天时高原地区大气对紫外辐射的消光能力很弱。从总的趋势来看,随着海拔高度的上升,各波段辐射强度均有所增大,但各波段辐射强度占总辐射强度的百分比的变化则不一样,紫外波段将上升,可见光波段略下降,而红外波段将下降较多。 二、气温低、日较差大、年变化小 青藏高原年平均气温低,构成了青藏高原气候主要特征。位于藏北高原和青南高原的可

初识高空天气图

高空天气图 为了全面认识和掌握天气的变化规律,除了分析地面天气图外,还要分析高空天气图。目前在实际工作中普遍采用的高空天气图是填写同一等压面上气象记录的等压面图。 一、等压面图的概念 空间气压相等的点所组成的曲面,称为等压面。由于同一高度上各地的气压不可能都相等,因此等压面不是一个水平面,而是一个像地形一样起伏不平的面。用来表示空间等压面起伏形势的图称为等压面形势图,简称等压面图。 等压面的起伏形势可采用绘制等高线的方法表示出来。具体地说,将各地 上空某一等压面所在的高度值填在图 上,然后连接高度相等的各点绘制出等高线,从等高线的分布即可看出等压面的起伏形势。 如图2.10所示,P 为等压面,H 1,H 2,…,H 5为厚度间隔相等的若干水平面,它们分别和等压面相截(截线以虚线表示),因每条截线都在等压面P 上,故所有截线上各点的气压均等于P ,将这些截线投影到水平面上,便得出P 等压面上距海平面分别为H 1,H 2,…,H 5的许多等高线,其分布情况如图2.10的下半部分所示。 从图中可以看出,和等压面凸起部位相对应的是一组闭合等高线构成的高值区,和等压面下凹部位相对应的是一组闭合等高线构成的低值区,等压面坡度陡的地方,相应等高线较密集。

分析等压面图的目的是要了解空间气压场的分布。实际上,等压面的起伏不平就反映了等压面附近的水平面(等高面)上气压场的分布。例如,在图2.11中,P为某一等压面的垂直剖面,H为P等压面附近的等高面,A、B、C各点在P等压面上,A’、C’为A、C两点在 等高面H上的投影点。由于气压随高度是减少的,因此P A’>P A ,P C’

P B >P C’ (P A 、P B 、P C 、P A’ 、P C’ 分别为各点的气压值)。由此可知,同高度上气压比四 周高的地方,等压面的高度也较四周高,表现为向上凸起;同高度上气压比四周低的地方, 等压面的高度也较四周低,表现为向下凹陷。因此,通过等压面图上等高线的分布,就可以 知道等压面附近空间气压场的分布情况。等压面上等高线的高值中心对应附近等高面上等压 线的高气压中心,低值中心对应附近等高面上等压线的低气压中心,并且等压面上等高线的 走向与附近等高面上等压线的走向也基本上是一致的。因此,通常人们将等压面图上等高线 的高值区称为高压,将等高线的低值区称为低压。 既然等高面上的气压分布与等压面上的高度分布相当,那么为什么不像地面图那样,用各个 等高面的气压分布图来反映空间气压场的情况呢?这是因为,在天气分析中,用等压面图比 等高面图更优越。 我们日常分析的等压面图有以下几种:850 hPa等压面图,其位势高度通常为1500位势米 左右;700 hPa等压面图,其位势高度通常为3000位势米左右;500 hPa等压面图,其位势 高度通常为5500位势米左右;300 hPa等压面图,其位势高度通常为9000位势米左右;20 0 hPa等压面图,其位势高度通常为12000位势米左右;100 hPa等压面图,其位势高度通 常为16000位势米左右。 ← 000,10000米)的高空天气图,若在天气图上读得一个数据〖691〗,则代表该处的位势是16910米,即在数据前后分别加1与0. 00,3500米)的高空天气图,若在天气图上读得一个数据〖597〗,则代表该处的位势是5970米,即在数据最后加0. )的高空天气图,若在天气图上读得一个数据〖171〗,则代表该处的位势是3171米,即读数加3000. )的高空天气图,若在天气图上读得一个数据〖512〗,则代表该处的位势是1512米,即读数前面加1. 的高空天气图,若在天气图上读得一个数据〖921〗,则代表该处的位势是921米,不加任何修改. 一等压面位势高度相同点的连线叫做“等高线”。由于降水云系主要形成于3000m左右的上空,因而分析700hpa等压面的天气形势尤为重要。例如“3000m上空,308线在……一线”,指的是700hpa等压面的天气形势,为了便于理解,故称为“3位势高度为3080m(以什米为单位,即位势为308什米)的各地连成的等高线. 常用的高空天气图有500百帕、700百帕和850百帕三层,主要的分析项目有等高线、等温线、高低压中心和槽线、切变线等。槽线和切变线的情况可根据等高线来 二、等压面图的填图格式 等压面图的填图格式如图2.12所示。图中各符号含义如下:

相关主题
文本预览
相关文档 最新文档