当前位置:文档之家› (完整版)气缸的设计计算1

(完整版)气缸的设计计算1

(完整版)气缸的设计计算1
(完整版)气缸的设计计算1

4.1纵向气缸的设计计算与校核:

由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β:

由《液压与气压传动技术》表11-1:

/β=200N 运动速度v=30mm/s,取β=0.7,所以实际液压缸的负载大小为:F=F

D=1.27= =66.26mm

F—气缸的输出拉力 N;

P —气缸的工作压力P

a

按照GB/T2348-1993标准进行圆整,取D=20 mm

气缸缸径尺寸系列

8 10 12 16 20 25 32 40 50 63 80 (90)100 (110)125 (140)160 (180)200 (220)250 320 400 500 630

由d=0.3D 估取活塞杆直径 d=8mm

缸筒长度S=L+B+30

L为活塞行程;B为活塞厚度

活塞厚度B=(0.6 1.0)D= 0.720=14mm

由于气缸的行程L=50mm ,所以S=L+B+30=886 mm

导向套滑动面长度A:

一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D;在D>80mm 时, 可取A=(0.6 1.0)d。

所以A=25mm

最小导向长度H:

根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H

代入数据即最小导向长度H + =80 mm

活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm

由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算:

式中

—缸筒壁厚(m);

D—缸筒内径(m);

P—缸筒承受的最大工作压力(MPa);

—缸筒材料的许用应力(MPa);

实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。

参考《液压与气压传动》缸筒壁厚强度计算及校核

,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa)

P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa时,P=1.5p;当工作压力p>16 MPa时,P=1.25p

由此可知工作压力0.6 MPa小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa ==0.3mm

参照下表气缸筒的壁厚圆整取 = 7 mm

Q = =

=

=1.85/s

v—空气流经进排气口的速度,可取v=1015)选取v = 12 m/s 由公式 d

= 2

= 14.014 mm

代入数据得 d

所以取气缸排气口直径为15 mm

Q——工作压力下输入气缸的空气流量()

V----空气流经进排气口的速度,可取v=1025)

由于所选活塞杆的长度L10d,所以不但要校核强度校核,还要进行稳定性校核。综合考虑活塞杆的材料选择45钢。

参考《机械设计手册单行本》

由《液压气动技术手册》

稳定性校核:

由公式 F

P0

式中 F

—活塞杆承受的最大轴向压力(N);

P0

=1633N

F

P0

F

—纵向弯曲极限力(N);

K

—稳定性安全系数,一般取1.54。综合考虑选取2

n

K

K—活塞杆横截面回转半径,对于实心杆K=d/4

代入数据 K =25/4=6.25mm

=

由于细长杆比≥ 85即 F

K

实心圆杆: J =

式中 L—气缸的安装长度;

m—末端系数;选择固定—自由 m = 1/4

E—材料弹性模量,钢材 E = 2.1 1011 P

a

J—活塞杆横截面惯性矩(m4);

d—活塞杆的直径(m);

L—气缸的安装长度为活塞杆的长度为961mm

代入数据得 F

=2.685 N

K

所以活塞杆的稳定性满足条件;因为 = 1.34 F

P0

强度校核:

由公式 d ≥

,n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa)

45钢的抗拉强度,=600 MPa ,= = 120 MP

a

则 = 4.16 mm < d ,所以强度满足要求;

综上所述:活塞杆的稳定性和强度满足要求。

catia 范例-活塞、连杆、汽缸组件设计实例教程

第三章零件设计------活塞、连杆、汽缸组件 本章是设计活塞、连杆与汽缸的三维模型。进一步熟悉绘制草图、拉伸成形、旋转成形、拉伸切除、旋转切除、钻孔、倒(圆)角等命令,同时增添混成、特征的阵列等命令。读者在使用过程中注意将各种命令穿插应用。领会各个命令的用法。 3.1 Loft(混成)特征 混成实体特征不仅应用非常广泛,而且其生成方法也非常丰富、灵活多变。Loft(混成)特征分为两种:Loft(混成实体)和Removed Loft (混成切除)。它们形成的方式是一样的。主要区别在于:Loft(混成实体)是增料特征,Removed Loft (混成切除)是减料特征。 3.1.1. Loft(混成实体) 混成实体指的是利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式生成实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。 操作过程举例如下: 1.在窗口中建立三个平行平面,绘制三个截面 左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面) 图标,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选 择 Offset from plane (偏移平面);在Offset 一栏中输入20 mm ;预览生成的平面,如图3.1所示。 图3.1 同样再以刚才生成的平面作为参考面,再生成一个偏移10 mm的新平面,预览生成的平面,如图3.2所示。 图3.2 左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的

