当前位置:文档之家› 多孔TiO2基底上CuInSe2(CIS)薄膜的电沉积制备

多孔TiO2基底上CuInSe2(CIS)薄膜的电沉积制备

多孔TiO2基底上CuInSe2(CIS)薄膜的电沉积制备
多孔TiO2基底上CuInSe2(CIS)薄膜的电沉积制备

多孔TiO2基底上CuInSe2(CIS)薄膜的电沉积制备

杨靖霞,石勇,杨建立,靳正国

天津大学材料学院先进陶瓷与加工技术教育部重点实验室,天津(300072)

E-mail:yjx09tj@https://www.doczj.com/doc/0d14559684.html,

摘要:采用电化学沉积法,以硫酸铜、硫酸铟和二氧化硒为原料,在多孔TiO2基底上于沉积电位-1100mV成功沉积制备出CuInSe2薄膜。直接沉积的薄膜已有CIS结晶,但400℃下热处理,可以明显提高其结晶程度并改善光学性能。TiO2基底上CIS薄膜的禁带宽度为0.89~0.92eV。

关键词:CuInSe2薄膜;阴极电沉积;TiO2基底;热处理

中图分类号:O614.242

1.引言

三元半导体化合物CuInSe2由于合适的禁带宽度(1.04eV),且具有高的光吸收系数(α>10-5cm-1)和能量转换效率(17%),已成为理想的光伏电池材料之一。近年来,以纳米/微米结构的TiO2为基底的无机半导体极薄层吸附的太阳能电池(extremely thin absorber solar cell, ETA电池)得到了发展[1],采用CuInSe2等无机敏化剂,不仅可以通过控制粒子尺度、化学计量比对带隙进行调节,还可延长电池寿命、稳定转化效率、提高抗辐射,应用前景广阔。

电沉积制备CuInSe2薄膜具有制备方法简单、成本低、薄膜的厚度及颗粒大小易控制、适于大面积规模化生产等优点。但同时也存在一定的不足,如不易得到形貌较好且符合化学计量比的CuInSe2薄膜等。本实验采用一步恒电位沉积法在多孔TiO2基底上制备CuInSe2薄膜,考察沉积电位及热处理对CIS薄膜制备的影响,在此基础上得出了薄膜的禁带宽度。

2.实验部分

2.1 试剂

分析纯CuSO4·5H2O、In2(SO4)3和SeO2作为原料被采用。电沉积水溶液按CuSO4 0.002mol/L,In2(SO4)3 0.002mol/L,SeO2 0.004mol/L的配比浓度制成。混合电沉积溶液的pH值用0.5mol/L的H2SO4调节到2.0,加入0.1mol/L柠檬酸络合剂后常温搅拌15min。

2.2电极的制备

本实验的工作电极是涂敷了多孔TiO2薄膜的ITO导电玻璃,首先对ITO玻璃进行清洗,然后进行TiO2薄膜涂敷。

I TO玻璃的清洗:依次用丙酮、异丙醇、乙醇分别超声清洗15min,之后置于去离子水中储存备用。

多孔TiO2薄膜采用溶胶-凝胶法制备,以分子量为1000的PEG作模板剂,溶胶中钛的浓度为0.2mol/L~0.5mol/L。详细的多孔TiO2薄膜的制备参见文献[2]。

2.3 电化学研究

伏安单扫曲线测量使用TD3691恒电位仪,涂敷有多孔TiO2薄膜的ITO导电玻璃为工作电极,饱和的Ag/AgCl电极为参比电极,大面积的Pt片作为对电极。扫描电位从-1500mV 到1500mV,扫描速度为50mV/S。

2.4 薄膜的沉积与处理

C uInSe2薄膜采用上述电沉积水溶液于-1100mV 恒电位沉积制备,沉积在室温静置条件下进行。沉积后薄膜与Ar 气氛保护下在400℃热处理1h 。

2.5 薄膜测试分析

薄膜的XRD 分析采用D/Max-2500Philips X 射线衍射仪进行。表面形貌通过XL-30Philips 扫描电子显微镜观测。透光谱通过330 (Japan) Hitachi 紫外-可见光分光光度计(UV -VIS)测量。

3. 结果与讨论

3.1 阴极电沉积反应

本试验采用阴极电沉积法制备CuInSe2薄膜,为使Cu 、In 、Se 三种元素得到共沉积,应使它们的沉积电位尽可能接近或相等,本实验中发生的相关电极电位方程如下[3]:

)(S Cu e Cu ?++

)

lg(

051.0552.0Cu Cu a a ?

+=? (1)

)(22S Cu e Cu ?++

lg(0295.034.02Cu a aCu +

+=?

)(33S In e In ?++

)

lg(

0197.034.03In In a a +

+?=? (2)

SeO2在水溶液中首先水解离子化,其相关电极电位方程为:

?+

+?→+OH HSeO SeO H SeO H O H SeO 2323

222

O

H S Se e H OH HSeO 223)(44+?++++?+ pH

a a Se

HSeO 0443.0)lg(0148.074.02

?+=+

?

(3)

由上可知,通过适当地选择沉积电位、沉积液的浓度以及络合反应的控制,可以选择共沉积电位。本实验选择柠檬酸为络合剂,调节Cu 、In 的沉积电位与Se 接近,达到共沉积结晶的目的。

3.2 伏安单扫曲线及XRD 分析

图1为在ITO 基底和多孔TiO2基底上获得的伏安单扫曲线,据文献报道在ITO 玻璃上的CIS 薄膜的最佳沉积电位为-750mV [4],在多孔TiO2基底上对应的CIS 薄膜的沉积电位负移到了-1100mV 左右,即CIS 化合物在右侧倒数第二个还原峰被还原生成。沉积电位发生如此大的负移,可能是由于ITO 的电性能类似于金属电极,外加电压的变化基本上都体现为双电层上的反应势垒变化,电极电位就是通过改变反应活化能来影响沉积反应的进行。TiO2是非简并的n 型半导体,外加电压的变化不但改变空间电荷层的弯曲,而且还通过电极电位改变半导体表面电子浓度来影响反应,此外多孔TiO2膜层的存在还引起施加电位的压降。所有上述因素都会引起最佳沉积电位的改变,也就是在多孔TiO2膜层上的沉积需要施加一个更高的负电位来实现TiO2多孔薄膜上CIS 的沉积。

c u r r e n t

voltage

图1 电沉积溶液的线性扫描曲线

Fig. 1 Linear scanning voltammetry curve of electrolyte

图2为-1100mV 电位下沉积30min 薄膜的XRD 图,从图2可以看出,26.54°(112),44.48°(204,220),52.92°(116

,312)处出现的衍射峰为CIS 的特征峰,其特征峰明显且有沿(112)面择优取向生长的趋势,说明直接电沉积的薄膜中已有晶态CIS 化合物生成。

2 θ/(°)

I n t e n s i t y (a .u )

