当前位置:文档之家› 怎样推导压杆的临界力和临界应力公式

怎样推导压杆的临界力和临界应力公式

怎样推导压杆的临界力和临界应力公式
怎样推导压杆的临界力和临界应力公式

1

* 问题的提出及其对策 ........................................................................................................... 1 1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2

压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 5 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 7 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 13 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (17)

1

* 问题的提出及其对策

1.1 问题的提出及其对策

试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。材料的许用应力为160MPa 。 解:1、按轴向拉压强度计计算

[]2/160160120mm N MPa mm

mm F A F N

N ==≤?==

σσ

2、按压杆稳定临界力公式计算

()43

33

5120121121mm mm mm bh I Z =??==

()()N mm mm MPa l EI F CR

28.123

4002102000002

4

222=????==πμπ 分析:1、按轴向拉压杆的强度条件计算结果,该钢板尺可以安全承压 3.2kN 。这是一

个什么概念呢?一袋水泥重50kg ,对应重力N s m kg mg W 500/10502=?==,即该钢板尺可以安全承压6.4袋水泥,这显然是不可能的。

2、按压杆稳定临界力计算公式的结果,该钢板尺在承压12.28N 时,就可能变弯了。这又是一个什么概念呢?一小袋食盐重0.5kg ,对应重力N s m kg mg W 5/105.02

=?==,即该钢板尺当承压两袋半食盐时,就可能由直线平衡状态,转变为弯曲平衡状态了。这与实际情况差不多。

结论:对于钢板尺这样的细长杆件,在承受压力时,一定不要用轴向拉压强度条件来判断它的安全承载力,这会出大问题的。需要按弯曲平衡建立力学模型,按梁的理论来分析。

kN N mm N mm mm F N 2.33200/1601202==??≤

1.2 压杆稳定分析概述——与强度、刚度分析对比

在材料力学里,分析杆件的强度、刚度和稳定性是十分重要的课题,它们是材料力学的核心内容。

压杆的稳定性分析,与强度和刚度的分析的侧重面不同。

在强度和刚度分析中,重点在推导工作量的计算公式,如:轴向拉压杆的拉压应力

扭转的剪

轴向

工作量。

而在强度条件许用应力工作应力≤和刚度条件许用应变工作应变≤表达式不等号大于端的许用值(用方括号括起来的量),如

[]σ、[]τ和[]l ?、[]?、[]y 、[]θ等,

其中,两种许用应力是由材料试验获得,并由各种规范所确认;各种许用变形值的大小,则与结构的功能(性质、用途等)分不开。

然而,在稳定性分析中,

位于不等号大于端≤的许用值

[]cr σ中的压杆临界应力cr σ。

杆在失稳之前是轴向受压杆。

式中的压杆临界应力与材料无关,它是实

际的、具体的“压杆装置”的函数,对每一根压杆都要单独计算才行。

因此,压杆稳定分析的重点是针对各种各样的“压杆装置”,提出几种简化的力学计算模型,然后从理论上推导出它们的临界压力F cr 计算公式,分析计算出临界压力F cr

后,按临界压力F cr 代替轴力F N ,即可得到压杆的临界

2

压杆临界压力F cr 的计算公式

2.1 压杆稳定的力学模型——弯曲平衡

生活和生产的常识告诉我们:压杆在承受的压力比较小时,处于直线平衡状态;当压力逐渐增大到某一值时,压杆会突然变弯,处于微弯曲的平衡状态,称为临界平衡;当压力超过某一值时,压杆会突然变弯折断,退出工作。

使压杆处于临界平衡的压力称为临界压力。计算表明,临界压力远远小于按轴向拉压杆计算得出的许用压力。

如:一根长300mm ,宽20mm ,厚1mm 的钢板尺,设其材料的许用应力为160Mpa ,则按轴向拉压杆强度公式计算,[]σσ≤=

A

F

,[]N A F 3200160120=??=≤σ,即该钢板尺可以安全地承受3200N 的压力。然而,常识告诉我们,把钢板尺直立于桌面上,轻轻用手指一压它就会弯曲。这种现象在力学上称为失稳(丧失稳定性),它可用压杆稳定理论予以说明。

如果将钢板尺按力学模型:两端铰支的压杆装置,进行压杆稳定计算,可得到丧失稳定的压力为()

N mm mm MPa l

EI

F cr 7.3630067.12000002

4

22

2=??=

=ππ,此值接近于钢板尺变弯

的实际值。

式中的惯性矩()43

367.112

12012mm mm mm bh I z =?==。得到钢板尺丧失稳定的压力为36.7N ,仅是按强度计算的安全压力的1/87。差异如此之巨,我们得高度重视。

以上的计算结果表明,对于较长的压杆,按强度计算存在极大的风险。事实上,生活常识告诉我们,压杆越长越容易变弯而丧失稳定性,因此,对于较长的压杆,按强度计算是违背事实的,必须另辟蹊径,寻找压杆稳定分析的力学模型。