sketch(草图设计)图标,进入草图绘制模式。 单击工具栏中的Ellipse(椭圆)图标,绘制一个椭圆,圆心在原点。左 键单击工具栏中Auto Constraint (自动标注尺寸)图标,标注椭圆的尺寸,如图3.3所示。 绘制完草图之后,单击工具栏中的退出工作台图标,进入零件实体设计模式。 图3.3 同样,利用草图中的圆功能在新建的平面1和平面2上分别绘制直径为6和直径为15的圆,如图3.4所示,如图3.5所示。 图3.4 图3.5 2.以渐进曲线混成实体 左键单击Loft(混成实体)图标,弹出对话框,提供混成参数的设定。 在第一栏中分别选择上述绘制的三个草图,作为混成的截面,混成的图形预览如图3.6所示。

气缸推力表

神威气动https://www.doczj.com/doc/0c16177395.html, 文档标题:plf无杆气缸 plf无杆气缸的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

气缸的耗气量计算公式

气缸的耗气量可以分成最大耗气量和平均耗气量。 最大耗气量是气缸以最大速度运动时所需要的空气浏览,可以表示成: qr=0.0462D^2*um(P+0.102) 例如缸径D为10cm,最大速度为300mm/s,使用压力为0.6Mpa,则 气缸的最大耗气量qr=0.046*10^2*300*(0.6+0.102)=968.76(L/min),因此选用cv值为1.0或有效截面积为18mm左右的电磁阀即可满足流量要求。 若气缸的使用压力为0.5Mpa,最大速度为200mm/s,则气缸的最大耗气量为qr=553.84。 如果缸径D为50cm,最大速度为300mm/s,使用压力为0.6Mpa,则气缸的最大耗气量为qr=242.19,因此选用cv值选用0.3左右的即可。 平均耗气量是气缸在气动系统的一个工作循环周期内所消耗的空气流量。可以表示成: qca=0.00157(D^2*L+d^2*ld)N(p+0.102) 上式中, qca:气缸的平均耗气量,L/min(ANR); N:气缸的工作频率,即每分钟内气缸的往复周数,一个往复为一周,周/min; L:气缸的行程,cm; d:换向阀与气缸之间的配管的内径;cm ld:配管的长度,cm。 例如,缸径D为100mm(10cm)、行程L为100mm(10cm)的气缸,动作频率N为60周/min,d=10mm(1cm),ld=60mm(6cm), qca=0.00157(D^2*L+d^2*ld) N(p+0.102)=0.00157*(10^2*10+1^2*6))*60*(0.6+0.102)=66.5251704L/min(ANR). 平均耗气量用于选用空压机、计算运转成本。最大耗气量用于选定空气处理原件、控制阀及配管尺寸等。最大耗气量与平均耗气量之差用于选定气罐的容积。

(完整版)气缸的设计计算1

4.1纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: /β=200N 运动速度v=30mm/s,取β=0.7,所以实际液压缸的负载大小为:F=F D=1.27= =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列

8 10 12 16 20 25 32 40 50 63 80 (90)100 (110)125 (140)160 (180)200 (220)250 320 400 500 630 由d=0.3D 估取活塞杆直径 d=8mm 缸筒长度S=L+B+30 L为活塞行程;B为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.720=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D;在D>80mm 时, 可取A=(0.6 1.0)d。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H