图2 沉积薄膜的XRD 谱图

Fig. 2 XRD curve of electrodeposited film

3.3 热处理及SEM 表征

对-1100mV 电位下沉积的薄膜在氩气保护条件下于400℃保温1小时热处理。图3为热处理前后薄膜的XRD 曲线,从图中可以看出热处理后CIS 薄膜的特征峰26.54°(112),44.48°(204,220),52.92°(116,312)与热处理前相比有明显的增强,且半高宽变窄。这可能是由于薄膜热处理时,晶粒二次生长,并且可以去除一些薄膜中易挥发的非化学计量成分[5],

使薄膜的组分更接近化学剂量比,从而促进薄膜的进一步结晶。

2 θ/(°)

I n t e n s i t y (a .u )

图3 热处理前后薄膜的

XRD 谱图

Fig. 3 XRD curve of un-annealing and annealing film

图4为未经热处理和400℃下热处理CIS 薄膜的SEM 形貌,同时在ITO 基底上沉积的薄膜形貌也在图4(a)中示出。由图4(a)明显看出,在ITO 基底上沉积的CIS 薄膜颗粒均匀细小,表面平整。而在多孔TiO2基底上沉积的CIS 薄膜无论是在热处理前还是在热处理后,总会有凹陷和突起存在,这与多孔TiO2基底是有关的。在热处理后薄膜的颗粒相对于热处理前有所增大,且多晶粒界更为清晰。这与XRD 谱图中热处理后特征峰的增强一致。图4(d)为薄膜热处理后的断面SEM 图,从图中可以看出薄膜与基底接触紧密,膜厚大约为1.5μm 。

(a) ITO 基底,400℃热处理 (b) TiO2基底,未热处理

(c)

TiO2基底,400℃热处理(d) TiO2基底,400℃热处理断面

图4薄膜的SEM形貌

Fig. 4 SEM photographs of CIS films

3.4 光学性能

CIS薄膜的光学性能可由光学吸收系数和光学禁带宽度来表示, 其中光学吸收系数(α)可通过薄膜的光学透过率T和薄膜厚度d按下式计算[6]:

()d

1

ln

=

α(4)

图3为薄膜热处理前后的光吸收系数(α)曲线,很明显,两者的光吸收系数同数量级,均为>104 cm-1。热处理后薄膜的光吸收系数略有增加,这是由于薄膜结晶度提高,薄膜中一些高温易挥发物的去除使薄膜组成更接近化学计量比,且薄膜结构的聚集态比未热处理更优,这些都能导致光吸收系数的提高。

0.8 1.0 1.2 1.4 1.6 1.8

60000

80000

100000

120000

140000

160000

a

Energy / eV

400℃

0℃

图5 热处理前后薄膜的光学吸收系数(α)曲线

Fig. 5 Plot of optical absorption coefficient (α) for CIS film

对于CIS薄膜,其禁带宽度Eg与吸收系数α有如下关系:

1/2

()

g

A h E

h

ν

α

ν

?

=

(5)式中Eg为禁带宽度,hν(h为Planck常量,ν为频率)为光子能量,A是与导带和价带有效质量相关的常数。按下式以(αhυ)2-E作图:

()2

1g E E k hv ?=α (6)

通过延长(αh υ)2-E 的切线到x 轴,交点即为Eg 。

0.8 1.0 1.2 1.4 1.6 1.8

10

20

30

40

50

0℃

400℃

(a h v )2(106

c m 2

e v 2)

Energy / eV

图6 CIS 薄膜的(αh υ)2

-h υ曲线 Fig.6 Plot of (αh υ) against h υ for CIS film

由图6的(h να)2-E 关系图可知,在多孔TiO2薄膜上沉积的CIS 层的禁带宽度Eg 在0.89eV ~0.92eV 范围内,这与在ITO 玻璃上沉积的CIS 薄膜的禁带宽度[7]0.95-1.02eV 相比有所减小,其中引起禁带宽度减小的原因可能是由于薄膜高比表面积引入界面能级和光在薄膜多孔结构中可能发生反射和折射,导致光透过率减少,使薄膜的光吸收系数提高,进而使薄膜的禁带宽度减小。

4. 结论

以硫酸铜(CuSO4)、二氧化硒(SeO2)、硫酸铟(In2(SO4)3)为原料,柠檬酸为络合剂,采用阴极电沉积在多孔TiO2基底上制备了CuInSe2薄膜,其优化出的沉积电位是-1100mV ,与在ITO 基底上的沉积电位相比发生了350mV 负移。400℃下热处理明显改善了薄膜结构与光学性能。在多孔TiO2薄膜上沉积的CIS 薄膜的禁带宽度Eg 在0.89eV ~0.92eV 之间,且煅烧后发生了轻微的蓝移。

5. 致谢

本项目为天津市重点基础研究项目(F103004),感谢靳正国老师和石勇、杨建立两位师兄在论文完成给我的指导,感谢天津大学分析中心杜海燕老师、王惠老师为测试提供的帮助。

参考文献

[1] 武卫兵.CuSCN薄膜的制备与性能研究[D].天津:天津大学材料学院,2005.

[2] 步绍静,靳正国,杨立荣,刘晓新.纳米氧化钛多孔薄膜的溶胶-凝胶法制备及其结构特征[J] .硅酸盐学报,2003.,31(9): 848-852.

[3] M.Fahoume,F.Chraib,M.Aggour,A.Ennaoui.Preparation and characterization of electrodeposited CuInSe2 thin films[J].Ann.Chim.Sct.Mat,1998,23:373-376.

[4] N.B.Chaure,J.Young,A.P.Samantilleke,I.M.Dharmadasa.Electrodeposition of p-I-n type CuInSe2 multilayers for photovoltaic applications[J].Solar Energy Materials & Solar Cells,2004,81:125-133.

[5] 陈鸣波,尤金跨.电沉积CuInSe2薄膜的热处理研究[J].应用化学,1994,11(1):102-104.

[6] M.C.Zouaghi,T.B.Nasrallah,S.Marsillac.Physico-chemical characterization of spray-deposited CuInS2 thin films[J].Thin Solid Films,2001,382,39-45.

[7] M.D.Kannan,R.Balasundaraprabhu,S.Jayakumar.Preparation and study of structural and optical properties of CSVT deposited CuInSe2 thin films[J].Solar Energy Materials & Solar Cells,2004,81,379-386.Electrodeposition of CuInSe2 thin films on porous TiO2 film

substrates

Yang Jingxia, Shi Yong, Yang Jianli, Jin Zhengguo

Key Laboratory For Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials, Tianjin University, Tianjin, China (300072)

Abstract

CuInSe2 (CIS) thin films were electrodeposited on porous TiO2 film coated onto ITO substrates. The deposition potential for CIS film is -1100mV on the porous TiO2 film while -750mV on ITO substrate. XRD and SEM results showed that the crystalline degree of CuInS2 films could be improved when the

℃rption coefficient of the CIS films was >104 cm-1 and CIS films was annealed at 400 for 1h. the abso

the optical band gap Eg was 0.89~0.92eV.