究其原因,在强度计算中,钢板尺处于直线平衡状态,属于轴向拉压变形,应该用杆的轴向拉压理论来分析;而压杆稳定分析的研究对象是处于微弯平衡状态,属弯曲变形,显然,应该用梁的理论来分析。

下面先谈谈梁的平衡理论,然后,分别就1、两端铰支、2、一端固定一端自由、3、一端固定一端铰支、4、两端固定,这四种压杆力学模型进行力学、数学分析。

2.2梁的平衡理论——梁的挠曲微分方程

图2-2-1说明梁的挠曲微分方程的来历和相关量的正负号规定。可一目了然。分析是从梁的dx

在下面的图2-2-2中,四种压杆装置(两端铰支、一端固定一端自由、一端固定一端铰支和两端固定)的力学模型,及其三种状态(稳定平衡、临界平衡和丧失稳定)可一目了然。

4-1稳定平衡

4-2临界平衡

4-3丧失稳定

模型4两端固定的压杆装置

微弯曲线半个正弦波为μ

l=0.5l

3-1稳定平衡

3-2临界平衡

3-3丧失稳定

模型3一端固定一端铰支的压杆装置

微弯曲线半个正弦波为μl=0.7l

1-1稳定平衡

1-2临界平衡

1-3丧失稳定

模型1两端铰支的压杆装置 微弯曲线半个正弦波为μl=l

图2-2-2 四种典型压杆的力学模型及其三种状态

2-1稳定平衡

2-2临界平衡 2-3丧失稳定

模型2一端固定一端自由的压杆装置 微弯曲线半个正弦波为μl=2l

l=2l

图2-2-1梁的挠曲微分方程

dx 梁段弯曲及挠曲线

M

注1:正弯矩箭头指向y 负。

()[]

()EI

x M y y ='+''2

/32

1()[]

y y y '

'±≈'+'

'平坦曲线

2

/321按左图得:()

EI

x M y -

=''梁的挠曲微分方程

注2:正曲率曲线凸向y 负。图示为负曲率。

图2-2-3则是四种压杆模型在临界状态下的支反力种类及其真实方向,亦可一目了然。 上述内容对于分析压杆,正确设置压杆两端支反力的方向和转向,导出临界应力公式十分重要,否则,压杆两端支反力的方向和转向设定错误,将无法导出正确的临界力公式。请读者好好加深理解。

2.3 按梁的平衡理论分析两端铰支的压杆临界压力

为了确定长l 、两端铰支的细长压杆AB 临界力,研究图2-3-1。设作用在杆上端的压力恰为临界力F=F cr ,杆处于临界平衡状态。临界平衡状态有两种形式:直杆平衡和微弯平衡 ,即临界平衡状态具有分叉特性,形态不唯一。在这里,不能以直线平衡为研究对象(在轴向拉压变形里研究过,并在2.1节什么它不能够解释钢板尺等压杆突然变弯的现象。),而应该以微弯平衡状态作为力学模型,才能够体现出压杆临界平衡的本质特征(这与前面研究轴向拉压、扭转、弯曲都不同,那里杆处于直线平衡状态)。

2.3.1 截面弯矩表达式

模型1两端铰支

模型3一端固定一端铰支

图2-2-3 四种典型压杆微弯平衡支反力及其真实方向

模型4两端固定

模型2一端固定一端自由

注1:模型1、2为静定结构

注2:模型3、4为超静定结构,其支反力种类由支座形式确定;方向由变形曲线确定:弯矩箭头指向挠曲线的凹侧;剪力可参考悬臂梁受

集中力的情况,即剪力指向恰恰与弯矩指向相反。如下图所示:

F

M 悬臂梁挠曲线与支反力方向关系

图2-3-1两端铰支压杆临界力分析

临界微弯平衡

y

F N =F cr x 截面内力分析 ()()

13.2-= y F x M cr

两端铰支压杆装置:下端固定铰支端有2个约束反力(F NA 、F QA ),上端链杆支座有1个约束反力(F QB ),共3个约束反力未知数(F NA 、F QA 和F QB ),而一根杆件只能够建立三个平衡方程,求解三个未知数。故,两端铰支压杆装置是静定结构,支座反力完全可以用临界力F cr 来表达。

如图2-3-1所示,由图中x 长的粱段平衡,可得距原点为x 、挠度为y 的任意截面上弯矩为

()()13.2-= y F x M cr

2.3.2 压杆微弯平衡微分方程的建立及其通解 在小变形条件下,如果杆内应力不超过材料的比例应力σp ,AB 杆弯曲后的挠曲线可以

在如图2-3-1所示坐标系下,挠曲线的近似微分方程为

令 a )可写为 这是一个常系数二阶齐次线性微分方程,其通解是 ()d kx B kx A y cos sin += 式中,A 、B 是积分常数,k 为待定值。它们由压杆两端的约束情况而定。

2.3.3 利用压杆两端边界条件确定通解中的常数,从而导出压杆临界力F cr

对于两端铰支的压杆,A 端边界条件:x=0、y=0,将其代入(d )可得B=0,于是通解(c )改写为 ()e kx A y sin =

再由B 端边界条件:x=l 、y=0,将其代入(e )得 ()f kl A 0sin = 若要满足(f ),只有两种可能:A=0 或 sinkl =0。从问题的力学意义来看,若A=0,则通解(e )成为y=0,这表示杆AB 没有弯曲,与压杆处于微弯状态的前提条件相矛盾。因此,只有 ()g kl 0sin = 成立。

