当前位置:文档之家› 坐标系转换问题

坐标系转换问题

坐标系转换问题
坐标系转换问题

坐标系转换问题--WGS84坐标 BJ54 BJ80

2012-10-18 14:37

对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。

我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多啰嗦。

那么,为什么要做这样的坐标转换呢?

因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。

下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。

说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563

之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。

dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下:

WGS84>北京54:DA:-108;DF:0.0000005

WGS84>西安80:DA: -3 ;DF: 0

椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是:

第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。)

第二步:计算不同坐标系三维直角坐标值。计算公式如下:

X=(N+H)cosBcosL

Y=(N+H)cosBsinL

Z=[N(1-e2)+H]sinB

不同坐标系对应椭球的有关常数详见下表:

(注:X、Y、Z为大地坐标系中的三维直角坐标;A为大地坐标系对应椭球之长半轴;e2为大地坐标系对应椭球第一偏心率;N为该点的卯酉圈曲率半径,N=A/(1-e2sin2B)1/2;H=h+x,该处H为BJ54或西安80坐标系中的大地高)

一、概述GPS及其应用

GPS即全球定位系统(Global Positioning System)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成的卫星导航定位系统。作为新一代的卫星导航定位系统经过二十多年的发展,已成为在航空、航天、军事、交通运输、资源勘探、通信气象等所有的领域中一种被广泛采用的系统。我国测绘部门使用GPS也近十年了,它最初主要用于高精度大地测量和控制测量,建立各种类型和等级的测量控制网,现在它除了继续在这些领域发挥着重要作用外还在测量领域的其它方面得到充分的应用,如用于各种类型的工程测量、变形观测、航空摄影测量、海洋测量和地理信息系统中地理数据的采集等。GPS以测量精度高;操作简便,仪器体积小,便于携带;全天候操作;观测点之间无须通视;测量结果统一在WGS84坐标下,信息自动接收、存储,减少繁琐的中间处理环节、高效益等显著特点,赢得广大测绘工作者的信赖。

二、GPS测量常用的坐标系统

1.WGS-84坐标系

WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的启始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。采用椭球参数为:a = 6378137m f = 1/298.257223563

2.1954年北京坐标系

1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a = 6378245m f = 1/298.3.我国地形图上的平面坐标位置都是以这个数据为基准推算的。

3.地方坐标系(任意独立坐标系)

在我们测量过程中时常会遇到的如一些某城市坐标系、某城建坐标系、某港口坐标系等,或我们自己为了测量方便而临时建立的独立坐标系。

三、坐标系统的转换

在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意)独立坐标系为基础的坐标数

据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。

目前一般采用布尔莎公式(七参数法)完成WGS-84坐标系到北京54坐标系的转换,得到北京54坐标数据。

XBJ54=XWGS84+ KXWGS84+Δx+YWGS84ξZ"/ρ"-ZWGS84ξY"/ρ"

YBJ54=YWGS84+ KYWGS84+ΔY-XWGS84ξZ"/ρ"+ZWGS84ξX"/ρ"

ZBJ54=ZWGS84+ KZWGS84+ΔZ+XWGS84ξY"/ρ"-ZWGS84ξX"/ρ"

四、坐标系的变换

同一坐标系统下坐标有多种不同的表现形式,一种形式实际上就是一种坐标系。如空间直角坐标系(X,Y,Z)、大地坐标系(B,L)、平面直角坐标(x,y)等。通过坐标统的转换我们得到了BJ54坐标系统下的空间直角坐标,我们还须在BJ54坐标系统下再进行各种坐标系的转换,直至得到工程所需的坐标。

1.将空间直角坐标系转换成大地坐标系,得到大地坐标(B,L):

L=arctan(Y/X)

B=arctan {(Z+Ne2sinB)/(X2+Y2)0.5}

H=(X2+Y2)0.5sinB-N

用上式采用迭代法求出大地坐标(B,L)

2.将大地坐标系转换成高斯坐标系,得到高斯坐标(x,y)

按高斯投影的方法求得高斯坐标,x=F1(B,L),y=F2(B,L)

3.将高斯坐标系转换成任意独立坐标系,得到独立坐标(x',y')