Keywords: CuInSe2, electrodeposition, porous TiO2 film, annealing

作者简介:杨靖霞(1983~),女,硕士研究生,研究方向:光电半导体薄膜的制备,太阳能电池组装。

薄膜面板开关按键技术资料

薄膜面板开关按键技术资料 薄膜开关、薄膜面板是近年来国际流行的一种集装饰性与功能性为一体的电子整机产品的新的操纵系统,已成为我国电子产品升级换代、出口产品不可缺少的配套部件。 薄膜开关、面板集开关按键、面板功能文字、标记、商标、透明窗及显示于一体,并且采用多层整体密封结构。因此它具有耐磨擦、防水、防尘、防有害气体、寿命长、性能稳定等特点。为了整机的整洁,面板可以擦洗,字符不受损伤,色彩丰富、保新性好,安装方便。不仅如此,薄膜开关、面板的应用,更能充分体现产品功能与色彩独具匠心的构思,以提高产品的外观质量和增加产品的时代气息。 薄膜开关、面板已广泛用于智能化电子测量仪器、医疗仪器计算机控制、数控机床、电子衡器、邮电通讯、复印机、电冰箱、微波炉、电风扇、洗衣机、电子游戏机等各类工业及家用电器产品。 薄膜开关

薄膜面板

薄膜面板 薄膜面板是一种由弹性薄膜(PVC/PC/PET)加工而成的具有一定功能字符指示的装饰性面板,具有防水、防尘、耐摩擦、不褪色等优良特点,目前广泛用于家用电器、通讯设备、仪

器仪表、工业控制等领域。 薄膜面板的印刷工艺要分为正面和反面印刷,分别应用于不同材质和类型的薄膜面板上。大致可以分为平面类和压鼓类。 平面类薄膜面板是最简单的面板类型,主要是用不同颜色的文字、线条、色块对各个功能部位加以指示或加以区分,用户可以根据自身的需要来选择不同的薄膜材料及双面胶。 压鼓类薄膜面板是在平面型薄膜面板的基础上新开发出的一种较为美观而且实用的面板。它的制作流程是,是在普通面板的基础上,通过一种压制模具,将面板经过热压后使按键部位微微凸起形成立体按键。这种立体键不仅能准确地给定键体的围,提高辨认速度,使操作者的触觉比较敏感,同时还增进了产品外观的装饰效果。 制作面板的薄膜应当具备哪些条件? 面板薄膜是将彩色油墨丝印至透明高分子聚合物背面,一旦丝印完成并切割成形,此层就成为彩色面膜层。面膜层为薄膜开关的组成部分,它能清楚地显示开关的功能、显示颜色、面膜类型以及开关的操作位置,它还能起保护作用。 作为薄膜开关的面板,它主要担负着产品外观的装饰与防护作用,因此用于制作面板的薄膜,至少应具备以下条件:①良好的外观:指制作面板的薄膜表面平整、光泽一致,没有机械性损伤、划痕、夹杂物及色斑等表面缺陷。②较好的耐候性:面板层是薄膜开关曝露在自然环境中的表面层,其面板材料要能在一定自然环境条件下,不变形、开裂、老化和变色等。③较好的耐化学性:面板层将有可能触及不同的化学药品,但对常见的大多数化学品而言,如醇类、醚类、矿物油类应有一定的耐受能力。④尺寸稳定性好:要求制作面板的薄膜,在一定的温度围(一般为-40℃~55℃)尺寸尺寸无明显变化。⑤弹性要求:要求面板层薄具有一定回弱性能,同时,弹性变形要小,可以用材料的延伸率判断,一般来说延伸率大,弹性变形量也大,加弹性能就差。根据上述要求,常用于面板的薄膜通常有聚碳酸酯(PC)、聚氯乙烯(PE)、聚酯及聚胺酯等几种薄膜。 如何选择薄膜面板的用材品种? 适合于制作面板层的薄膜材料,按照其种类通常可以分为PC、PVC、PET三种;按照其表面状态又可以分为砂面(半透3明膜)与光面(透明膜)。 PC材料的物理特性与化学特性的综合指标较好,其适应的油墨也较广泛,是薄膜开关 面板层应用最为普遍的材料。PC材料有砂面与光面之区分,选择砂面状材料的理由是因为

多孔阳极氧化铝为模板电沉积制备纳米线的研究进展_倪似愚

多孔阳极氧化铝为模板电沉积制备 纳米线的研究进展 倪似愚1郑国渠2曹华珍2郑华均2张九渊2 (1.中国科学院上海硅酸盐研究所,上海200050;2.浙江工业大学材料科学与工程研究所,浙江杭州310032) 摘要:多孔阳极氧化铝为模板制备纳米结构材料具有独特的优越性,颇受人们的关注,近年来获得了深入的研究.介绍了以多孔阳极氧化铝为模板采用电化学沉积方法制备各种有序纳米线阵列结构材料的最新研究进展,其中包括多孔氧化铝模板的制备和电沉积制备纳米材料的工艺及方法,同时展望了纳米线作为功能材料的应用前景. 关键词:金属材料;模板;多孔氧化铝;纳米线;电沉积 中图分类号:TG174.451文献标识码:A文章编号:1001-7119(2003)06-0466-04 Research development of nano-wires fabrication by electrochemical deposition into porous anodic alumina NI Si-yu1Z HE NG Guo-qu2C AO Hua-zheng2Z HE NG Hua-jun2Z HANG Jiu-yuan2 (1.Shanghai Ins ti tute of Ceramics,Chanese Acade my of Sciences,Shanghai200050,China; 2.Ins ti tute of Material Science and Engineering,Zhejiang Uni versity of Technology,Hangz hou310032,China) Abstract:Alumina template-synthesized nanostructured mater ial has uniq ue property,which is very attractive and has been re-searched deeply in recent years.In this paper,the latest research progress in the fabrication of various ordeded nano-wire arrays materials by electrodeposi ting into template-porous anodic aluminum,includi ng the preparation of alumina-template,electrochemical technology process and methods,is reviewed.the application prospects of nano-wire for functional materials are also discussed. Key words:metal material;template;porous alu mina;nano-wire;electrodeposition 0前言 自1970年G.E.Possin首次提出利用多孔膜作为模板制备纳米纤维材料以来[1],利用模板法已制备了一系列的纳米结构材料.由于模板合成法制备纳米结构材料具有独特的优点[2]而引起了凝聚态物理界、化学界及材料科学界科学家们的关注,近年来成为纳米材料研究的一个热点.用作模板的材料主要有两种:一种是径迹蚀刻(track-etch)聚合物膜;另一种是多孔阳极氧化铝膜.相对于聚合物模板,氧化铝模板具有较好的化学稳定性、热稳定性和绝缘性,且采用阳极氧化法生长的有序纳米多孔氧化铝膜制备纳米材料,方法简单、可行性强.当然,模板在制备过程中仅起到模具作用,纳米材料仍然要利用常规的化学反应来制备,如电化学沉积[3,4]、化学镀[5]、溶胶-凝胶沉积[6]、化学气相沉积法[7]等.电化学沉积作为一种传统的材料制备方法,其优点是显而易见的:1工艺简单,技术灵活,容易控制金属离子的沉积量,便于实现工业化生 Vol.19No.6 Nov.2003 科技通报 B ULLETIN OF SCIENCE AND TE C HNOLOGY 第19卷第6期 2003年11月 收稿日期:2002-11-11 基金项目:浙江省自然科学基金资助项目(501071) 作者简介:倪似愚,女,1976年生,安徽淮南人,博士研究生.