要(g )成立,必须 ()()h n n kl 3,2,1,0==π,即()h kl '= πππ3,2,0,

由此得 ()()i EI

F l l l k cr

b '== ππ2,,0 ()()j n l EI n F cr 3,2,1,0222==π,即()j l

EI l EI F cr '= 2

2224,,0ππ 从理论上讲,n 是任意的整数,故临界力F cr 的数值有很多个。但是,从工程实际出发,

有意义的是F cr 的最小值,因为荷载一达到此值时,压杆就会丧失稳定性。取n 的最小值时,不能取n=0,因为此时的F cr =0,成为没有意义的结果。故有意义的最小值应取n=1,于是

得到两端铰支压杆装置的临界力为

(2.3-2)式亦称,欧拉公式。值得注意的是,压杆总是在抗弯能力最弱的纵向平面内弯曲

失稳,所以公式中的惯性矩I 应该取其横截面的最小惯性矩I min 。

从公式(2.3-2)可以得出,临界力F cr 与杆长l 的平方成反比。这就是说,杆越细长,其临界力越小,即压杆越容易失稳。

现在又得出,两端铰支细长压杆的长度系数μ=1。

长度系数μ是微弯曲线的半个正弦波长与压杆压杆长度之比,故在这里μ=1表示两端铰支细长压杆微弯曲线的半个正弦波长恰好等于杆长。

2.3.4 将k 值代入微分方程通解,从而导出压杆挠曲线方程 从上面的推导,还可以得到压杆处于临界状态时,压杆的微弯挠曲线表达式。此时,n=1,,代入微分方程通解()e kx A y sin =式,得

两端铰支细长压杆失稳时的挠曲线为 即0~l 对应一条半

波正弦曲线。当x=l/2时,y=A ,常数A 是半波正弦曲线的中点位移。其值充分小。但A 无定值,它随干扰力大小而异。

2.3.5 两端铰支压杆临界力公式推导的图示小结

2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力

为了确定长l 一端固定一端自由的细长压杆AB 临界力,研究图2-4-1。设作用在杆上端的压力恰为临界力F=F cr ,杆处于临界平衡状态。临界平衡状态有两种形式:直杆平衡和微弯平衡 ,即临界平衡状态具有分叉特性,形态不唯一。在这里,不能以直线平衡为研究对象(在轴向拉压变形里已经研究),而应该以微弯平衡状态作为力学模型,才能够体现出压杆临界平衡的本质特征(这与前面研究轴向拉压、扭转、弯曲都不同,那里杆处于直线平衡状态)。

图2-3-1两端铰支压杆临界力分析

临界微弯平衡

y

F N =F cr x 截面内力分析

()()

13.2-= y F x M cr

2.4.1 截面弯矩表达式

一端固定一端自由压杆装置,下端为固定支座有3个约束反力(F NA 、F QA 、M A ),上端自由,没有约束反力,压杆装置共3个约束反力未知数(F NA 、F QA 和M A ),而一根杆件只能够建立三个平衡方程,求解三个未知数。故,一端固定一端自由压杆装置是静定结构,支座反力完全可以用临界力F cr 来表达。

如图2-4-1所示,由图中x 长的粱段平衡,可得距原点为x 、挠度为y 的任意截面上弯矩为

()()()14.2---= y F x M cr δ

2.4.2 压杆微弯平衡微分方程的建立及其通解 在小变形条件下,如果杆内应力不超过材料的比例应力σp ,AB 杆弯曲后的挠曲线可以用梁的弯曲变形公式来表达。在如图2-4-1所示坐标系下,挠曲线的近似微分方程为

令 a )可写为

这是一个常系数二阶非齐次线性微分方程(在前面研究过的两端铰支对应的是齐次二阶微分

方程)。

其对应的常系数二阶齐次线性微分方程通解是 ()d kx B kx A y cos sin *

+=

式中,A 、B 是积分常数,k 为待定值。它们由压杆两端的约束情况而定。

原非齐次线性微分方程的一个特解是 ()d y

δ=*

*,其中δ也是待定值。

原常系数二阶非齐次线性微分方程的通解等于齐次微分方程通解与非齐次特解之和,即

()e kx B kx A y y y δ++=+=cos sin ***

2.4.3 利用压杆两端边界条件确定通解中的常数,从而导出压杆临界力F cr

把一端固定一端自由的压杆下端A (固定端)的边界条件:x=0、y=0、y ’=0,代入(e )和它的一阶导数中,

临界微弯平衡 图2-4-1一端固定一端铰支压杆临界力分析

y F N ()()()

14.2---= y F x M cr

δ

F cr

δ

’ x 截面内力分析

00=+=δB y ,得 δ-=B ,代入(e )有

()()f kx kx A y

B e δδδ

+-=

-=cos sin ,

()

kx k kx Ak y f sin cos δ+=',00

=='Ak y ,()02

≠=EI

F

k cr

a ,所以0=A ,代入(f )得

()