在小范围内测量,我们可以将地面当作平面,用简单的旋转、平移便可将高斯坐标换成工程中所采用坐标系的坐标(x',y'),

x'=xcosα+ysinα

y'=ycosα-xsinα

五、小结

由于GPS测量的种种优点,GPS 定位技术现已基本上取代了常规测量手段成为了主要的技术手段,市面上出现了许多转换软件和不同型号的GPS数据处理配套软件(包含了怎样将GPS测量中所得到的WGS-84转换成工程中所须坐标的功能),万变不离其宗,只要我们明白了WGS-84转换到独立坐标系的转换过程,便可很容易的使用该软件了,甚至可以自己编写程序,将WGS-84坐标转换成独立坐标系坐标。

本文主要是介绍坐标系统、坐标系的转换过程,文中提及的符号及具体转换方法请参阅相关文献。

参考文献

[1] 徐绍铨等。GPS测量原理及应用(3S丛书)。武汉测绘科技大学出版社。1998.

[2] 朱华统等。GPS坐标系统的变换。北京测绘出版社。1994.

[3] 武汉测绘学院等。控制测量学(下)。测绘出版社。1988.

[4] 杨德麟等。大比例尺数字测图的原理方法与应用。清华大学出版社。1998

坐标系转换问题

坐标系转换问题--WGS84坐标 BJ54 BJ80 2012-10-18 14:37 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多啰嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL Y=(N+H)cosBsinL Z=[N(1-e2)+H]sinB

坐标系向国家大地坐标系的转换完整版

坐标系向国家大地坐标 系的转换 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

北京54坐标系向国家2000大地坐标系的转换 摘要:2000国家坐标系统提高了测量的绝对精度,并且可以快速获取精确的三维地心坐标,能够提供高精度、地心、实用、统一的大地坐标系,自此以后的测量成果要求坐标系统采用2000国家大地坐标系,本文就北京54坐标系和2000国家大地坐标系原理和转换方法进行简单的分析。 1引言大地坐标系是地球空间框架的重要基础,是表征地球空间实体位置的三维参考基准,科学地定义和采用国家大地坐标系将会对航空航天、对地观测、导航定位、地震监测、地球物理勘探、地学研究等许多领域产生重大影响。建立大地坐标框架,是测量科技的精华,与空间导航乃至与经济、社会和军事活动均有密切关系,它是适应一定社会、经济和科技发展需要和发展水平的历史产物。过去受科技水平的限制,人们不得不使用经典大地测量技术建立局部大地坐标系,它的基本特点是非地心的、二维使用的。采用地心坐标系,即以地球质量中心为原点的坐标系统,是国际测量界的总趋势,世界上许多发达和中等发达国家和地区多年前就开始采用地心坐标系,如美国、加拿大、欧洲、墨西哥、澳大利亚、新西兰、日本、韩国等。我国也于2008年7月开始启用新的国家大地坐标系—2000国家大地坐标系。 2北京54系我国北京54坐标系是采用前苏联的克拉索夫斯基椭球参数(长轴6378245ra,短轴635686m,扁率1/298.3),并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。其坐标的原点不在北京,而是在前苏联的普尔科沃。

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

高中物理质点、参考系和坐标系的知识点

高中物理质点、参考系和坐标系的知识点 1质点 1.定义:用来代替物体的有质量的点,是一个理想化的模型。 2.原则:物体的大小和形状对研究问题没有影响或影响很小可以忽略不计。 3.内容: (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 1参考系、坐标系 1、参考系定义:为了研究物体的运动而假定不动的物体。 2、注意点:运动的描述是相对的,因参考系的选取的不同而不同。参考系的选择以研究问题的方便为原则。 3、坐标系:为了定量描述物体的位置及位置的变化而建立的参考系。 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系?

1坐标系 为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。坐标系是在参考系的基础上抽象出来的概念,是抽象化的参考系。 (1)坐标系即参考系的具体化,是在参考系上建立的,坐标系相对参考系是静止的。 具体有: ①一维坐标:描述物体在一条直线上运动,即物体做一维运动时,可以以这条直线为x轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。如图1—1—1所示,若某一物体运动到A点,此时它的位置坐标XA=3m,若它运动到B点,则此时它的坐标XB=-2m(“-”表示沿X轴负方向)。 ②二维坐标:平面直角坐标,描述物体在一平面内运动,即二维运动时,需采用两个坐标确定它的位置③三维坐标:立体坐标系,描述物体在空间的运动。 (2)GPS定位仪——确定地球物体的具体方位,提供准确时间。 要注意以下几点: (a)坐标系相对参考系是静止的。 (b)坐标的三要素:原点、正方向、标度单位。 (c)用坐标表示质点的位置。 (d)用坐标的变化描述质点的位置改变 1机械运动1、定义:一个物体相对于另一个物体位置发生变化(注意机械运动是相对的)。 2、运动形式:平动(物体上各点运动形式相同)、转动、振动(围绕某点往复运动)等。