Tio2薄膜的制备(DOC)

新能源综合报告 实验题目:Tio2薄膜的制备和微细加工 学院:物理与能源学院 专业:新能源科学与工程 学号:1350320 汇报人: 指导老师:王哲哲

一、预习部分(课前完成) 〔目的〕: 1、用溶胶-凝胶法制备Tio2光学薄膜。 2、学习紫外掩膜辐照光刻法制备Tio2微细图形。 3、微细图形结构及形貌分析。 〔内容〕 1、了解溶胶凝胶制备薄膜的原理。 2、了解常见的微细加工的方法。 3、充分调研文献资料,确定实验方案。 4、实验制备和数据分析。 ①、制备出感光性的Tio2薄膜凝胶,掌握制备工艺。 ②、对Tio2凝胶薄膜进行紫外掩膜辐照。 ③、制备出Tio2微细图形并进行热处理。 ④、测试Tio2微细图形的结构和形貌特征,处理并分析数据。〔仪器〕:(名称、规格或型号) 紫外点光源、马沸炉、提拉机、光学显微镜、磁力搅拌器、紫外可见光分光光度计、提供制备Tio2材料的前驱物,溶剂等。 二、实验原理 1、Tio2的基本性质 Tio2俗称太白粉,它主要有两种结晶形态:锐钛型和金红石型,其中锐钛型二氧化碳活性比金红石型二氧化钛高。

特点:它是一种n型半导体材料,晶粒尺寸介于1~100 nm,TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质。 应用:在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。 纳米TiO2的制备方法: 物理制备方法:主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等; 物理化学综合法:又可大致分为气相法和液相法。目前的工业化应用中,最常用的方法还是物理化学综合法。 2、溶胶-凝胶法的基本概念 溶胶:是指微小的固体颗粒悬浮分散在液相中,并且不停地进行布朗运动的体系。由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。 溶胶分类:根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。 凝胶:是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能量可使之在动力学上稳定。

各种薄膜的区别和应用

| PC、PET、PMMA、PI、PP等膜片材特性及应用 一、PC薄膜 1. 特性 一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高、蠕变性小、尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能、尺寸稳定性、电性能和阻燃性。 使用温度:-30~120℃,厚度:0.07~1.0mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带阻燃PC薄膜广泛用于电子元器件、电器外壳、开关面板、接线盒及充电器外壳、汽车仪器仪表及有阻燃要求的面板印刷等。印刷级磨砂PC薄膜适用于特种印刷、头盔、标牌、铭板、防护罩等。防刮花PC薄膜应用于手机、MP3、MP4、DVD、背光源等电子产品的视窗镜片。 二、PET薄膜 1. 特性 PET膜又名耐高温聚酯薄膜。具有优异的物理性能、化学性能及尺寸稳定性、透明性、可回收性。机械性能优良,其强韧性是所有热塑性塑料中最好的,抗张强度和抗冲击强度比一般薄膜高得多,且挺力好,尺寸稳定,还具有优良的耐热、耐寒性和良好的耐化学药品性和耐油性。 使用温度:-60~120℃,厚度:0.125mm-0.35mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带PET薄膜分为:PET热收缩膜、PET抗静电膜、PET高光亮膜、PET反光膜、化学涂布膜等,其中化学涂布膜主要是为了提高PET薄膜的表面性能,用丙烯酸乳液涂布可提高PET的印刷适性,用聚氨酯水溶液涂布能加强镀铝层与PET基膜的结合力;PET高光亮膜因其优异的机械性能和光学性能主要应用于高档真空镀铝产品和激光防伪基膜;PET反光膜因其优良的光学性能以及耐老化、热稳定好等特点,主要应用于反光广告牌、交通反光标识和工业安全标志等。 三、PMMA薄膜 1. 特性 PMMA膜又名聚甲基丙烯酸甲酯薄膜,无毒环保,具有良好的化学稳定性和耐候性。良好的综合力学性能,在通用塑料中居前列,而且PMMA树脂在破碎时不易产生尖锐的碎片。美国、日本等国家和地区已在法律中作出强制性规定,中小学及幼儿园建筑用玻璃必须采用PMMA树脂。 使用温度:-30~80℃,厚度:0.5mm-8mm,表面效果:光面、沙面、拉丝面 2. 适用范围:艾柯特胶带PMMA薄膜应用范围非常广,已广泛应用汽车工业(信号灯设备、仪表盘等)、医药行业(储血容器等)、工业应用(影碟、灯光散射器)、电子产品的按键(特别是透明的)、日用消费品(饮料杯、文具等)等。同时因其优异的光学特性,白光的穿透性高达92%。PMMA制品具有很低的双折射,特别适合制作影碟和高级光学镜片等。 四、PI薄膜 1. 特性 PI薄膜又称聚酰亚胺薄膜,是一种新型的耐高温有机聚合物薄膜,它是目前世界上性能最好的薄膜类绝缘材料,具有优良的力学性能、电性能、化学稳定性以及很高的抗辐射性能、耐高温和耐低温性能。