()()g kx y f cos 1-=δ

再把一端固定一端自由的压杆上端B (自由端)的边界条件:x=l 、y=δ,代入(g )中,

()

()δδ=-=kl y g l cos 1,得()h kl 0cos =,于是 ()

()i EI

F l

kl cr

a ==

,23,

π

从工程实际出发,有意义的是F cr

一端固定一端自由压杆装置的临界力为 (2.3-2)式亦称,欧拉公式。值得注意的是,压杆总是在抗弯能力最弱的纵向平面内弯曲失稳,所以公式中的惯性矩I 应该取其横截面的最小惯性矩I min 。

将公式(2.4-2)与(2.3-2(2.4-2)可以改写为如下

形式

前面已经求得,两端铰支细长压杆的长度系数μ=1,表示两端铰支细长压杆的杆长恰好对应着它的微弯曲线的半个正弦波长。现在又得出,一端固定一端自由细长压杆的长度系数μ=2。

长度系数μ是微弯曲线的半个正弦波长与压杆压杆长度之比,故在这里μ=2表示一端固定一端自由细长压杆微弯曲线的半个正弦波长为杆长的2倍。

()()g kx y cos 1-=δ,得一端固定一端铰支

细长压杆失稳时的挠曲线为 当x=l 时,y=δ,常数δ是微弯曲线(半个半波余弦)的幅值,压杆自由端(顶端)位

移。其值充分小。但无定值。它随干扰力大小而异。

2.4.5 一端固定、一端自由压杆临界力公式推导的图示小结

2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力

为了确定长l 一端固定一端铰支的细长压杆AB 临界力,研究图2-5-1。设作用在杆上端的压力恰为临界力F=F cr ,杆处于临界平衡状态。临界平衡状态有两种形式:直杆平衡和微弯平衡 ,即临界平衡状态具有分叉特性,形态不唯一。在这里,不能以直线平衡为研究对象(在轴向拉压变形里已经研究),而应该以微弯平衡状态作为力学模型,才能够体现出压杆临界平衡的本质特征(这与前面研究轴向拉压、扭转、弯曲都不同,那里杆处于直线平衡状态)。

2.5.1 截面弯矩表达式

一端固定一端铰支压杆装置,下端为固定支座有3个约束反力(F NA 、F QA 、M A ),上端为链杆支座有1个约束反力(F QB ),共4个约束反力未知数(F NA 、F QA 、M A 和F QB ),而一根杆件只能够建立三个平衡方程,求解三个未知数。

现有4个约束反力未知数和3个平衡方程,还差1个方程,这必须根据变形条件建立1个补充方程。

故,一端固定一端铰支压杆装置是一次超静定结构。在它的任意横截面弯矩表达式中,

图2-5-1一端固定一端铰支压杆临界力分析 ()()()15.2---= x l F y F x M Q A cr

F QA F M A

y

Q (x)

M A =F F QA =F 临界微弯平衡 图2-4-1一端固定一端铰支压杆临界力分析

y

F N ()()()

14.2---= y F x M cr δ

F cr δ

’ x 截面内力分析

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

轴心压杆弯扭屈曲分析和对比

对于轴心受压杆件,其屈曲形式通常有三种:弯曲屈曲、扭转屈曲、弯扭屈曲。对于只有一个对称轴的截面,当剪心与形心不重合,杆件绕对称轴弯曲时,产生的剪力不经过截面剪心,必然导致扭转。因此,当截面绕对称轴弯曲刚度较小,抗扭转刚度也不大时,扭屈曲就成为这种杆件承载力的极限状态。 《钢结构设计规范》(GBJ 17—88)没有特别提出关于轴心压杆弯扭屈曲计算条文,这样处理有计算简单的优点,即按照弯曲屈曲来计算,但也有不利的一面,即设计者可能忽略弯扭屈曲的特点,从而在某些必须考虑扭转的情况下造成疏忽。 下面以单角钢杆件为例:单角钢截面尺寸为L100 6,长2.4m ,两端铰支,其中点设一支撑,则有λy = 61.5 ,λx = 60 (y轴为对称轴), 即绕强轴y 屈曲对承载力起控制作用。更因强轴是对称轴,扭转的不利作用不能忽视,这一作用根据本文的方法进行换算, λy = 61.5×1.5=92.3,如果忽略扭转影响, 直接以λ y=61.5计算,则稳定系数偏大15 %。这样处理杆件的实际承载力超出了其计算的承载力,势必存在潜在的危险。有鉴于此,本文就弯扭屈曲问题进行了初步研究,给出了具体计算方法,同时将国外规范与国内规范进行了对比计算和分析。 1、稳定系数 由于轴心受压构件有初弯曲、初偏心、残余应力等缺陷的影响,其承载力大大降低,因此在具体计算时必须用特定条件加以限制。到目前为止,世界各国钢结构设计规范中的处理方法可概括为四种: (1)按理想轴心受压构件计算,在弹性阶段采用欧拉公式,在弹塑性阶段采用试验曲线,初偏心、初弯曲、残余应力不利影响用特殊安全系数来考虑。 (2)按理想轴心受压构件计算,在弹性阶段采用欧拉临界应力,在弹塑性阶段采用切线模量临界应力,各种不利影响因素用特殊安全系数来考虑。 (3)把初弯曲、初偏心、残余应力等各种缺陷综合考虑成一等效的与长细比有关的初弯曲或初偏心率,利用边缘纤维屈服准则的佩利公式,导出边缘纤维的截面平均应力作为临界应力。 (4)考虑初弯曲、初偏心、残余应力缺陷,采用极限承载力理论进行计算。“规范”(GBJ 17—88)规定采用第4 种方法,采用一个与长细比λ有关的系数,

