当前位置:文档之家› 人教中考数学 圆的综合综合试题附答案

人教中考数学 圆的综合综合试题附答案

人教中考数学 圆的综合综合试题附答案
人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.

()1如图①,若m 5=,则C ∠的度数为______;

()2如图②,若m 6=.

①求C ∠的正切值;

②若ABC 为等腰三角形,求ABC 面积.

【答案】()130;()2C ∠①的正切值为3

4

;ABC

S 27=②或

432

25

. 【解析】 【分析】

()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;

()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结

论;

②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.

【详解】

()1如图1,连接OB ,OA ,

OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形,

AOB 60∠∴=,

1

ACB AOB 302

∠∠∴==,

故答案为30;

()2①如图2,连接AO 并延长交

O 于D ,连接BD ,

AD 为O 的直径,

AD 10∴=,ABD 90∠=,

在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=,

AB 3

tan ADB BD 4

∠∴=

=, C ADB ∠∠=,

C ∠∴的正切值为3

4

②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,

AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==,

在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,

ABC 11

S AB CE 692722

∴=?=??=;

Ⅱ、当AC AB 6==时,如图4,

连接OA 交BC 于F ,

AC AB =,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,

1AOG AOB 2∠∠∴=,1

AG AB 32

==,

AOB 2ACB ∠∠=, ACF AOG ∠∠∴=,

在Rt AOG 中,AG 3

sin AOG AC 5

∠=

=, 3

sin ACF 5

∠∴=,

在Rt ACF 中,3

sin ACF 5

∠=,

318

AF AC 55∴==,

24

CF 5∴=,

ABC 111824432

S AF BC 225525

∴=?=??=;

Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC

432

S

25

=

【点睛】

圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.

2.四边形 ABCD 的对角线交于点 E ,且 AE =EC ,BE =ED ,以 AD 为直径的半圆过点 E ,圆心 为 O .

(1)如图①,求证:四边形 ABCD 为菱形;

(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.

【答案】(1)见解析;(2)π2

【解析】

试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.

试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;

(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且1

32

OF AD =

=,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =

CG CD =1

2

,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802

AE ππ

??=

=.

点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.

3.如图,△ABC 内接于⊙O ,弦AD ⊥BC,垂足为H ,连接OB . (1)如图1,求证:∠DAC=∠ABO;

(2)如图2,在弧AC 上取点F,使∠CAF=∠BAD,在弧AB 取点G ,使AG ∥OB ,若∠BAC=600, 求证:GF=GD;

(3)如图3,在(2)的条件下,AF 、BC 的延长线相交于点E,若AF :FE=1:9,求sin ∠ADG 的值。

【答案】(1)详见解析;(2)详见解析;(3)1114

. 【解析】

试题分析:(1)延长BO 交⊙O 于点Q ,连接AQ .由圆周角定理可得:∠AQB =∠ACB ,再由等角的余角相等即可得出结论; (2)证明△DFG 是等边三角形即可;

(3)延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .设AF =k ,则FE =9k ,AE =10k .在△AHE 中, AH =5k .设NH =x ,则AN =5k -x , AD =10k -2x .在△AQF 中, AF =k ,AQ =

2k ,FQ =

3

2

k .由(2)知:△GDF 是等边三角形,得到GD =GF =DF ,进而得到AG =9k -2x .

OM =NH =x ,BC =23x , GF =BC =23x .在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3

k ,GF =23x ,由勾股定理解出74x k

,得到AG =9k -2x =11

2

k ,AR =2OB =4OM =4x =7k .在△GAR 中,由sin ∠ADG =sin ∠R 即可得出结论.

试题解析:解:(1)证明:如图1,延长BO 交⊙O 于点Q ,连接AQ . ∵BQ 是⊙O 直径,∴∠QAB =900.∵AD ⊥BC ,∴∠AHC =900. ∵弧AB =弧AB ,∴∠AQB =∠ACB .

∵∠AQB +∠ABO =900,∠ACB +∠CAD =900 ∴∠ABO =∠CAD

(2)证明:如图2,连接DF .