TiO2阵列薄膜

TiO2和HfTiO4薄膜在微电子中应用与表征研究 摘要:研究掺TiO2阵列基透明氧化物半导体在微电子的应用,通过低压集中热 反应磁控溅射法制备TiO 2和掺Hf的TiO 2 薄膜,沉积在(100)方向的硅基板上,沉 积后在空气中1000K进行退火处理4小时。通过X衍射(XRD),原子显微镜(AFM),X 射线光电子能谱(XPS)研究薄膜阵列的性质。XRD分析表明经热处理后将增强薄 膜的结晶,TiO 2和斜方HfTiO 2 薄膜出现形状规则的金红石相。AFM图分析表明该 纳米薄膜显示高度有序,整个样品表面上晶粒的尺寸和排列时均匀的。薄膜的化学计量比可以通过XPS检测来确定。 关键字:TiO2 薄膜 HfTiO4阵列透明氧化物半导体 Abstract:We study the possible microelectronics applications of transparent oxide semiconductors based on TiO2-doped matrix. TiO2 and Hf-doped TiO2 thin films were prepared by low pressure hot target reactive magnetron sputtering (LP HTRS) and deposited onto monocrystalline (100) silicon substrate. After deposition thin films were additionally annealed in air for 4 hours at 1000 K. Properties of the thinfilms matrixes were studied by means of X-ray diffraction(XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD investigations have shown that heat treatment enhances the crystallity of the thin films. Well-shaped lines of the rutile phase for TiO2 and the orthorhombic HfIiO4 have appeared. AFM images showed that the nanocrystalline thin films exhibit the high ordering grade. The dimension and arrangement of grains were homogenous on the whole sample surface. The stoichiometry of manufactured thin films was confirmed by XPS examinations. Keywords:TiO2 thin films HfTiO4 matrix transparent oxide semiconductors 1 引言 TiO2是一种重要的无机功能材料,因有氧空位存在而呈N型,二氧化钛有锐钛矿、金红石和板钛矿3 种晶型,可用于制备染料敏化太阳能电池[1]、气敏传感器[2]、光催化薄膜[3]、电介质材料、光裂解水[4]、无机涂料等,应用于水或空气的净化,水分解制氢,无机薄膜太阳能电池等能源与环境领域。1991年,Gr?tzel等[1]利用具有大比表面积TiO2纳米晶多孔薄膜作为光阳极材料制备了电池器件,获得的能量转换效率高达7.1%,这种Gr?tzel电池因其制备简单、材料易得和成本低廉等优点而备受关注。近年来,利用半导体材料降解环境中的污染物已越来越受到人们的关注。TiO2的禁带宽度仅为3.2eV,只能吸收波长小于387.5 nm 的紫外光(约占太阳光的4.5%),而可见光占太阳光的45%,严重限制了其实际应用。而且,在光催化反应中,纯相TiO2产生的光生电子和空穴易在光催化剂体相内和表面快速复合,极大地降低了其量子效率[5–6]。因此,有必要寻找有效的方法来提高其可见光活性和光生载流子的分离效率。TiO2这种半导体材料的光催化性能自上世纪70年代开始受到人们的重视,其中,TiO2是一种理想的半导体光催化剂材料,因为它拥有较宽的禁带宽度,光催化活性高,催化简单有机物彻底,良好的化学稳定性,不会引起二次污染等优势。因此,它被广泛应用于杀菌、除臭、污水处理、空气净化等方面。将TiO2与窄带半导体复合形成异质结可有效解决上面的两个问题,Sun 等[7]制备了CdS/TiO2纳米管阵列,其光电效应是TiO2 纳米管阵列的35 倍;Zhang 等[8]将CdSe 沉积到TiO2纳米管中,显著提高了其可见光下的光电流;Hou等[9]将Cu2O 与TiO2纳米管复合后有效提高了其可见光光催化活性。在可见光照射下,从这些窄带半导体上激

多孔阳极氧化铝为模板电沉积制备纳米线的研究进展解析

Vol.19No.6Nov.2003 科技通报 BULLETINOFSCIENCEANDTECHNOLOGY 第19卷第6期 2003年11月 多孔阳极氧化铝为模板电沉积制备 纳米线的研究进展 倪似愚郑国渠曹华珍郑华均 1 2 2 2 2 (1.中国科学院上海硅酸盐研究所,上海200050;2.浙江工业大学材料科学与工程研究所,浙江310032) 摘要:,究.,其景. 关键词:金属材料;;电沉积 451:A文章编号:1001-7119(2003)06-0466-04 Researchdevelopmentofnano2wiresfabricationbyelectrochemical depositionintoporousanodicalumina NISi2yu ZHENGGuo2qu CAOHua2zheng ZHENGHua2jun ZHANGJiu2yuan (1.ShanghaiInstituteofCeramics,ChaneseAcademyofSciences,Shanghai200050,China; 2.InstituteofMaterialScienceandEngineering,ZhejiangUniversityofTechnology,Hangzho u310032,China) 2 2 2 2 Abstract:Aluminatemplate2synthesizednanostructuredmaterialhasuniqueproperty,which isveryattractiveandhasbeenre2searcheddeeplyinrecentyears.Inthispaper,thelatestresearch progressinthefabricationofvariousordedednano2wirearraysmaterialsbyelectrodepositingi ntotemplate2porousanodicaluminum,includingthepreparationofalumina2template,electr ochemicaltechnologyprocessandmethods,isreviewed.theapplicationprospectsofnano2wir

薄膜面板设计应注意的几个问题

薄膜面板设计应注意的几个问题 文字是操作功能的媒介,直接向操作者提示功能的作用,或对仪器性能作出解说。当采用分立元件时,其面板通常是将文字标注在分立元件的附近。而薄膜开关的面板,一般没有外置的元件,是以色块来表示模拟的键盘或元件的。为此,文字可直接标注在这个功能键盘的色块上,这样更为方便、直观。文字除了上述的特定作用外,在某种程度上起着对产品外观的修饰作用,为此应注重文字的规范化。此外,对文字形体的选择还应兼顾到制作图文的工艺———丝网印刷的特点。因此,对于通常所用的例如仿宋体,因其笔画纤细无力,细微的笔峰较难表现,与色块的力度不相适应;宋体与正楷,古朴有余,新意不足,与新潮的设计风格难以协调。我们建议,采用照相排字法制备文字,并推荐采用黑体与细线圆角体。这种字体笔画横竖等宽,字体方整易辨,与整体设计适应性强,工艺的再现性也较好。 所谓形意图案,是指除法定部分标志符号外,根据仪器某一操作内容的特点而精心设计的一组特定的图形标志,以取代文字的陈述,形意图案是近年来在产品外观上逐步得到应用的一种以图代文的解说形式。由于薄膜面板得天独厚的条件,使它能充分地发挥形意图案的效果,从而使外观更具有时代的气息。形意图案的特点是寓意形象,简练明快,表达力强,增进记忆,能起到文字注释难以起到的效果。为此在设计时,也要遵循这些原则,图案切勿牵强附会,使人百思不得

其解,这样反而会影响对仪器的使用。初用形意图案时,宜再辅以功能的文字,待为人们所接受,约定俗成后,再单独运用。 由于薄膜开关的面板是采用透明状的聚碳酸脂(PC)经特殊表面处理的材料制作而成的,因此凡是仪器的显示部分,可与面板制成一个整体,无须挖孔开窗。这是金属面板无法实现的。透明窗孔有两种类型:一种是供显示元件指示参数用,称为显示窗;另一种是供发光二极管(LED)指示之用,以提供操作元件的执行情况,称为指示窗。各透明窗宜设计成透明有色,这样可隐蔽底部的元件,活跃面板的气氛,区分动作的功能。选择适当的透明色彩,还可以起到对发光数显示元件的滤色增光的作用,使数字显示更为清晰。转载请留下链接薄膜面板https://www.doczj.com/doc/0d14559684.html, 谢谢。