怎样推导压杆的临界力和临界应力公式

1 * 问题的提出及其对策 ........................................................................................................... 1 1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2 压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 5 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 7 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 13 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (17) 1 * 问题的提出及其对策 1.1 问题的提出及其对策 试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。材料的许用应力为160MPa 。 解:1、按轴向拉压强度计计算 []2/160160120mm N MPa mm mm F A F N N ==≤?== σσ 2、按压杆稳定临界力公式计算 ()43 33 5120121121mm mm mm bh I Z =??== ()()N mm mm MPa l EI F CR 28.123 4002102000002 4 222=????==πμπ 分析:1、按轴向拉压杆的强度条件计算结果,该钢板尺可以安全承压 3.2kN 。这是一 个什么概念呢?一袋水泥重50kg ,对应重力N s m kg mg W 500/10502=?==,即该钢板尺可以安全承压6.4袋水泥,这显然是不可能的。 2、按压杆稳定临界力计算公式的结果,该钢板尺在承压12.28N 时,就可能变弯了。这又是一个什么概念呢?一小袋食盐重0.5kg ,对应重力N s m kg mg W 5/105.02 =?==,即该钢板尺当承压两袋半食盐时,就可能由直线平衡状态,转变为弯曲平衡状态了。这与实际情况差不多。 结论:对于钢板尺这样的细长杆件,在承受压力时,一定不要用轴向拉压强度条件来判断它的安全承载力,这会出大问题的。需要按弯曲平衡建立力学模型,按梁的理论来分析。 kN N mm N mm mm F N 2.33200/1601202==??≤

过盈量与装配力计算公式

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则

F f=πdlpf

因需保证F f ≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生 周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩 擦阻力矩M f 应大于或等于转矩T。 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时f 有润滑时f 联接零件 材料 结合方式,润滑 f 钢—铸钢0.11 0.08 钢—钢油压扩孔,压力 油为矿物油 0.125 钢—结构钢0.10 0.07 油压扩孔,压力 油为甘油,结合 面排油干净 0.18 钢—优质结构钢0.11 0.08 在电炉中加热包 容件至300℃ 0.14 钢—青铜0.150.20 0.030.06 在电炉中加热包 容件至300℃以 后,结合面脱脂 0.2 钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力 油为矿物油 0.1 铸铁—铸钢0.150..25 0.150.10 钢—铝镁无润滑0.100.15

应力计算

①叶片离心拉应力计算 1)对于涡轮增压器来说,等截面叶片根部截面上的拉应力公式为 20m 1=2u a σρσθ+ 2/N m 其中 ρ为叶片的材料密度(3 /kg m ); m u 为叶片中经处的圆周速度(m/s ); /m D l θ=为直径叶高比; m D 为叶片平均直径(m ); l 为叶片高度(m ); a σ为叶片附加应力,其表示式为: 2222p p t e a m m h m h D A D A u z D A D A πρσ????????=+ ? ????????? ,2/N m 其中 z 为叶轮叶片个数; t D 为叶冠中经(m ); p D 为叶片凸台或拉筋的中经(m ); h D 为叶根直径(m ); e A δ=?为叶冠截面面积(2m ); p A 为凸台或拉筋的截面积(2 m ); h A 为叶根截面面积(2m ); 如果叶片没有设置阻尼拉筋或凸台,则p A =0;如果叶片不带冠,则e A =0;当两者均不存在时,a σ=0. 2)叶片截面面积沿叶高按线性变化时的拉应力计算式: 212113m a u λλσρσθθ+-??=++ ??? 2/N m 式中,/t h A A λ=是叶顶叶根截面比。通常,对压气机叶片,λ=0.3~0.65 3)叶片截面面积沿叶高按某一任意规律变化时,任意一个截面上离心应力可