代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa ==0.3mm

封闭气体压强计算方法总结

拓展: 气 体 压 强 的 计 算 1 ?气体压强的特点 (1) 气体自重产生的压强一般很小, 可以忽略.但大气压强P 0却是一个较大的数值(大 气层重力 产生),不能忽略. (2) 密闭气体对外加压强的传递遵守帕斯卡定律,即外加压强由气体按照原来的大小 向各个方向传 递. 2.静止或匀速运动系统中封闭气体压强的确定 (1)液体封闭的气体的压强 ① 平衡法:选与气体接触的液柱为研究对象,进行受力分析,利用它的受力平衡,求 出气体的压强. 例1、如图,玻璃管中灌有水银,管壁摩擦不计,设 位:cm 解析:本题可用静力平衡解决.以图( 2)为例求解 取水银柱为研究对象,进行受力分析,列平衡方程得 所以 P = P o 十 p gh (Pa )或 P = P o + h (cmHg ) 答案:P = P o 十 p gh ( Pa )或 P = P o + h ( cmHg ) 解 (4):对水银柱受力分析(如右图) 沿试管方向由平衡条件可得: pS=poS+mgS in3O 点评:此题虽为热学问题,但典型地体现了力学方法,即:选研究对象,进行受力分析,列 方程. p 0=76cmHg,求圭寸闭气体的压强(单 Ps= P o S + mg ;所以 p= P o S 十 p ghS , P= P o S ghSsin 3O ° =Po+ p hgSin30 S =76+10S in30 (cmHg) =76+5 (cmHg) =81 (cmHg) t mg P = 76cmHg (3) P=66cmHg PS I 0 L -- poS

J 110 \ ? -_ " p o p h A 110 P=86cmHg P=66cmHg 10 I l- P= 96 cmHg p A = P ° + h 2 — h 1 P B = P +h 2 解析:本题可用取等压面的方法解决. 液面A 和气体液面等高,故两液面的压强相等, 答案:P= P o + h 点评:本题事实上是选取 A 以上的水银柱为研究对象,进行受力分析,列平衡方程求出的 关系式: P o + h = P A . 拓展: 则中气体压强:p = p A = P o + h (cmHg ). II 求P A :取液柱h 1为研究对象, 上,液柱h 1静止,则 P °S+p gh 1S=P A S 所以 P A =P O +P gh 1 求p B :取液柱h 2为研究对象,由于h 2的下端以下液体的对称性, 下端液体自重产生的 任强可不考虑, A 气体压强由液体传递后对 h 2的压力向上, B 气体压力、液柱h 2重力向下, 液往平衡,则P B S+P gh 2S=P A S 所以 P B =P O +P gh 1 一 p gh 2 熟练后,可直接由压强平衡关系写出待测压强,不一定非要从力的平衡方程式找起. 小结:受力分析: 对液柱或固体进行受力分析,当物体平衡时:利用F 合=0,求p 气 注意:(1)正确选取研究对象(2)正确受力分析,别漏画大气压力 ③取等压面法:根据同种液体在同一水平液面压强相等, 在连通器内灵活选取等压面, 由两侧压强相等建立方程求出压强,仍以图 7 - 3为例:求P B 从A 气体下端面作等压面, 则有 P B 十 p gh 2= P A = P °+p gh 1,所以 P B =P °+P gh 1 一 p gh 2. 例3、如图,U 型玻璃管中灌有水银.求圭寸闭气体的压强.设大气压强为P°=76cmHg 、(单位: cm ) 设管截面积为 S ,大气压力和液柱重力向下, A 气体压力向 【例2】在竖直放置的U 为 P o ,各部尺寸如图所示.求 P h h 4 A h 3 i B h 2 t

proe设计气缸

PROE设计综合训练<气缸设计说明书> 院系:材料科学与工程学院 专业班级:材型 1101 姓名:温雪 学号: 20111402129 指导老师:刘彬彬

一、设计思路 (1)金属垫片 (2)弹簧垫片 (3)螺母 (4)螺柱

(5)气缸盖 (6)气缸壳

二、设计步骤 零件一 金属垫片 步骤1建立新文件 (1)单击菜单[文件]→[新建]命令,选择“新建”类型,在名称栏中输入新建文件名称:“jinshudianpian ” 在菜单工具栏中单击“新建”按钮,在弹出的“新建”对话框中选择“零件”单选按钮。输入文件名“jinshudianpian ”,去掉“使用

缺省模板”的对勾,单击,在弹出的新建文件夹选项对话框中选择公制模板mmns_part_solid。 (2)单击确定按扭,进入零件设计工作环境。 步骤2 拉伸 (1)单击拉伸按钮,在“拉伸”界面上选择“实体”,以指定生成的拉伸实体,单击放置按钮,打开上滑板面板。单击上滑面板中的定义按钮,系统弹出草绘对话框并提示用户选择草绘平面,选择FRONT基准面作为草绘平面,接受系统默认的参照方向,单击“草绘”按钮,进入草绘。 (2)单击“圆形”按钮,绘制两个同心圆,并分别修改尺寸为420.00和240.00,如图1-1,。修改完成后单击草绘器工具栏中的按钮退出草绘模式。 (3)在拉伸界面的“深度”对话框设置拉伸深高度为2.00,单击界面按钮或鼠标中键完成拉伸特征的创建,如图1-2。 图1-1 图1-2 步骤3 阵列/拉伸