电化学沉积

金属电沉积理论 一.研究概况 在电化学中,金属的电化学沉积学是一种最古老的学科。在电场的作用下,金属的电沉积发生在电极和电解质溶液的界面上,沉积过程含有相的形成现象。 首先,在金属的电化学沉积实验的研究时间要追溯到19世纪,并且在引进能产生直流电的电源以后,电镀很快成为一种重要的技术。电镀被用来制造各种不同的装饰性和功能性的产品,尽管在开始的早期,电镀技术的发展和应用建立是在经验的基础上。 金属电沉积的基本原理就是关于成核和结晶生长的问题。1878年,Gibbs在他的著名的不同体系的相平衡研究中,建立了成核和结晶生长的基本原理和概念。20世纪初,Volmer、Kossel、Stransko、Kaischew、Becker和Doring用统计学和分子运动模拟改进了基本原理和概念。按照这些早期的理论,成核步骤不仅要求一个新的三维晶体成核,而且完美单晶表面的层状二维生长。对于结晶理论的一个重要改进是由Avrrami提出的结晶动力学,他认为在成核和生长过程中有成核中心的重复碰撞和相互交迭。在1949年,Frank提出在低的过饱和状态下的一个单一晶面成长会呈螺旋状生长。Cabrera和Frank等考虑到在成长过程中吸附原子的表面表面扩散作用,完善了螺旋成核机理。 20世纪二三十年代,Max、V olmer等人对电化学结晶进行了更为广泛的基础研究。Erday-gruz和Volmer是第一次认识到过饱和度与过电位,稳态电流密度和由电荷转移引起的电结晶过电位之间的关系。 20世纪三四十年代,Finch和他的同事做了大量的关于多晶电化学沉积的实验,研究了决定结晶趋向与金属薄膜的组织结构的主要因素。在这一时期,Gorbunova还研究了底层金属与电解质溶液组成对电结晶过程的影响,并发现了由于有有机添加剂的吸附作用可能导致金属晶须的生长。 1945年,Kaischew对电结晶理论做了重大改进。考虑到单一晶体表面上金属原子的结合和分开的频率,可利用分子运动学模拟电化学结晶过程。这项工作对电结晶理论的发展有着重大的影响。 20世纪50年代是在电化学结晶理论与实验技术取得重大进步的阶段。Fincher等人完成在实际的电镀体系中抑制剂对电结晶成核与生长的影响的系统研究,并按照其微观结构和形态对金属电沉积进行了分类。Piontell等人对基体的取向作用和在金属沉积系统中同向和异向的金属沉积的阴离子的特性进行了进一步的研究。Kardos、Kaischew等人利用新的实验技术证实Volmer`s的三维形核的正确性。Wranglen,Vermilyea等人对结晶树枝状生长进行了深入的研究,提出了新的电化学结晶的理论模型。 20世纪60年代初,Flischman和Thirsh发展了在电结晶状态下多重成核与生长的一般

TiO2薄膜制备与性能解读

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 国内外研究文献综述 (5) 2.1 TiO 的结构 (5) 2 薄膜亲水性原理 (5) 2.2 TiO 2 薄膜结构及其性能的影响 (6) 2.3 相关参数对TiO 2 2.3.1 晶粒尺寸 (6) 2.3.2 结晶度和晶格缺陷 (6) 2.3.3表面积和表面预处理 (6) 2.3.4 表面羟基 (6) 2.3.5 薄膜厚度 (7) 3 实验部分 (8) 3.1 实验系统介绍 (8) 3.2 衬底的选择及清洗 (9) 薄膜的实验步骤 (9) 3.3 直流磁控溅射制备TiO 2 3.4 亲水性测试 (9) 4 实验结果及参数讨论 (10) 薄膜的工作曲线的影响 (10) 4.1 氧流量对TiO 2 4.2 溅射功率的选择及其对薄膜的性能影响 (11) 4.3 总气压对薄膜性能的影响 (13) 4.4 氧氩比对薄膜亲水性的影响 (13) 4.5 基片温度对薄膜性能的影响 (14) 4.6 热处理对薄膜性能的影响 (16) 结论 (18) 谢辞 (19) 参考文献 (20)

直流磁控溅射法制备TiO2薄膜 摘要:本文利用直流磁控溅射法在不同条件下制备玻璃基TiO2薄膜样品,并检测了薄膜的超亲水性。研究了沉积条件例如溅射总气压,氧气和氩 薄膜最佳性气的相对分压,溅射功率,基片温度和后续热处理对TiO 2 薄膜是无定型且能的影响。实验结果显示:在较低温度下沉积的TiO 2 亲水性较差。相反,在4000C到5000C范围内退火过后,薄膜表面呈 现超亲水性能。本文在实验中获得的最佳制备条件为:溅射功率为 94 W,溅射气压在2.0Pa,氧氩比是2:30,基片温度为400 0C,最后 在空气气氛中退火,温度为4500C。 关键词:直流磁控溅射;TiO2薄膜;超亲水性;退火温度

薄膜开关材料

薄膜开关材料 一、面板(印刷层) 1、材料的种类:面板层的材料要求,除了平整性与印刷适应性外,更重要的是要具有可挠性及高弹性的特点。常用的材料见下表: 名称使用温度厚度(mm)表面效果理化特性价格适用范围 聚氯乙烯PVC 60℃0.175~0.5亚光/亮光 常温下对酸、碱和盐类稳定。 耐磨性好,耐燃自熄,消声 消震,电绝缘性好。热稳定 性较差 低廉普通标牌、面板 聚碳酸脂 PC -60~120℃0.175~0.25亚光/亮光 是制作薄膜开关电路最理想 的基材。 其中有纹理PET适合对表面 要求较高或具有液晶显示窗 的产品。 适中 适用范围最为广泛, 除可满足大多数薄 膜开关面板的要求 外,其中光面PC的 高透光率更可满足 带液晶显示窗的要 求。 聚脂PET -30~120℃0.1~0.2亚光/亮光 耐药品性良好,不溶于一般 有机溶剂,不耐碱。具有优 良的机械性能、电性能、刚 性、硬度和热塑性塑料中最 大的强韧性,吸水性低,耐 磨损、耐摩擦性优良,尺寸 稳定性高。拉伸强度能与铝 膜媲美,大大高于PC、PVC。 适中,但 经过表面 纹理处理 较贵 是制作薄膜开关电 路最理想的基 材。其中有纹理 PET适合对表面要 求较高或具有液晶 显示窗的产品。 2、材料的各项特性: 项目聚氯乙烯(PVC)聚碳酸酯(PC)聚酯(PET 弯折寿命差较好优良