∵AG ∥OB ,∴∠ABO =∠BAG .∵∠ABO =∠CAD ,∴∠CAD =∠BAG . ∵∠BAC =600,∴∠BAD +∠CAD =∠BAD +∠BAG =600,即

∠GAD =∠BAC =60°.∵∠BAD =∠CAF .∴∠CAF +∠CAD =600,∴∠GAD =∠DAF =600,∴∠DGF =∠DAF =60°.

∵弧GD =弧GD ,∴∠GAD =∠GFD =600,∴∠GFD =∠DGF =600,∴△DFG 是等边三角形,∴GD =GF . (3)如图3,

延长GA ,作FQ ⊥AG ,垂足为Q ,作ON ⊥AD ,垂足为N ,作OM ⊥BC ,垂足为M ,延长AO 交⊙O 于点R ,连接GR .作DP ⊥AG ,DK ⊥AE ,垂足为P 、K .

∵AF :FE =1:9,∴设AF =k ,则FE =9k ,AE =10k .在△AHE 中,∠E =300,∴AH =5k . 设NH =x ,则AN =5k -x .∵ON ⊥AD ,∴AD =2AN =10k -2x 又在△AQF 中,∵∠GAF =1200,∴∠QAF =600,AF =k ,∴AQ =2k ,FQ 3

. 由(2)知:△GDF 是等边三角形,∴GD =GF =DF ,

∵∠GAD =∠DAF =600,∴DP =DK ,∴△GPD ≌△FKD ,△APD ≌△AKD ∴FK =GP ,AP =AK ,∠ADK =300,∴AD =2AK =AP +AK =AF +AG ∴AG =10k -2x -k =9k -2x .

∵作OM ⊥BC ,ON ⊥AD ,∴OM =NH =x .∵∠BOD =

1

2

∠BOC =∠BAC =600 ∴BC =2BM =23.∵∠BOC =∠GOF ,∴GF =BC =23 在△GQF 中,GQ =AG +AQ =192k -2x ,QF =3

2

k ,GF =23 ∵222GQ FQ GF +=

∴()

2

2

21932322k x k x ??

??-+= ? ? ?????

, ()12713

42

x k x k =

=-,舍去. ∴AG =9k -2x =11

2

k ,AR =2OB =4OM =4x =7k , 在△GAR 中,∠RGA =900,

∴sin ∠ADG =sin ∠R =

AG AR =11

14

点睛:本题是圆的综合题.熟练掌握圆的基本性质和常用的辅助线做法是解答本题的关键.

4.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).

(1)求证:PA?BD=PB?AE;

(2)求证:⊙O的直径长为常数k;

(3)求tan∠FPA的值.

【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .

【解析】

试题分析:

(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA?BD=PB?AE;

(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;

(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.

试题解析:

(1)证明:如图,

∵PB切⊙O于点B,

∴∠PBD=∠A,

∵PF平分∠APB,

∴∠APE=∠BPD,

∴△PBD∽△PAE,

∴PB:PA=BD:AE,

∴PA?BD=PB?AE;

(2)证明:如图,

∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.

又∵∠PBD=∠A,∠EPA=∠BPD,

∴∠BED=∠BDE.

∴BE=BD.

∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),

∴AE+BD=k,

∴AE+BD=AE+BE=AB=k,

即⊙O直径为常数k.

(3)∵PB切⊙O于B点,AB为直径.

∴∠PBA=90°.

∵∠A=60°.

∴PB=PA?sin60°=PA,

又∵PA?BD=PB?AE,

∴BD=AE,

∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).

∴AE?BD=2,

即AE2=2,

解得:AE=2,BD=,

∴AB=k=AE+BD=2+,BE=BD=,

在Rt△PBA中,PB=AB?tan60°=(2+)×=3+2.

在Rt△PBE中,tan∠BPF===2﹣,

∵∠FPA=∠BPF,

∴tan∠FPA=2﹣.

【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.

5.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M 为⊙O上一点,并且∠BMC=60°.