用数值积分法计算。对于第i 个几面,离心力i σ可按下式计算: 21i i ic i i V r A σρω?=∑ 2/N m 其中 ()112 i i i i im i V A A x A x -?=+?=?为叶片第i 个微段的体积(3m ); i A 和1i A -为叶片第i 个微段的内径与外径上的截面积(3m ); ic h i ic r r x x =++?为第i 个微段重心c 的半径(m ); ()1216i i ic i im A A x x A -+?=?为第i 个微段重心c 离第i 截面的间距(m ); ω为旋转角速度(rad/s ); ρ为材料密度(3/kg m ); ②叶片弯应力计算 1)由气体作用引起的弯矩 作用于叶片任意截面上的气体周向弯矩gu M 可以按下式计算: ()2gu i M B l x =- N m ? 而 ()122um um G B c c zl =+ N/m 式中 i x 为计算截面至叶根的距离(m ); z 为叶片个数; l 为叶片的高度(m ); 1um c ,2um c 为叶片中经处、出口气流周向分速(m/s ); G 为气体流量(kg/s )。 作用于叶片而难以截面上的气体周向弯矩ga M 的计算公式也表达为: ()2ga i M D l x =- N m ? 而 ()()12122m a a r G D c c p p zl z π=-+- N/m 式中 1a c ,2a c 为叶片进、出口中经截面上的周向分速(m/s ); 1p ,2p 为叶片进、出口中经截面上的气体压力(2 /N m );

钢结构基础第四章课后习题答案

第四章 4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。杆件由屈服强度 2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不 计残余应力。3 20610mm E N =?2 (由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。 解:由公式 2cr 2E πσλ =,以及上图的弹性模量的变化得cr -σλ 曲线如下: 4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为 2 y f 235N mm =,弹性模量为 3 20610mm E N =?2 ,试画出 cry y σ-λ— — 无量纲关系曲线,计算时不计腹板面积。 f y y f (2/3)f y (2/3)f y x

解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。 因此,屈曲时的截面应力分布如图 全截面对y 轴的惯性矩 3 212y I tb =,弹性区面积的惯性矩 ()3 212ey I t kb = ()3 22232232212212ey cry y y y y I t kb E E E k I tb πππσλλλ=?=?= 截面的平均应力 2220.50.6(10.3)2y y cr y btf kbt kf k f bt σ-??= =- 二者合并得cry y σ-λ— — 的关系式 cry cry 342 cry σ(0.0273)σ3σ10y λ+-+-= 画图如下 4.10 验算图示焊接工字型截面轴心受压构件的稳定性。钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。已知构件承受的轴心压力为 N=1500KN 。 0.6f y f y λ σ 0.2 0.40.60.81.0cry

图示不同支座情下压杆临界力倍数关系

图示不同支座情下压杆临界力倍数关系

————————————————————————————————作者:————————————————————————————————日期:

建筑结构工程的可靠性技术要求 掌握建筑结构工程可靠性 一、结构的功能要求 1. 安全性 2. 适用性 3. 耐久性 安全性、适用性、耐久性概括称为结构的可靠性 二、两种极限状态 1. 所谓构件的抵抗能力:结构或构件抵抗上述荷载效应的能力,它与截面的大小和形状及材料的性质和分布有关。 S 外荷载作用效应;R 本身的抵抗能力 1)S > R ,构件破坏,不可靠状态 2)S < R ,可靠状态,R 比S 超出过多不经济 3)S = R ,即将破坏的边缘状态,称为极限状态 (好比:等于60分及格,处于极限状态;小于60分,失败,不及格;大于60分,及格) 2. 极限状态分两种: 1)承载能力极限状态 2)正常使用极限状态 3. 承载能力极限状态是对应于结构或构件达到最大承载能力或不适于继续承载的变形,包括结构构件或连接因强度超过而破坏,结构或其一部分作为刚体而失去平衡,发生的疲劳破坏。对所有结构和构件都必须按承载能力极限状态进行计算,施工时应严格保证施工质量,以满足结构的安全性。 杆件稳定的基本概念 1. 在工程结构中,受压杆件如果比较细长,受力达到一定的数值(这时一般未达到强度破坏)时,杆件突然发生弯曲,以致引起整个结构的破坏,这种现象称为失稳。因此,受压杆件要有稳定的要求。 不同支座情况的临界力的计算公式为:202l EI P lj π= 临界应力等于临界力除以压杆的横截面面积A 。临界应力lj σ是指临界力作用下压杆仍处于直线状态时的应力 22202202)/(λπππσE i l E A I l E A P lj lj ==*==,其中,A I i /=称作截面的回转半径或惯性半径。 i l 0=λ称作长细比。i 由截面形状和尺寸来确定。所以,长细比λ是影响临界力的综合因素。 S = R S < R S > R 可靠 失效

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式:?prlf P=2 应为“—”i2?1?p i2222??r2r?rr?r2231122??? 2222EE)(ErrE(r?r?)211321225?10?Mpa, u1=u2=0.3, l=150mm, =0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1f=0.15 带入公式得: Pi= 12.3954Mpa 510?(17.524t) P=1.7524=17874.48kgf N5?10?Mpa, u1=u2=0.3, l=190mm=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1, f=0.15 带入公式得: Pi= 12.3954Mpa 510?(22.196t) N=22639.92kgf P= 2.2196 B87C机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T——大值是按u1起作用算得 FT160A架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T——大值是按u1起作用算得