(1)单击拉伸按钮,在“拉伸”界面上选择“实体”,以指定生成的拉伸实体,单击放置按钮,打开上滑板面板。单击上滑面板中的定义按钮,系统弹出草绘对话框并提示用户选择草绘平面,选择FRONT基准面作为草绘平面,接受系统默认的参照方向,单击“草绘”按钮,进入草绘。 (2)单击“圆形”按钮,绘制一个圆,修改尺寸为30,如图1-3,。修改完成后单击草绘器工具栏中的按钮退出草绘模式。 (3)在拉伸界面的“深度”对话框设置拉伸深高度为148.49,单击界面按钮或鼠标中键完成拉伸特征的创建。 图1-3 图1-5 (4)单击阵列按钮,选取中心轴,修改相关数据如图1-4,单击单击界面按钮完成特征创建,如图1-5。 图1-4

气缸的设计计算

纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: 运动速度v=30mm/s,取β=,所以实际液压缸的负载大小为:F=F /β=200N 4.1.1气缸内径的确定 D== =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列 810121620253240506380(90)100(110)125(140)160(180)200(220)250320400500630 4.1.2活塞杆直径的确定 由d= 估取活塞杆直径 d=8mm 4.1.3缸筒长度的确定 缸筒长度S=L+B+30

L为活塞行程;B为活塞厚度 活塞厚度B==14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=;在D>80mm时, 可取A=。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H 代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4气缸筒的壁厚的确定 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa

气缸选型对照表

气缸的选型 根据气缸推力拉力的大小要求,选定气缸使用压力参数以及缸径尺寸 气缸推力计算公式:气缸推力F1=πD2P 气缸拉力计算公式F2=π(D2-d2)P 公式式中:D-气缸活塞直径(cm) d-气缸活塞杆直径(cm) P-气缸的工作压力(kgf/cm2) F1,F2-气缸的理论推拉力(kgf) 上述出力计算适用于气缸速度50~500mm/s的范围内 气缸以上下垂直形式安装使用,向上的推力约为理论计算推力的50% 气缸横向水平使用时,考虑惯性因素,实际出力与理论出力基本相等 为了避免用户选用时的有关计算,下附双作用气缸输出力换算表,用户可根据负载、工作压力、动作方向从表格中选择合适的缸径尺寸 双作用气缸输出力表单位Kgf 缸径mm 气缸的理论输出力(推力)单位:KG/公斤 使用空气压力MPa 10 16 20 25 32 40

50117137157 63125156187218250 80100151201251300352402 100157236314393471550628 125245368491615736859982 1604026038041005120614071608 18050876310181272152717812036 20062894212571571188521992514 250981147319632454294534363926 3201608241232164021482556296432 40025313796502662837539879610052 选定气缸的行程:确定工作的移动距离,考虑工况可选择满行程或预留行程。当行程超过推荐的最长行程时,要考虑活塞杆的刚度,可以选择支撑导向或选择特殊气缸。 选定气缸缓冲方式:根据需要选择缓冲形式,无缓冲气缸,固定缓冲气缸,可调缓冲气缸 选择润滑方式:有给油润滑气缸,无给油润滑气缸 选择气缸系列:根据以上条件,按需选择适当系列的气缸 选择气缸的安装形式:根据不同的用途和安装需要,选用适当的安装形式 气缸附件的选择:前(后)法兰,脚架,单(双)悬耳,中间铰轴式,铰轴支座式

气缸力计算公式

气缸力计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气缸推力计算公式 气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少芽输出力是多少 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为 132kgf,(气缸效率为85%)问:该选择多大的气缸缸径 ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。 2.气缸理论基准速度为u=1920XS/A (mm/s).其中S为排气回路的合成有效面积,A为排气侧活塞的有效面积. 、耗气量:气缸往复一个行程的情况下,气缸以及缸与换向阀之间的配管内所消耗的空气量(标准大气压状态下) 2、最大耗气率:气缸活塞以最大速度运动时,单位时间内所消耗的空气量(标准大气压状态下)