(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问

BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(1)证明见试题解析;(2)BE+CF的值是定值,为等边△ABC边长的一半.【解析】

试题分析:(1)连结OB、OD,如图1,由于D为BC的中点,由垂径定理的推理得

OD⊥BC,∠BOD=∠COD,即可得到∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是得到AB是⊙O的切线;

(2)作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,由△ABC为正三角形,D为BC 的中点,得到AD平分∠BAC,∠BAC=60°,利用角平分线性质得DM=DN,得

∠MDN=120°,由∠EDF=120°,得到∠MDE=∠NDF,于是有△DME≌△DNF,得到ME=NF,

得到BE+CF=BM+CN,由BM=1

2

BD,CN=

1

2

OC,得到BE+CF=

1

2

BC,即可判断BE+CF的值是

定值,为等边△ABC边长的一半.

试题解析:(1)连结OB、OD,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,

∴∠ODB=90°,∵∠BMC=1

2

∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三

角形,∴∠ABC=60°,∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;

(2)BE+CF的值是为定值.

作DM⊥AB于M,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DM=DN,∠MDN=120°,∵∠EDF=120°,

∴∠MDE=∠NDF,在△DME和△DNF中,∵∠DME=∠DNF.DM=DN,∠MDE=∠NDF,∴△DME≌△DNF,∴ME=NF,∴BE+CF=BM﹣EM+CN+NF=BM+CN,在Rt△DMB中,

∵∠DBM=60°,∴BM=1

2

BD,同理可得CN=

1

2

OC,∴BE+CF=

1

2

OB+

1

2

OC=

1

2

BC,∴BE+CF

的值是定值,为等边△ABC边长的一半.

考点:1.切线的判定;2.等边三角形的性质;3.定值问题;4.探究型;5.综合题;6.压轴题.

6.如图,□ABCD的边AD是△ABC外接圆⊙O的切线,切点为A,连接AO并延长交BC于点E,交⊙O于点F,过点C作直线CP交AO的延长线于点P,且∠BCP=∠ACD.

(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .

【答案】(1)见解析;(2)14

π- 【解析】

【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;

(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE =

1

2

BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.

【详解】(1) 过C 点作直径CM ,连接MB , ∵CM 为直径,

∴∠MBC =90°,即∠M+∠BCM =90°, ∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD ∥BC , ∴∠ACD =∠BAC ,

∵∠BAC =∠M ,∠BCP =∠ACD , ∴∠M =∠BCP ,

∴∠BCP+∠BCM =90°,即∠PCM =90°, ∴CM ⊥PC , ∴PC 与⊙O 相切; (2)连接OB ,

∵AD 是⊙O 的切线,切点为A , ∴OA ⊥AD ,即∠PAD =90°,

∵BC ∥AD ,∠AEB=∠PAD =90°, ∴AP ⊥BC .∴BE =CE = 1

2

BC =1, ∴AB =AC ,∴∠ABC =∠ACB =67.5°, ∴∠BAC =180°-∠ABC -∠ACB =45°, ∴∠BOC =2∠BAC =90°,

∵OB =OC ,AP ⊥BC ,∴∠BOE =∠COE =∠OCE = 45°,

∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,

∴OE=CE=1,PC=OC=22

OE CE2

+=

∴S=S△POC-S扇形OFC=

()2

45π2

1π221 23604

?

??-=-.

【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.

7.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个

点,连接OC、AC,且∠BOC<90°,直线

BC和直线AD相交于点E,过点C作直线CG与线

段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

【答案】(1)证明见解析;(2)①证明见解析;②5.

【解析】

分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;

(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明

△CBH∽△OBC;

②由△CBH∽△OBC可知:BC HB

OC BC

=,所以HB=

2

4

BC

,由于BC=HC,所以

OH+HC=4?

2

4

BC

+BC,利用二次函数的性质即可求出OH+HC的最大值.