过盈联接p1;.确定压力F)传递轴向力12)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 受 : 图图: 变轴向力的过盈联接 转矩的过盈联接,则设配合的公称直径为人配合面间的摩擦系数为人配合长度为l=πdlpf F f≥F,故因需保证F f [7-8] 时,则应保证在此转矩作用下不产生T 当联接传递转矩2)传递转矩T 配合面间所能产生的摩的作用下,在转矩T周向滑移。亦即当径向压力为P时,。应大于或等于转矩T擦阻力矩M f①设配合面上的摩擦系数为f,配合尺寸同前,则 =πdlpf·d/2M f M≥T.故得因需保证f

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

地应力计算公式解读

地应力计算公式 (一)、井中应力场的计算及其应用研究(秦绪英,陈有明,陆黄生 2003年6月) 主应力计算 根据泊松比μ、地层孔隙压力贡献系数V 、孔隙压力0P 及密度测井值b ρ可以计算三个主应力值: ()001H v A VP VP μσσμ??=+-+??-?? ()001h v B VP VP μσσμ??=+-+??-?? H v b dh σρ=?? 相关系数计算: 应用密度声波全波测井资料的纵波、横波时差(p t ?、s t ?)及测井的泥质含量sh V 可以计算泊松比μ、地层孔隙压力贡献系数V 、岩石弹性模量E 及岩石抗拉强度T S 。 ① 泊松比 22 2 20.52()s p s p t t t t μ?-?=?-? ② 地层孔隙压力贡献系数 22222(34)12() b s s p m ms mp t t t V t t ρρ??-?=-?-? ③ 岩石弹性模量 222 2234s p b s s p t t E t t t ρ?-?=???-? ④ 岩石抗拉强度 22 (34)[(1)]T b s p sh sh S a t t b E V c E V ρ=???-????-+?? 注:,,,m ms mp t t ρρ??分别为密度测井值,地层骨架密度,横波时差和纵波时差值。,,a b c 为地区试验常数。 其它参数 不同地区岩石抗压强度参数是参照岩石抗拉强度数值确定,一般是8~12倍,也可以通过岩心测试获得。岩石内摩擦系数及岩石内聚力是岩石本身固有特性参数,可以通过测试分析获得。地层孔隙压力由地层水密度针对深度积分求取,或者用重复地层测试器RFT 测量。也可以通过地层压裂测试获得,测试时,当井孔压力下降至不再变化时,为储层的孔隙压力。

第十四章 轴向压杆的稳定计算

第十四章轴向压杆的稳定计算 【教学要求】 了解压杆稳定与失稳的概念; 理解压杆的临界力和临界应力的概念; 能采用合适的公式计算各类压杆的临界力和临界应力; 熟悉压杆的稳定条件及其应用; 了解提高压杆稳定性的措施。 【重点】 1、计算临界力。 2、掌握折减系数法对压杆进行稳定设计与计算的基本方法【难点】 折减系数法对压杆进行稳定设计与计算的基本方法。 【授课方式】课堂讲解 【教学时数】共计4学时 【教学过程】 ?14.1 压杆稳定的基本概念0.5学时?14.2 压杆的临界力和临界应力 1.5学时★14.3 压杆的稳定条件及其应用 1.5学时?14.4 提高压杆稳定性的措施0.5学时【小结】 【课后作业】 ?14.1 压杆稳定的基本概念 ?

? 有实例提出问题,总结引申新的课题。 1、概念 压杆稳定性:压杆保持其原来直线平衡状态的能力。 压杆不能保持其原来直线平衡状态而突然变弯的现象,称为压杆的直线平衡状态丧失了稳定,简称为压杆失稳。 研究压杆稳定性的意义: 压杆因强度或刚度不足而造成破坏之前一般都有先兆;压杆由于失稳而造成破坏之前没有任何先兆,当压力达到某个临界数值时就会突然破坏,因此这种破坏形式在工程上具有很大的破坏性。 在建筑工程中的受压上弦杆、厂房的柱子等设计中都必须考虑其稳定性要求。 2、平衡状态的稳定性 当P <cr P ,时,是稳定平衡状态 当P =cr P 时,是随遇平衡状态,这种状态称为临界平衡状态 当P >cr P 时,是不稳定平衡状态 当P =cr P 时,压杆的平衡状态是介于稳定和不稳定之间的临界平衡状态,因此定值cr P 。 3、压杆临界力F cr 14.2 压杆的临界力和临界应力 临界力的影响因素 临界力F cr 的大小反映了压杆失稳的难易,而压杆失稳就是直杆变弯,发生弯曲变形,因此临界力的大小与影响直杆弯曲变形的因素有关: 杆的长度l 、抗弯刚度EI 、杆端支承。 14.2.1临界力的欧拉公式 22()cr EI P l πμ= 适用条件:弹性范围内。 式中,EI 称为压杆的抗弯刚度, I 是截面对形心轴最小的惯性矩。

力学计算公式

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为

m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式: P=2i p lf r 2π 应为“—” 2 2 112122221 22 2223122 23 2 )()(1 2E E r r E r r r r E r r r p i μμδ - +-++-+= δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=150mm , f=0.15 带入公式得: Pi= 12.3954Mpa P=1.75245 10?N =17874.48kgf (17.524t) δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=190mm , f=0.15 带入公式得: Pi= 12.3954Mpa P= 2.21965 10?N =22639.92kgf (22.196t) B87C 机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T ——大值是按u1起作用算得 FT160A 架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T ——大值是按u1起作用算得