气缸的最大耗气量: Q=活塞面积 x 活塞的速度 x 绝对压力通常用的公式是: Q=2v(p+) Q------标准状态下的气缸最大耗气量(L/min) D------气缸的缸径(cm) v------气缸的最大速度(mm/s) p------使用压力(MPa)气缸耗气量及气管流量计算方法

气缸的设计计算

4.1 纵向气缸的设计计算与校核 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1 : 运动速度v=30mm/s,取β=0.7 ,所以实际液压缸的负载大小为:F=F0/ β=200N 4.1.1 气缸内径的确定 D=1.27 =1.27 =66.26mm F—气缸的输出拉力N; P —气缸的工作压力P a 按照GB/T2348-1993 标准进行圆整,取D=20 mm

气缸缸径尺寸系列 4.1.2 活塞杆直径的确定 由d=0.3D 估取活塞杆直径d=8mm 4.1.3 缸筒长度的确定 缸筒长度S=L+B+30 L 为活塞行程;B 为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.7 20=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D ;在D>80mm 时, 可取A=(0.6 1.0)d 。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4 气缸筒的壁厚的确定

由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算:式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7 倍;重型气缸约取计算值的20 倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 , 我们的缸体的材料选择45 钢,=600 MPa,= =120 MPa n 为安全系数一般取n=5 ;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa 时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa 小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa = =0.3mm

气缸缸径与输出力的对照表

气缸缸径与输出力的对照表 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、气缸理论输出力表N

二、气缸理论出力的计算公式 根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。 下面是气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少? 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1

中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径? ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为?63的气缸便可满足使用要求。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

气缸理论出力表及气缸内径确定

气缸理论出力表及气缸内径确定 注:上述出力换算表是指气缸运动速度在50-500mm/s内的理论出力。 气缸内径的确定 1.由负载性质及气缸运动速度选定负载率β值 负载率β=F/P×100% 式中F-气缸活塞杆上所受的实际负载(N) P-气缸理论出

力(N) 理论输出力P(N) 推力P1=π/4×D 2 ×p 式中D-气缸内径(cm) p-气缸工作压力(MPa) 拉力P2=π/4×(D2-d2)×p 式中d-气缸活塞直径(cm) 负载性质阻性负载β=80% 惯性负载一般场合β=50% V<0.2m/s β=65% 高速运动β=30% 2.由实际负载F及负载率β值,即将求出所需的气缸理论输出力P(P1或P2) P=F/β 3.由气缸的工作压力P及所需的理论输出力P(P1或P2)即可计算气缸缸径D,再按缸径系列尺寸圆整。气缸安装使用须知 气缸现场使用条件下千变万化,但下述基本点仍须注意: 1.气缸安装使用前,应先检查气缸在运输过程中是否损坏,连接部件是否松动,然后再安装使用。 2.安装时,气缸的活塞杆不得承受偏心载荷可横向载荷,应使载荷方向与活塞杆轴线相一致。 3.无论采用何种安装型式,都必须保证缸体不产生变形,气缸的安装底座有足够的刚度,不允许负载和活塞杆的连接用电焊焊接。 4.气缸水平安置时,特别是长行程气缸,用水平仪在进行三点位置(活塞杆全部伸出、中间及全部退回)检验。 5.速度调整 首先将速度控制阀(单向节流阀)的开度放在调整范围内的中间位置,随后逐渐调节减压阀的输出压力,当气缸接近预定速度时,即可确定工作压力,然后用速度控制阀进行微调,最后调节气缸的缓冲,调节缓冲针阀使活塞的惯性得到吸收,其最终速度又不致撞击缸盖为宜。 6.气缸安装完毕后,在工作压力范围内,无负载情况下运行2-3次,检查气缸是否正常工作。 7.若采用带可调缓冲气缸,在开始工作前,应将缓冲调节阀调至阻尼最小位置,气缸正常工作后,再逐渐调节缓冲针阀,增大缓冲阻尼,直到满意为止。 8.采用CA、CB、TA、TB、TC型安装型式的气缸时,应定期在安装结合部位加润滑油。 用户订货须知 1.用户可以根据自己需要,在规定行程范围内任意选择行程,若行程超出规定范围,可以协商加工订货。 2.敬请用户尽量选择标准行程否则没有现货供应,需提前订货。 3.用户对活塞杆连接螺纹尺寸、长度有特殊要求,敬请详细注明,协商加工订货。 4.订货时,敬请用户将各种类型气缸按规定订货号填写。 气缸安装注意事项