详解:(1)由题意可知:∠CAB=∠GAF,

∵AB 是⊙O 的直径, ∴∠ACB=90° ∵OA=OC , ∴∠CAB=∠OCA , ∴∠OCA+∠OCB=90°, ∵∠GAF=∠GCE ,

∴∠GCE+∠OCB=∠OCA+∠OCB=90°, ∵OC 是⊙O 的半径, ∴直线CG 是⊙O 的切线; (2)①∵CB=CH , ∴∠CBH=∠CHB , ∵OB=OC , ∴∠CBH=∠OCB , ∴△CBH ∽△OBC ②由△CBH ∽△OBC 可知:BC HB OC BC

= ∵AB=8,

∴BC 2=HB?OC=4HB ,

∴HB=2

4BC ,

∴OH=OB-HB=4-2

4

BC ∵CB=CH ,

∴OH+HC=4?2

4

BC +BC ,

当∠BOC=90°,

此时 ∵∠BOC <90°, ∴0<BC <

令BC=x 则CH=x ,BH=2

4

x

()2

21142544

OH HC x x x ∴+=-++=--+

当x=2时,

∴OH+HC 可取得最大值,最大值为5

点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.

8.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点

D ,交⊙O 于点

E ,连接AC 、AE ,且AE 与BC 交于点

F . (1)连接BD ,求证:BD 是⊙O 的切线; (2)若AF :EF=2:1,求tan ∠CAF 的值.

【答案】(1)证明见解析;(2)3

. 【解析】 【分析】

(1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到

AC :EG=2:1,EG=

12AC ,根据三角形的中位线的性质得到OG=1

2

AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论. 【详解】

证明:(1)∵OC=OB ,OD ⊥BC , ∴∠COD=∠BOD , 在△COD 与△BOD 中,

OC OB COD BOD OD OD ===??

∠∠???

, ∴△COD ≌△BOD , ∴∠OBD=∠OCD=90°, ∴BD 是⊙O 的切线;

(2)解:∵AB 为⊙O 的直径,AC ⊥BC , ∵OD ⊥CB , ∴AC ∥DE , 设OD 与BC 交于G , ∵OE ∥AC ,AF :EF=2:1, ∴AC :EG=2:1,即EG=1

2

AC , ∵OG ∥AC ,OA=OB , ∴OG=

1

2

AC , ∵OG+GE=12AC+1

2

AC=AC , ∴AC=OE ,

∴AC=

1

2

AB , ∴∠ABC=30°, ∴∠CAB=60°, ∵

CE BE =,

∴∠CAF=∠EAB=

1

2

∠CAB=30°, ∴tan ∠CAF=tan30°=3. 【点睛】

本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.

9.如图,AB 是

O 的直径,DF 切O 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交

BD 的延长线于点C .

(1)求证:ABC C ∠∠=;

(2)设CA 的延长线交

O 于E BF ,交O 于G ,若DG 的度数等于60,试简要说明

点D 和点E 关于直线AB 对称的理由.

【答案】(1)见解析;(2)见解析.

【解析】

【分析】

(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;

(2)连接OG,OD,AD,由BF∥OD,GD=60°,可求证BG=GD AD

==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.

【详解】

(1)连接OD,

∵DF为⊙O的切线,

∴OD⊥DF.

∵BF⊥DF,AC∥BF,

∴OD∥AC∥BF.

∴∠ODB=∠C.

∵OB=OD,

∴∠ABD=∠ODB.

∴∠ABC=∠C.

(2)连接OG,OD,AD,DE,DE交AB于H,

∵BF∥OD,

∴∠OBG=∠AOD,∠OGB=∠DOG,

∴GD AD

==BG.

∵GD=60°,

∴BG=GD AD

==60°,

∴∠ABC=∠C=∠E=30°,

∵OD//CE

∴∠ODE=∠E=30°.

在△ODH中,∠ODE=30°,∠AOD=60°,

∴∠OHD=90°,

∴AB⊥DE.

∴点D和点E关于直线AB对称.

【点睛】

本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.

10.已知AB 是半圆O 的直径,点C 在半圆O 上.

(1)如图1,若AC=3,∠CAB=30°,求半圆O 的半径;

(2)如图2,M 是BC的中点,E 是直径AB 上一点,AM 分别交CE,BC 于点F,D. 过点F 作FG∥AB 交边BC 于点G,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.

【答案】(1)半圆O的半径为3;

(2)⊙D与直线AC相切,理由见解析

【解析】

试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.

试题解析:

(1)∵ AB是半圆O的直径,

∴∠C=90°.

在Rt△ACB中,AB=

cos AC CAB

3 cos30

=23.