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。

05、基本知识 怎样推导梁的应力公式、变形公式(供参考)

05、基本知识 怎样推导梁的应力公式、变形公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.doczj.com/doc/0c10930364.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究梁的应力公式和变形公式。 ................................................... 2 3 1.1梁的纯弯曲(纯弯曲:横截面上无剪力的粱段)应力公式推导 ................................. 2 4 1.2 梁弯曲的变形公式推导(仅研究纯弯曲) .................................................................... 5 5 1.3 弯曲应力公式和变形公式的简要推导 ............................................................................ 6 6 1.4 梁弯曲的正应力强度条件和刚度条件的建立 ................................................................ 7 7 2.1 梁剪切的应力公式推导 .................................................................................................... 8 8 2.2 梁弯曲的剪应力强度条件的建立 .................................................................................... 8 9 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9) 1 * 问题的提出 在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。 强度条件就是工作应力不超过许用应力,即,[]σσ许用应力工作应力≤、[]ττ≤; 刚度条件就是工作变形不超过许用变形,即,[]y y 许用变形工作变形≤、[]θθ≤。 如,梁 弯曲强度条件:[]σσ≤=W M max max ;剪切强度条件:[]τρτρ≤?= b I S F z Q * max ,max 刚度条件:挠度 ?? ? ???≤l y l y max ;转角[]??≤max 这里带方括号的,是材料的某种许用值。由材料实验确定出破坏值,再除以安全系数, 即得。 显然,不等式左侧的工作应力和工作变形计算公式,是十分重要的。如果把各种应力公式和变形公式的来历搞明白,对于如何进行强度分析和刚度分析(这是材料力学的主要内容)就会得心应手。 杆件的基本变形一共四种:轴向拉压、扭转、剪切和弯曲变形。它们分别在轴向拉压杆、扭转轴、梁的各章讲授。 其对应的公式各异,但是,推导这些公式的方法却是一样的,都要从静力、几何、物理三个方面考虑,从而导出相应的《应力公式》,在导出应力公式之后,就可以十分方便地获得《变形公式》。

过盈量与装配力计算公式

过盈量与装配力计算公式 过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。

1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F 当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接. 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F =πdlpf f因需保证F≥F,故f [7-8] 2)传递转矩T 当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。f①,配合尺寸同前,则设配合面上的摩擦系 数为f M =πdlpf·d/2f因需保证M ≥T.故得f [7-9] ①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材有润滑时联接零件材无润滑时f 结合方式,润滑 f 料 f 料 油压扩孔,压力油钢—铸钢 0.11 0.08 0.125 为矿物油 油压扩孔,压力油钢—结构钢 0.10 0.07 为甘油,结合面排0.18 油干净钢—钢钢—优质结在电炉中加热包0.11 0.08 0.14 构钢 容件至300℃ 在电炉中加热包钢—青铜 0.15?0.20 0.03?0.06 容件至300℃以0.2 后,结合面脱脂 油压扩孔,压力油钢—铸铁 0.12?0.15 0.05?0.10 钢—铸铁 0.1 为矿物油 钢—铝镁合铸铁—铸钢 0.15?0..25 0.15?0.10 无润滑 0.10?0.15 金 3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为

轴向拉压习题答案2

第2章 轴向拉伸和压缩 主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力; (2)轴向拉伸(压缩)时杆的变形; (3)材料在轴向拉伸和压缩时的力学性能; (4)轴向拉压杆的强度计算; (5)简单拉压超静定问题。 轴向拉伸(压缩)时杆的变形 4. 一钢制阶梯杆如图所示。已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。 解:(1)首先作出轴力图如图4-11所示, 由图知kN F N 301-=,kN F F N N 2032==。 (2)计算各段杆的纵向变形 m m EA l F l N 56 93311111075.310 40010200101001030---?-=??????-==? m m EA l F l N 5 6 9332222100.210 4001020010801020---?=??????==? (3)杆的总变形量 m l l l l 53211045.1-?=?+?+?=?。 (4)计算各段杆的线应变 45 1111075.310.01075.3--?-=?-=?=l l ε 45 222105.208.0100.2--?=?=?=l l ε 45 333100.408 .0102.3--?=?=?=l l ε 材料在轴向拉伸和压缩时的力学性能 5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么 答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。 m m EA l F l N 5 6 9333333102.3102501020010801020---?=??????==?

建筑力学第11章压杆稳定

第11章压杆稳定 [内容提要]稳定问题是结构设计中的重要问题之一。本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。 11.1 压杆稳定的概念 工程中把承受轴向压力的直杆称为压杆。前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。 为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。 P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值 cr P时,杆件虽位置上保持平衡。但如果继续增加荷载,当轴向压力等于某个临界值,即P= cr 然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。 P= cr

相关主题
文本预览
相关文档 最新文档