汽缸的设计计算

气压传动两维运动机械手设计 1.前言 气动技术是实现工业自动化的重要手段。气压传动的介质来自于空气,环境污染小,工程容易实现,所以其言传动四一种易于推广普及的实现工业自动化的应用技术。气动技术在机械、化工、电子、电气、纺织、食品、包装、印刷、轻工、汽车等各个制造行业,尤其在各种自动化生产装备和生产线中得到了广泛的应用,极大地提高了制造业的生产效率和产品质量。气动系统的应用,引起了世界各国产业界的普遍重视,气动行业已成为工业国家发展速度最快的行业之一。 可编程控制技器(PLC)是以微处理器为基础,综合计算机技术、自动控制技术和通信技术发展起来的一种新型、通用的自动控制装置,他具有机构简单、易于编程、性能优越、可靠性高、灵活通用和使用方便等一系列优点,近年来在工业生产过程的自动控制中得到了越来越广泛的应用。 2.设计任务 2.1设计任务介绍及意义 通过课程设计培养学生综合运用所学知识的能力,提高分析和解决问题能的一个重要环节,专业课程设计是建立在专业基础课和专业方向课的基础的,是学生根据所学课程进行的工程基本训练,课程设计的意义在于: 1.培养学生综合运用所学的基础理论和专业知识,独立进行机电控制系统(产品)的初步设计工作,并结合设计或试验研究课题进一步巩固和扩大知识领域。 2.培养学生搜集、阅读和综合分析参考资料,运用各种标准和工具书籍以及编写技术文件的能力,提高计算、绘图等基本技能。 3.培养学生掌握机电产品设计的一般程序方法,进行工程师基本素质的训练。 4.树立正确的设计思想及严肃认真的工作作风。 2.2设计任务明细 1.该机械手的功能:将货物自动放到坐标位置(300,300)处,并延时1分钟等待卸货,然后返回原点位置,延时1分钟等待装货。 2.任务要求: 执行元件:气动气缸; 运动方式:直角坐标; 控制方式:PLC控制; 控制要求:位置控制; 主要设计参数参数: 气缸工作行程——800 mm; 运动负载质量——100 kg; 移动速度控制——3m/min。 3.具体步骤如下: (1)先根据参考资料,确定合适的设计方案。 (2)通过计算、分析设计执行元件的参数:气缸的内径、壁厚,活塞杆的直径,耗气量的计算,验算设计结果,导向装置的设计,驱动元件的选择,管路设计,底座的设计. (3)根据动力和总体参数的选择和计算,进行总体设计,完成机械系统的主要部件图。 (4)应用启动原理图,设计控制电路,编写控制程序,绘制电气控制电路原理图。

气缸压力计算

气缸压力计算 推力:Ft(N)=0.25TDDP 拉力:Fl(N)=0.25T(DD-dd)P D:活塞直径d活塞杆直径P:工作压力(MPa) 气缸的压力和受力面积怎么计算? 举个例子:50x100的气缸怎么算出它的压力和受力面积(气缸内径的平方X3.14-活塞杆直径的平方X3.14)X 气压=气缸理论出力 注意单位。算压强再乘以受力面积我想你是问气缸的拉力跟推力了吧。压力就是气源的压力,受力面积是活塞的面积。受力面积看缸的缸径.50的就是...求圆面积公式自己算.电脑打不出来.压力?出力?推力=活塞面积*气源力*负荷率.压力应该是指气源压力吧?看空气压缩机. 算这个压力和受力面积还的看你出气量的大小 气缸工作原理(带图) 一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。

2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 二、双作用气缸 工作原理图 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。