∴ OA=3

(2)

⊙D与直线AC相切.

理由如下:

由(1)得∠ACB=90°.

∵∠AEC=∠ECB+∠6,

∴∠AEC>∠ECB,∠AEC>∠6.

∵△ACE与△CEB相似,

∴∠AEC=∠CEB=90°.

在Rt△ACD,Rt△AEF中分别有

∠1+∠3=90°,∠2+∠4=90°.

∵ M是BC的中点,

∴∠COM=∠BOM.

∴∠1=∠2,

∴∠3=∠4.

∵∠4=∠5,

∴∠3=∠5.

∴ CF=CD.

过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有

∠CAE+∠ACE=90°,∠CAE+∠6=90°.

∴∠ACE=∠6=∠FPE.

又∵∠1=∠2,AF=AF,

∴△ACF≌△APF.

∴ CF=FP.

∵ FP∥GB,FG∥AB,

∴四边形FPBG是平行四边形.

∴ FP=GB.

∴ CD=GB.

∵ CD⊥AC,

∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

人教版初中数学圆的经典测试题含答案解析

人教版初中数学圆的经典测试题含答案解析 一、选择题 1.如图,在ABC ?中,5AB =,3AC =,4BC =,将ABC ?绕一逆时针方向旋转40? 得到ADE ?,点B 经过的路径为弧BD ,则图中阴影部分的面积为( ) A . 14 63π- B .33π+ C . 33 38 π- D . 259 π 【答案】D 【解析】 【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积. 【详解】 ∵将△ABC 绕A 逆时针方向旋转40°得到△ADE , ∴△ACB ≌△AED ,∠DAB=40°, ∴AD=AB=5,S △ACB =S △AED , ∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB , ∴S 阴影=4025360π?=259 π , 故选D. 【点睛】 本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等. 2.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( ) A .圆形铁片的半径是4cm B .四边形AOB C 为正方形 C .弧AB 的长度为4πcm D .扇形OAB 的面积是4πcm 2 【答案】C 【解析】

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

人教版初中数学圆的技巧及练习题

人教版初中数学圆的技巧及练习题 一、选择题 1.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( ) A .60π B .65π C .85π D .90π 【答案】D 【解析】 【分析】 根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案. 【详解】 ∵圆锥的底面半径是5,高为12, ∴侧面母线长为2251213+=, ∵圆锥的侧面积=51365ππ??=, 圆锥的底面积=2525ππ?=, ∴圆锥的全面积=652590πππ+=, 故选:D. 【点睛】 此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .123 B .1536π-π C .30312π- D .48336π-π 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可. 【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =33,S 扇形= 60361 6,633933602 OEB S ππ?==?=V

∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.已知,如图,点C ,D 在⊙O 上,直径AB=6cm ,弦AC ,BD 相交于点E ,若CE=BC ,则阴影部分面积为( ) A .934 π- B . 9942 π- C . 39 324 π- D . 39 22 π- 【答案】B 【解析】 【分析】 连接OD 、OC ,根据CE=BC ,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S 阴影=S 扇形-S △ODC 即可求得. 【详解】 连接OD 、OC , ∵AB 是直径, ∴∠ACB=90°, ∵CE=BC , ∴∠CBD=∠CEB=45°, ∴∠COD =2∠DBC=90°, ∴S 阴影=S 扇形?S △ODC = 2903360 π?? ?1 2×3×3=94π ?92.

(名师整理)人教版数学中考《圆的综合应用》专题复习精品教案

中考数学人教版专题复习:综合复习之圆的综合应用 考点 题型 分值 圆的综合应用 圆的有关概念和性质; 点和圆、直线和圆、圆和圆的位置关系及其判 定; 圆的切线的判定和性质; 弧长、扇形面积的计算, 圆锥的侧面展开图; 圆与相似三角形、三角函数的综合运用。 填空题、选择题和解 答题为主,也有阅读理解题,条件开放、结论开放探索题等新的题型。 6~12分 二、重难点提示 重点:掌握圆的基本性质、与圆有关的位置关系,圆中的计算问题。 难点:切线的性质和判定,圆与四边形、三角形的综合问题。 考点精讲 一、圆的基本性质 1. 垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。平分弦(不是直径)的直径垂直于弦,并且平分这条弦所对的两条弧。 2. 在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧也相等;相等的弦或相等的弧所对的圆心角相等。 O A B E 如图所示,(1)若∠AOB =∠COD ,则AB =CD ,? ?=CD AB ;(2)若AB =CD (或? ? =CD AB ) ,则∠AOB =∠COD 。 O A B C D