参考系坐标系及转换汇总

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系 天球坐标系 天球球面坐标系 坐标系 地球直角坐标系 地球坐标系 地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交 点).

2 天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。

表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图

岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这 使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为 3 地球坐标系

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

质点参考系和坐标系教案

第一节质点参考系和坐标系 …………石家庄五中闫会波一、教学目标 1.知识与技能: (1)理解质点的概念.能明确物体在什么情况下可以看作质点. (2)知道参考系的概念.知道选取参考系时,要考虑到使运动的描述尽可能简单. (3)知道坐标系的概念.能够用坐标系描述物体的位置和位置的变化. 2.过程与方法: (1)领悟质点概念的提出和分析、建立的过程 (2)物理模型的特点。 (3)数学工具是物理研究的帮手。 3.情感态度与价值观: (1)通过提问,观看ppt使学生保持对科学的求知欲。 (2)形成严谨求实的科学态度 (3)研究问题中突出主要矛盾的哲学价值观 二、教学重点、难点 1.教学重点 重点:质点概念的理解、参考系的选取、坐标系的建立 2.教学难点及其教学策略: 难点:理想化模型——质点的建立。 三.教学过程 引入新课 呈现“神舟”6号从发射到返回舱成功回收的主要阶段。 讲述:飞船在茫茫太空遨游,如何描述它的运动呢?文学家、艺术家采用形象的手法。“凌云戏月游银汉,转瞬翔天过太空”,短短一两句话就勾勒出航天飞船的雄姿。 世界万物都在运动,对于不同物体的运动,不同的人(如文学家、艺术家等)有不同的描述,请举例说明。 那么科学家怎样描述物体的机械运动?

著名物理学家海森伯曾说过:“为了理解现象,首要条件就是引入适当的概念。只有借助于正确的概念,我们才能真正知道观察到了什么。” 讲授新课 (一)、物体与质点 1、观看雄鹰展翅的图片。 (1)要准确描述雄鹰身上各点的位置随时间的变化不是容易事,困难和麻烦出在哪儿呢? (2)如果我们研究雄鹰从石家庄出发到飞往北京所需要的时间,需要了解它身体各部分运动的区别吗? 在物理学中,突出问题的主要方面,忽略次要因素,经过科学抽象而建立理想化的“物理模型”,并将其作为研究对象,是经常采用的一种科学研究方法。 教师结论:在某些情况下,根据所要研究问题的性质,可以忽略某些物体的大小和形状。2、提问: (1)研究地球绕太阳的公转能否把地球视为一个点呢? (2)一列沿京石铁路运动的火车,若研究它从石家庄到北京的运动能否把它简化为一个点? (3)研究地球上各处的季节变化时,能否把它视为质点呢? (4)研究火车通过南京长江大桥的运动时,能否把它简化为一个质点? 3、通过以上几个问题请同学们进一步讨论: (1)物体是否在所有的情况下都能看作质点? (2)物体看作质点的条件是什么? 物体看做质点的条件:由问题的性质决定。 (1)物体的各部分的运动情况都相同,此物体可以当作质点。 (2)物体的形状大小远远小于所研究的距离,此物可当作质点。