封闭气体压强计算方法总结85579

ps p 0s N 81cmHg 10 P= 300 (4) 10 N ps p 0s P= 370 (5) 70cmHg 76cmHg 10 (2) ps p 0s mg N 10 P= (1) p 0s ps mg 10cm 66cmHg mg ps p 0s (3) P= 规律方法一、气体压强的计算 1.气体压强的特点 (1)气体自重产生的压强一般很小,可以忽略.但大气压强P 0却是一个较大的数值(大气层重力产生),不能忽略. (2)密闭气体对外加压强的传递遵守帕斯卡定律,即外加压强由气体按照原来的大小向各个方向传递. 2.静止或匀速运动系统中封闭气体压强的确定 (1)液体封闭的气体的压强 平衡法:选与气体接触的液柱为研究对象,进行受力分析,利用它的受力平衡,求出气体的压强. 例1、如图,玻璃管中灌有水银,管壁摩擦不计,设p 0=76cmHg,求封闭气体的压强(单位:cm 解析:本题可用静力平衡解决.以图(2)为例求解 取水银柱为研究对象,进行受力分析,列平 衡方程得Ps=P 0S +mg ;所以p=P 0S 十ρghS ,所以P =P 0十ρgh (Pa )或P =P 0+h (cmHg ) 答案:P =P 0十ρgh (Pa )或P =P 0+h (cmHg ) 解(4):对水银柱受力分析(如右图) 沿试管方向由平衡条件可得: pS=p 0S+mgSin30° P=S ghS S P 0030sin ρ+ =p 0+ρhgSin30°=76+10Sin30°(cmHg)=76+5(cmHg)=81(cmHg) 点评:此题虽为热学问题,但典型地体现了力学方法,即:选研究对象,进行受力分析,列方程. 拓展: 【例2】在竖直放置的U 形管内由密度为ρ的两部分液体封闭着两段空气柱.大气压强为P 0,各部尺寸如图所示.求A 、B 气体的压强. 求p A :取液柱h 1为研究对象,设管截面积为S ,大气压力和液柱重力向下,A 气体压力向上,液柱h 1静止,则P 0S +ρgh 1S=P A S 所以P A =P 0+ρgh 1 求p B :取液柱h 2为研究对象,由于h 2的下端以下液体的对称性,下端液体自重产生的任强可不考虑,A 气体压强由液体传递后对h 2的压力向上,B 气体压力、液柱h 2重力向下,液往平衡,则P B S +ρgh 2S=P A S 所以P B =P 0+ρgh 1一ρgh 2 熟练后,可直接由压强平衡关系写出待测压强,不一定非要从力的平衡方程式找起. 小结:受力分析:对液柱或固体进行受力分析,当物体平衡时:利用F 合=0,求p 气 注意:(1)正确选取研究对象 (2)正确受力分析,别漏画大气压力 ① 取等压面法:根据同种液体在同一水平液面压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强,仍以图7-3为例:求p B 从A 气体下端面作等压面,则有P B 十ρgh 2=P A =P 0+ρgh 1,所以P B =P 0 10 300 N mg PS P 0S h 1Δh h 2 B A

汽缸的设计

气缸的安装 为了保证气缸合适地安装,制造者常常提供符合需要的安装件以供选择,包括铰接式安装能产生摆动运动。 浮动接头

调节不可避免的气缸活塞杆运动方向和设备的连接轴之间的“不同轴性”,就需要用浮动接头安装到活塞杆的头部。 4.机械传动系统设计 本方案的机械设计中重在气缸的设计,气缸1的作用是实现物料的横向移动,气缸2的作用是实现物料纵向的提升及物品的释放。对气缸结构的要求一是重量尽量轻,以达到动作灵活、运动速度高、节约材料和动力,同时减少运动的冲击,二是要有足够的刚度以保证运动精度和定位精度 气缸的设计流程图如图3所示 图3 气缸设计流程图 气缸按供油方向分,可分为单作用缸和双作用缸。单作用缸只是往缸的一侧输入高压油,靠其它外力使活塞反向回程。双作用缸则分别向缸的两侧输入压力油,活塞的正反向运动均靠液压力完成。由于单作用液压缸仅向单向运动,有外力使活塞反向运动,而双作用单活塞气缸在压缩空气的驱动下可以像两个方向运

动但两个方向的输出力不同,所以该方案采用双作用单活塞缸。 设计及计算结果4.1纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位100Kg,考虑到气缸未 加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前 气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和 确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: 运动速度v=3m/min=50mm/s,取β=0.60,所以实际液压缸的负载大 小为:F=F /β=1633.3N 4.1.1气缸内径的确定 D=1.27=1.27 =66.26mm F= 1633.3 N

气缸体设计说明书

479Q汽油机气缸体总成设计 摘要 主要阐述了汽油机缸体各部分设计的要求、方法及其在479气缸体设计中的应用。对缸体重要表面的尺寸、几何形状、相互位置提出了严格的公差要求。在结构设计中通过采用龙门式缸体结构、合金铸铁材料以及结构细节的设计来保证其有足够的强度和刚度,尤其是有足够的刚度。还特别注减轻其质量,改善铸造和加工工艺性,以求尽量降低成本。 关键词:汽油机,缸体,设计