3. 同弧所对的圆周角相等;同弧所对的圆周角等于圆心角的一半;半圆(或直径)所对的圆周角是直角。 【核心归纳】 圆是轴对称图形,过圆心的每一条直线都是它的对称轴。圆也是中心对称图形,圆心是它的对称中心。 垂径定理是圆的轴对称性的体现,弧、弦、圆心角之间的关系定理是圆的中心对称性质的体现。 二、与圆有关的位置关系 1. 点与圆位置关系:(1)点在圆内?d <r ;(2)点在圆上?d =r ;(3)点在圆外?d >r 。 O P r d O P r d O P r d 2. 直线与圆的位置关系:(1)直线与圆相交?d <r ;(2)直线与圆相切?d =r ;(3)直线与圆相离?d >r 。 O r d O r d O r d 3. 圆与圆的位置关系:(1)两圆内含(R >r )?d <R -r ;(2)两圆内切(R >r )?d =R -r ;(3)两圆相交?R -r <d <R +r ;(4)两圆外切?d =R +r ;(5)两圆外离?d >R +r 。 O 2 r O 1R O 2 r O 1R O 2 r O 1 R O 2 r O 1 R O 2 r O 1 R 【核心归纳】 1. 切线的性质:圆的切线垂直于过切点的半径,经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。 2. 切线的判定: 经过半径的外端并且垂直于这条半径的直线是圆的切线。 3. 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 4. 如果两圆相切,那么切点一定在连心线上;相交两圆的连心线垂直且平分公共弦。

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

人教版初中数学圆的经典测试题

一、选择题 1.如图,ABC ?是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ?的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ). A . 16 B .6π C .8π D .5 π 【答案】B 【解析】 【分析】 由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论. 【详解】 解:∵AB=5,BC=4,AC=3, ∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形, ∴△ABC 的内切圆半径= 4+3-52=1, ∴S △ABC = 12AC?BC=12 ×4×3=6, S 圆=π, ∴小鸟落在花圃上的概率= 6π , 故选B . 【点睛】 本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式. 2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )

A .13π B .1324π+ C .1324π- D .524π+ 【答案】C 【解析】 【分析】 先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解. 【详解】 解:∵S 扇形FCD 29036096ππ==??,S 扇形EAD 2 40360 94ππ==??,S 矩形ABCD 6424=?=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD ) =9π﹣(24﹣4π) =9π﹣24+4π =13π﹣24 故选:C . 【点睛】 本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键. 3.下列命题中,是假命题的是( ) A .任意多边形的外角和为360 B .在AB C 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B C C .在一个三角形中,任意两边之差小于第三边 D .同弧所对的圆周角和圆心角相等 【答案】D 【解析】 【分析】 根据相关的知识点逐个分析. 【详解】 解:A. 任意多边形的外角和为360,是真命题; B. 在ABC 和'''A B C 中,若''AB A B =,''BC B C =,'90C C ∠=∠=,则ABC ≌'''A B C ,根据HL ,是真命题;

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

人教版初中数学圆的经典测试题附答案

人教版初中数学圆的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ?,则图中阴影部分的面积是( ) A .24π- B .242π- C .243π- D .244π- 【答案】D 【解析】 【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设 O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴 影的面积. 【详解】 ∵四边形ABCD 是矩形, ∴∠B=90°, ∵6AB =,10AC =, ∴BC=8, 连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC , 设O e 的半径为r , ∵O e 内切于ABC ?, ∴OH=OE=OF=r , ∵11 ()22 ABC S AB BC AB AC BC r =?=++?V , ∴ 11 68(6108)22r ??=++?, 解得r=2, ∴O e 的半径为2, ∴21 68-2 224-4ABC O S S S ππ=-=???=V e 阴影, 故选:D .