耐化学腐蚀能力较好一般优良最高耐温60℃140℃160℃ 耐磨损能力差较好优良(纹理膜)绝缘性能极好较差优良 透明度一般较好极好压鼓清晰度优良优良优良 温度级别压鼓时有限制优良优良 抗紫外线能力是否否 3、材料的比较: 适合制作薄膜面板的材料主要有:PVC(聚氯乙烯)、PC(聚碳酸酯)、PET(聚酯),厚度一般分为0.125\0.175\0.25三种,从表面分为砂面、亚光面和光面三种。 PC材料的物理特性与化学特性的综合指标较好,其适应的油墨也较广泛,是薄膜开关面板层应用最为普遍的材料。PC材料有砂而与光面之区分,选择砂面状材料的理由是因为薄膜开关的使用多是电子整机产品,作为操纵控制系统的面板不希望受光线的干扰,而砂面状的表面只呈漫反射状,不会产生明亮的反;同时,由于表面呈紊乱的砂粒状,具有掩蔽划痕的作用,与之相反,光而材料就不具备以上特点。但是作为光面材料,已经在背面印刷后,色彩会显得更为鲜艳夺目,在装饰性要求较强且又不需经常触动的场合,往往选择光面材料制作面板,或者由于某些显示区域如LCD液晶显示屏的特殊需要而考虑,选用光面材料较为有利。 PVC薄膜材料的价格较低,约为PC材料的二分之一,当生产民用普及型的产品,如果选择PVC材料,可降低生产成本,同时PVC材料的延展性较好,可采用冷压加工立体的图文。光面PVC 板材一般的厚度在0.5毫米以上,两面约有PE或水胶纸保护,大部份用于制作装饰性的面板;砂面的PVC材料一般厚度在0.3毫米以下,它一般以定尺的片材供应,没有卷材。

二硫化钼电沉积suppt

Electronic Supplementary Information Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water Daniel Merki, Stéphane Fierro, Heron Vrubel, Xile Hu* Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC-LSCI, BCH 3305, Lausanne, CH 1015, Switzerland * To whom correspondence should be addressed. E-mail: xile.hu@epfl.ch S1

Chemicals and Reagents All manipulations were carried out under an inert N2(g) atmosphere using glovebox techniques unless otherwise mentioned. Unless noted, all other reagents were purchased from commercial sources and used without further purification. Physical methods GC measurement was conducted on a Perkin-Elmer Clarus 400 GC with a FID detector a TCD detector and a 5? molecular sieves packed column with Ar as a carrier gas. UV-Vis measurements were carried out using a Varian Cary 50 Bio Spectrophotometer controlled by Cary WinUV software. SEM secondary electron (SE) images were taken on a Philips (FEI) XLF-30 FEG scanning electron microscope. XRD measurements were carried out on a PANalytical X'Pert PRO diffractometer using Cu Kα1 radiation (0.1540 nm). Electrochemical measurements were recorded by an IviumStat electrochemical analyzer or an EG&G Princeton Applied Research Potentiostat/Galvanostat model 273. A three-electrode configuration was used. For polarization and electrolysis measurements, a platinum wire was used as the auxiliary electrode and an Ag/AgCl (KCl saturated) electrode was used as the reference electrode. The reference electrode was placed in a position very close to the working electrode with the aid of a Luggin tube. For rotating disk measurements, an Autolab Rotating Disk Electrode assembly was used. Potentials were referenced to reversible hydrogen electrode (RHE) by adding a value of (0.197 + 0.059 pH) V. The polarization curves measured under one atmosphere of H2 are nearly identical to those collected in the absence of external H2, indicating that the potentials measured in the latter experiments are close to the thermodynamically-calibrated values. Ohmic drop correction was done prior to Tafel analysis. Film thickness was measured using an Alpha Step S2

TiO2薄膜的结构及性能研究

钛氧膜的结构及性能研究 1 前言 TiO2有独特的光学、电学及化学性质,已广泛用于电子、光学和医学等方面。例如,作为氧传感器用于湿敏、压敏元件及汽车尾气传感器;作为光催化剂,可实现有机物的光催化降解,具有杀菌、消毒和处理污水等作用;利用其亲水亲油的“双亲”特性,可使镀有钛氧膜的物体具有自清洁作用,从而达到防污、防雾、易洗、易干等目的;而金红石相钛氧膜是很好的人工心脏瓣膜材料。对于TiO2的研究主要集中在制备、结构、性能和应用等方面。在TiO2性能方面的研究,尤以对其生物相容性和光催化性能的研究最为丰富。 Ti-O膜作为生物活性材料在生物体内可以长期稳定存在且不与生物组织发生物化反应,即具有良好的生物相容性,但其缺点在于植入生物体内后,不能有效地在材料表面形成有正常的细胞并维持长期的活性。国内外很多的研究者采用各种表面改性工艺方法,对材料表面进行生物活化或有机/无机复合等使材料表面挂带—COOH、—OH、—NH2等反应性基团,然后通过形成共价键使生物分子如蛋白质、多肽、酶和细胞生长因子等固定在材料表面,充当邻近细胞、基质的配基或受体,在材料表面形成一个能与生物体相适应的过渡层,以达到活化钛氧膜表面的效果。目前,对钛氧膜的表面改性方法主要包括离子表面注入法,碱处理以及酸活化处理等方法。 作为半导体光催化剂,纳米TiO2薄膜可以利用部分太阳光能,使反应在常温常压下进行,并且反应速度快,对污染物治理彻底,没有二次污染,十分符合环境治理中高效率低消耗的要求。加之TiO2具有高活性、安全无毒、化学性质稳定(耐化学及光腐蚀)、难溶、成本低等优点,因此被公认为是环境治理领域中最具开发前途的环保型光催化材料。TiO2作为光催化剂最初采用的是悬浮相,但这种悬浮相的光催化剂存在难搅拌、易失活、易团聚和回收困难等缺点,严重地限制了它的应用和发展。制备负载型光催化剂是解决这一问题的有效办法,TiO2的薄膜型光催化剂已引起人们的极大兴趣。 2 氧化钛的能带结构与晶体结构 2.1氧化钛的能带结构 氧化钛的能带结构如图1-1所示[1]。以金红石相为例,锐钛矿相的结构基本与其一致。氧化钛能带结构是沿布里渊区的高对称结构,3d轨道分裂为e g与t2g 两个亚层,但它们全是空的轨道,电子占据s和p能级;费米能级处于s、p能带和t2g能带之间;最低的两个价带相应于O2s能级。接下来6个价带相应于O2s 能级,最低的导带是由O3p产生生的,更高的导带能级是由O3p产生的。利用能带结构模型计算氧化钛晶体的禁带宽度为3.0(金红石相)、3.2(锐钛矿相)。

电沉积

镍电解沉积 镍电解沉积(electrowinning of nickel) 采用不溶阳极,在直流电作用下使硫酸镍或氯化镍溶液中的镍离子在电解槽阴极上呈金属镍沉积的镍电解方法。此法于1960年在芬兰奥托昆普公司(Outok—umpuOy)实现工业化,中国于20世纪70年代开始用于工业生产。 硫酸镍溶液电解沉积以铅锑合金为不溶性阳极,镍片为阴极,净化后的硫酸镍溶液作电解液,电解沉积在隔膜电解槽内进行。当往电解槽通直流电时,在阴极上发生金属镍沉积的反应:

在新的铅锑合金阳极表面上,铅能生成PbO 而起保护层作用,使阳极变为不溶阳极。 2 净化后的电解液用泵输送,通过一台热交换器进入电解槽。电解液的温度约为336K,pH为3.2,镍离子浓度75g/L,并含有硫酸钠及硼酸。电解液进入阴极室后,pH升至4.0。电解沉积过程平均电流密度为183A/m2,电流效率为94%。阴、阳极室保持有一定的液面差,使阴极液通过隔膜流入阳极室,变成阳极液的一部分。阳极上有氧析出,导致阳极液的H+增加。阳极液一般含游离酸40g/L,需排出一部分送浸出车间用于粗镍或镍锍的浸出。阳极上覆盖聚乙烯薄膜罩,用以收集析出的氧气。产品阴极镍可达到一号镍标准。 氯化镍溶液电解沉积挪威克里斯蒂安松(Kris—tiansand)镍精炼厂于20世纪70年代建成了一座年产6800t镍的氯化镍溶液

电积工厂。以石墨或具有贵金属氧化物活性层的钛板为不溶阳极,镍片为阴极,阴极反应与硫酸镍电积的相同,在阳极上发生生成氯气的反应: 电积的电流密度一般为220~230A/m2,也可高达600A/m2,电流效率可达99.97%。用玻璃纤维强化聚脂(FRP)或其他材料制作的阳极罩来收集氯气送浸出车间作氧化剂或制盐酸。

TiO2薄膜的结构及性能研究

钛氧膜的结构及性能研究 摘要:主要介绍关于钛氧膜的能带结构,晶体结构以及钛氧膜的生物相容性能和表面活性等问题,还有钛氧膜的化学处理方法。 关键字:钛氧膜结构生物相容性表面活性 TiO2有独特的光学、电学及化学性质,已广泛用于电子、光学和医学等方面。例如,作为氧传感器用于湿敏、压敏元件及汽车尾气传感器;作为光催化剂,可实现有机物的光催化降解,具有杀菌、消毒和处理污水等作用;利用其亲水亲油的“双亲”特性,可使镀有钛氧膜的物体具有自清洁作用,从而达到防污、防雾、易洗、易干等目的;而金红石相钛氧膜是很好的人工心脏瓣膜材料。对于TiO2的研究主要集中在制备、结构、性能和应用等方面。在TiO2性能方面的研究,尤以对其生物相容性和光催化性能的研究最为丰富。 Ti-O膜作为生物活性材料在生物体内可以长期稳定存在且不与生物组织发生物化反应,即具有良好的生物相容性,但其缺点在于植入生物体内后,不能有效地在材料表面形成有正常的细胞并维持长期的活性。国内外很多的研究者采用各种表面改性工艺方法,对材料表面进行生物活化或有机/无机复合等使材料表面挂带—COOH、—OH、—NH2等反应性基团,然后通过形成共价键使生物分子如蛋白质、多肽、酶和细胞生长因子等固定在材料表面,充当邻近细胞、基质的配基或受体,在材料表面形成一个能与生物体相适应的过渡层,以达到活化钛氧膜表面的效果。目前,对钛氧膜的表面改性方法主要包括离子表面注入法,碱处理以及酸活化处理等方法。 1 氧化钛的能带结构与晶体结构 1.1氧化钛的能带结构 氧化钛的能带结构如图1-1所示[1]。以金红石相为例,锐钛矿相的结构基本与其一致。氧化钛能带结构是沿布里渊区的高对称结构,3d轨道分裂为e g与t2g 两个亚层,但它们全是空的轨道,电子占据s和p能级;费米能级处于s、p能带和t2g能带之间;最低的两个价带相应于O2s能级。接下来6个价带相应于O2s 能级,最低的导带是由O3p产生生的,更高的导带能级是由O3p产生的。利用能带结构模型计算氧化钛晶体的禁带宽度为3.0(金红石相)、3.2(锐钛矿相)。

半导体技术-薄膜沉积

薄膜沉积 薄膜的沉积,是一连串涉及原子的吸附、吸附原子在表面的扩散及在适当的位置下聚结,以渐渐形成薄膜并成长的过程。 分类及详述: 化学气相沉积(Chemical Vapor Deposition)——CVD 反应气体发生化学反应,并且生成物沉积在晶片表面。 物理气相沉积(Physical Vapor Deposition)——PVD 蒸镀(Evaporation) 利用被蒸镀物在高温(近熔点)时,具备饱和蒸汽压,来沉积薄膜的过程。 溅镀(Sputtering) 利用离子对溅镀物体电极(Electrode)的轰击(Bombardment)使气相中具有被镀物的粒子(如原子),沉积薄膜。 化学气相沉积 (Chemical Vapor Deposition;CVD) 用高温炉管来进行二氧化硅层的成长,至于其它如多晶硅 (poly-silicon)、氮化硅 (silicon-nitride)、钨或铜金属等薄膜材料,要如何成长堆栈至硅晶圆上? 基本上仍是采用高温炉管,只是因着不同的化学沉积过程,有着不同的工作温度、压力与反应气体,统称为「化学气相沉积」。 既是化学反应,故免不了「质量传输」与「化学反应」两部分机制。由于化学反应随温度呈指数函数变化,故当高温时,迅速完成化学反应,对于化学气相沉积来说,提高制程温度,容易掌握沉积的速率或制程的重复性。 高温制程有几项缺点: 1.高温制程环境所需电力成本较高。 2.安排顺序较后面的制程温度若高于前者,可能破坏已沉积材料。 3.高温成长的薄膜,冷却至常温后,会产生因各基板与薄膜间热胀缩程度不同的残留应力 (residual stress)。 所以,低制程温度仍是化学气相沉积追求的目标之一,如此一来,在制程技术上面临的问题及难度也跟着提高。 按着化学气相沉积的研发历程,分别简介「常压化学气相沉积」、「低压化学气相沉积」及「电浆辅助化学气相沉积」: 1.常压化学气相沉积(Atmospheric Pressure CVD;APCVD) 最早研发的CVD系统,是在一大气压环境下操作,设备外貌也与氧化炉管相类似。欲成长材料化学蒸气自炉管上游均匀流向硅晶,至于何以会沉积在硅晶表面,可简单地以边界层 (boundary layer) 理论作定性说明: 当具黏性的化学蒸气水平吹拂过硅芯片时,硅芯片与炉管壁一样,都是固体边界,因靠近芯片表面约1mm的边界层内速度大量变化(由边界层外缘蒸气速度减低到芯片表面速度为零),会施予一拖曳外力,拖住化学蒸气分子;同时因硅芯片表面温度高于边界层外缘蒸气温度,芯片将释出热量,来供给被拖住的化学蒸气分子在芯片表面完成薄膜材质解离析出所需的能量。所以基本上,化学气相沉积就是大自然「输送现象」(transport phenomena) 的应用。 常压化学气相沉积速度颇快,但成长薄膜的质地较为松散。另外若晶圆不采水平摆放的方式(太费空间),薄膜厚度均匀性 (thickness uniformity)不佳。 2.低压化学气相沉积(Low Pressure CVD;LPCVD) 为进行50片或更多晶圆批次量产,炉管内晶圆势必要垂直密集地竖放于晶舟上,这明显衍生沉积薄膜的厚度均匀性问题;因为平板边界层问题的假设已不合适,化学蒸气在经过第一片晶圆后,黏性

相关主题
文本预览
相关文档 最新文档