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

参考系和坐标系1

第一章运动的描述 ●同步导学● 第1节质点参考系和坐标系 理解领悟 要描述物体的运动,首先要对实际物体建立一个物理模型,最简单的是质点模型。由于运动的相对性,描写质点的运动时,必须明确所选择的参考系。为了准确地、定量地描述质点的运动,还要建立坐标系。质点、参考系和坐标系是描述物体运动的基础知识。本节知识是学习后面知识的基础,也是整个力学的基础。 1.为什么要引入“质点”这一概念? 物体的运动通常是很复杂的。雄鹰拍打着翅膀在空中翱翔,它的身体在向前运动,但它的翅膀在向前运动的同时还在上下运动;足球在运动场上飞滚,它在向前运动的同时还在不断滚动;呼啸而过的火车,它的车身在向前运动,而车轮在向前运动的同时还在不断滚动,它的发动机和传动机构的运动就更为复杂;舞蹈演员的优美舞姿,令人眼花缭乱,叹为观止。显然,要详细而准确地描述这些物体的运动,是很困难的,并不是一件容易的事。 那么,问题出在哪里呢?原来,物体都有一定的大小和形状,而物体各部分的运动情况一般是不同的,这就导致了描述物体运动的复杂性。假如物体各部分的运动情况都相同,那么在我们研究物体的运动状态时,不就可以用一个“点”来代替它了吗?即使物体各部分的运动情况并不相同,但在某些情况下,我们需要了解物体各部分运动的区别吗?例如,研究地球绕太阳的公转,研究火车的整体运动,等等,我们并不需要了解物体各部分运动的区别。这时,物体的大小和形状并不重要,可以不予考虑,不也就可以用一个“点”来代替它了吗? 可见,在某些情况下,我们可以把物体简化为一个有质量的点,从而引入“质点”这一概念。用来代替物体的有质量的点叫做质点,即质点是没有大小和形状,而具有物体全部质量的点。 2.什么样的物体可以看成质点? 一个物体能否看成质点是相对的,是由问题的性质决定的,要视具体情况而定,不能绝对化。例如,在研究地球绕太阳的公转时,地球能够看成质点;但在研究地球的自转时,地球就不能看成质点了。 物体能否看成质点,与物体本身的大小没有必然的关系。很大的物体可能被看成质点,而很小的物体却不一定能够被看成质点。例如,上面提到的研究地球绕太阳的公转时,地球尽管很大,仍然能够看成质点;但在研究双原子分子的振动及转动时,小小的份子却就不能看成质点了。 一个物体能否被看成质点,一般情况下与物体做直线运动还是曲线运动没有关系,即物体做直线运动或曲线运动时,都可能被看成质点。例如,研究运动员在400m赛跑中的速度变化时,无论是在直道上还是在弯道上,都可以将运动员看成质点。 总之,在研究物体的运动时,若可以不考虑物体的大小和形状,就可以将物体看成质点。

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

参考系和坐标系的理解

第01章第01节对质点、参考系和坐标 系的理解 质点 (1)用来代替物体的有质量的点叫做质点. (2)研究一个物体的运动时,如果物体的形状和大小对问题的影响可以忽略,就可以看做质点. (3)质点是一种理想化模型,实际并不存在.【例1】下列关于质点的说法中,正确的是( ) A.质点是一个理想化的模型,实际并不存在 B.因为质点没有大小,所以与几何中的点没有区别 C.凡是轻小的物体,都可看作质点 D.如果物体的形状和大小在所研究的问题中属于次要因素,就可以把物 体看作质点 解析质点是一个理想化的物理模型,实际上不存在.物体能否看成质点要满足D项的条件,A、D正确;质点是有质量的,它是人们为了研究问题的方便而抽象出来的点,与物体大小没有直接关系,B、C项错. 答案AD 【变式题组】1.下列关于运动的说法中,正确的是() A.物体的位置没有变化就是不运动 B.两物体间的距离没有变化,两物体一定都是静止的 C.自然界中没有不运动的物体,运动是绝对的,静止是相对的 D.为了研究物体的运动,必须先选择参考系,平常说的运动或静止是相 对于地球而言的. 答案CD 解析物体的位置对某一参考系不变.但对另一参考系可能变化了,所以物体可能在运动,故A错误;两物体间的距离没有变化,二者可能静止,也可能以相同的速度运动,故B错误;由于参考系的选择是任意的,对于不同的参考系,同一物体可能静止,也可能运动,故C、D正确. 2.下列情形中,不可以把物体看作质点的是() A.研究高速旋转的砂轮的运动 B.研究芭蕾舞演员的动作 C.研究花样滑冰中的运动员 D.研究飞行中直升机上的螺旋桨 答案ABCD 3.在研究下列问题时,可以把汽车看作质点的是() A.研究汽车在行驶时车轮的转动情况 B.研究人在汽车上的位置 C.研究汽车在上坡时有无翻车的危险