【点睛】 此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

人教版初中数学圆的易错题汇编及答案

人教版初中数学圆的易错题汇编及答案 一、选择题 1.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为() A.2 3 πB. 1 3 πC. 4 3 πD. 4 9 π 【答案】A 【解析】 【分析】 连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论. 【详解】 解:连接OE、OC,如图, ∵DE=OB=OE, ∴∠D=∠EOD=20°, ∴∠CEO=∠D+∠EOD=40°, ∵OE=OC, ∴∠C=∠CEO=40°, ∴∠BOC=∠C+∠D=60°, ∴?BC的长度= 2 60?2 360 π? = 2 3 π, 故选A.【点睛】 本题考查了弧长公式:l= ?? 180 n R π (弧长为l,圆心角度数为n,圆的半径为R),还考查 了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角

形外角性质是关键. 2.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为() A.3B.23C.3 2 D. 23 3 【答案】A 【解析】 连接OC, ∵OA=OC,∠A=30°, ∴∠OCA=∠A=30°, ∴∠COB=∠A+∠ACO=60°, ∵PC是⊙O切线, ∴∠PCO=90°,∠P=30°, ∵PC=3, ∴OC=PC?tan30°=3, 故选A 3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是() A.圆形铁片的半径是4cm B.四边形AOBC为正方形 C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2 【答案】C 【解析】

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

人教版初中数学圆的知识点

人教版初中数学圆的知识点 一、选择题 1.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为() A.2 3 πB. 1 3 πC. 4 3 πD. 4 9 π 【答案】A 【解析】 【分析】 连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论. 【详解】 解:连接OE、OC,如图, ∵DE=OB=OE, ∴∠D=∠EOD=20°, ∴∠CEO=∠D+∠EOD=40°, ∵OE=OC, ∴∠C=∠CEO=40°, ∴∠BOC=∠C+∠D=60°, ∴?BC的长度= 2 60?2 360 π? = 2 3 π, 故选A.【点睛】 本题考查了弧长公式:l= ?? 180 n R π (弧长为l,圆心角度数为n,圆的半径为R),还考查 了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角

形外角性质是关键. 2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是() A.25°B.27.5°C.30°D.35° 【答案】D 【解析】 分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案. 详解:∵∠A=60°,∠ADC=85°, ∴∠B=85°-60°=25°,∠CDO=95°, ∴∠AOC=2∠B=50°, ∴∠C=180°-95°-50°=35° 故选D. 点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键. 3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为() A.3B.23C.3 2 D. 23 【答案】A 【解析】连接OC,

中考数学圆综合题(含答案)

一.圆地概念 集合形式地概念:1. 圆可以看作是到定点地距离等于定长地点地集合; 2.圆地外部:可以看作是到定点地距离大于定长地点地集合; 3.圆地内部:可以看作是到定点地距离小于定长地点地集合 轨迹形式地概念: 1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,定长为半径地圆; (补充)2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线); 3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线; 4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线; 5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线. 二.点与圆地位置关系 1.点在圆内?d r?点A在圆外; 三.直线与圆地位置关系 1.直线与圆相离?d r>?无交点; 2.直线与圆相切?d r=?有一个交点; 3.直线与圆相交?d r+; A

外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 图1 五.垂径定理 垂径定理:垂直于弦地直径平分弦且平分弦所对地弧. 推论1:(1)平分弦(不是直径)地直径垂直于弦,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心,并且平分弦所对地两条弧; (3)平分弦所对地一条弧地直径,垂直平分弦,并且平分弦所对地另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论. 推论2:圆地两条平行弦所夹地弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六.圆心角定理 图2 图4 图5 B D

人教版初中数学圆的知识点归纳

人教版初中数学圆的知 识点归纳 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

圆知识点归纳 一、圆的定义。 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素。 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质。 1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是旋转对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中 只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设⊙O 的半径为r ,OP=d 。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 d= r 点P 在⊙O 上 d< r (r > d ) 点P 在⊙O 内 d > r (r

相关主题
文本预览
相关文档 最新文档