The Design of 479Q Gasoline Engine Block Assembly Abstract This thesis is concerned with the request and approach of each part of the engine cylinder block in design as well as the use of the 479QA cylinder bloc k‘s design. It presents strict tolerance in the principal surface size, geometry and mutual position. When designing, it has sufficient intensity and rigidity, especially the latter. It satisfies the need by adopting these means -the material of the cast -iron of alloy, detailed design of structure etc. The thesis focuses on reducing the cost by means of reducing the quantity, improving foundry and processing. Key words: gasoline engine, cylinder block;,design

汽缸设计理论计算

(1)气缸作用力的大小: 根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。 下面是气缸理论出力的计算公式: F:气缸理论输出力(kgf) F':效率为85%时的输出力(kgf)--(F'=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 通常在工程中确定输出力的大小时,可直接查阅经验图1-1、图1-2。

图1-1

图1-2 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少? 将P、D连接,找出F、F'上的点,得: F=2800kgf;F'=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径? ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F'/85%=155(kgf)

●由使用压力5kgf/cm2和气缸的理论推力,从经验表1-1中查出选择缸径为 63的气缸便可满足使用要求。 (2)气缸行程的长短: 气缸的行程与使用场合和机构的行程比有关(图1-3)。由图1-3可看出,不同的安装形式其气缸的行程比不同。图中活塞杆最大计算长度(L)可由经验数据表3-2中查出。在工程设计中由作用力的大小选择出气缸缸径。再根据使用场合的实际行程来验算一下活塞杆的强度是否产生纵向弯曲。 例:有一气缸QGBQ125×4000,其负载为600kgf?熏由表1-2可查出活塞杆最大计算长度L=2300。 ●气缸内径 125,其活塞杆杆径为 35,其负载为600kgf时,由表1-2可查出活塞杆最大计算长度L=2300。 ●在固定--(a)图结构安装形式下,其气缸允许行程为2L=2×2300=4600。 ●因为气缸实际行程为4000<4600。 ●所以气缸不产生纵向弯曲。 理论推力、拉力表 表1-1单位:kgf 机构行程比(L为活塞杆最大计算长度)(图1-3)

气缸压力计算

气缸压力计算 计算公式是:F=P*A-f F:气缸出力(kgf) A:截面积(cm2) P:使用的压力(kgf/cm2) f:摩擦阻力(kgf) 无杆腔截面积*工作气压力=活塞推力 有杆腔截面积*工作气压力=活塞回程力 常见气动元件设计的正常工作压力为0.4兆帕 按照smc的标准的话,也给你一个计算方式,首先要确定你的推动是平推还是 托举,这样子气缸的输出力的大小不同,如果是平推,且忽略摩擦系数,那么就 是说气缸的活塞输出力只要大于等于该物体的重力即可,G=m*g,计算一下, F=700*10=7000N,然后你要给出气缸使用的压缩空气的力,这里面我假设是 0.45MPa,也就是4.5公斤的样子,那么气缸的活塞面积约为:S=7000/0.45*(10 的六次方)这个单位是平方米,按照面积计算公式s=3.14*半径的平方,可以计 算出活塞面积的半径,那么直径就计算出来了,这就是所需气缸的缸经,选型的 时候只要大于该缸径,一般即可使用。另外气缸的行程得于你需要将该工件推出 多远,反复的推,比如推5厘米,那么行程就是5厘米,这样子您的汽缸就可以 得出缸径和行程了 g=9.8N/Kg 气缸压力计算 推力:Ft(N)=0.25TDDP 拉力:Fl(N)=0.25T(DD-dd)P D:活塞直径d活塞杆直径P:工作压力(MPa) 气缸的压力和受力面积怎么计算? 举个例子:50x100的气缸怎么算出它的压力和受力面积(气缸内径的平方 X3.14-活塞杆直径的平方X3.14)X 气压=气缸理论出力 注意单位。算压强再乘以受力面积我想你是问气缸的拉力跟推力了吧。压力就 是气源的压力,受力面积是活塞的面积。受力面积看缸的缸径.50的就是...求圆 面积公式自己算.电脑打不出来.压力?出力?推力=活塞面积*气源力*负荷率.压力 应该是指气源压力吧?看空气压缩机. 算这个压力和受力面积还的看你出气量的 大小

相关主题
文本预览
相关文档 最新文档