不同坐标系之间的变换

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10) ???? ??????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)

???? ??????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10-13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简 ???? ? ?????---=111 0X Y X Z Y Z R εεεεεε (10-16) 上式称微分旋转矩阵。

《质点 参考系和坐标系》教学设计

《质点参考系和坐标系》教学设计 一、教材分析 本教学设计选自人教版新课标高中物理教材第一章第一节《质点参考系和坐标系》,要描述物体的运动,首先要对实际物体建立一个最简单的物理模型—质点模型。由于运动的相对性,描述质点运动时必须明确所选择的参考系。为了准确的、定量的描述质点的运动,还要建立坐标系。质点、参考系和坐标系是描述物体运动的基础知识,教材中逐步展开这些内容,最后介绍全球卫星定位系统。本节介绍质点、参考系和坐标系,不仅是这一章学习的基础知识,也是以后力学各章学习的基础知识。这些基础知识在实践中有广泛的、重要的应用。 二、三维目标 1.知识与技能 (1)理解质点的概念,知道它是一种科学的抽象,知道科学抽象是一种普遍的研究方法。 (2)理解参考系的选取在物理中的作用,会根据实际情况选定参考系。 (3)会用坐标系描述物体的位置和位置的变化。 2.过程与方法 (1)体会物理模型在探索自然规律中的作用,让学生将生活实际与物理概念相联系,通过几个具体的例子让学生自主讨论,在讨论与交流中,自主升华为物理概念。 (2)通过参考系的学习,知道从不同角度研究问题的方法,让学生从熟悉的常见现象和已有经验出发,体验不同参考系中运动的相对性,提示参考系在确定物体运动时客观存在的必要性和合理性,促使学生形成勤于观察、勤于思考的习惯,提高学生自主获取知识的能力。 3.情感态度与价值观 热爱自然,关心科技,正确方法,科学态度。 三、教学重、难点 (1)重点 1.理解质点的概念; 2.从参考系中明确地抽象出了坐标系的概念。 (2)难点 1.理解质点的概念 四、教学突破 课前师生收集丰富的图片、视频、文字等资料,联系学生日常生活中身边熟悉的实例,激发学生学习的兴趣,通过老师引导,学生得出有关物理概念,从而使学生乐于探究和思考。

参考坐标与动坐标系之间的旋转变换

坐标系之间的坐标变换 取一参考坐标系Z Y X O '''',该坐标系为船舶平衡位置上,不随船舶摇荡。 取一动坐标系OXYZ ,该坐标系与船体固结,随船舶一起做摇荡运动,OX 轴位于纵中剖面内,并指向船首,OY 垂直向上,OZ 轴指向船舶右舷。 再取一坐标系Z Y X O ???,它与参考坐标系平行,原点与动坐标系重合,且仅随船体作振荡运动。这三个坐标系之间的相对位置如图所示: 角位移用欧拉角来定义。我们假设动坐标系OXYZ 的原始位置为Z Y X O ???,经三次转动转到目前的位置。 首先将坐标系Z Y X O ???绕X O ?轴转动α角,使其转到OZ 和X O ?所确定的平面,然后绕Y O ?轴旋转β角使Z O ?与OZ 重合,此时平面Y X O ''??和平面OXY 重合,最后将得到的Z Y X O ''??绕OZ 轴转动γ角,这样,坐标系OXYZ 和坐标系Z Y X O ???就完全重合。 第一次旋转可以写为: ααααcos ?sin ??sin ?cos ????Z Y Z Z Y Y X X '+'='-'== 写为矩阵形式为 ????? ? ??''????? ??-=?????? ??Z Y X Z Y X ???cos sin 0sin cos 000 1???αα αα

同理,第二次旋转得 ?????? ??''????? ??-=?????? ??''Z Y X Z Y X ??cos 0sin 010sin 0cos ???ββ ββ 第三次旋转得, ???? ? ??????? ??-=?????? ??''Z Y X Z Y X 10 0cos sin 0sin cos ??γγγ γ 综合上面三式,得 ???? ? ????? ? ? ??++--+-+-=?????? ??Z Y X Z Y X βαγ αγβαγ αγβαβαγαγβαγαγβαβγ βγβcos cos cos sin sin sin cos sin sin cos sin cos cos sin cos cos sin sin sin sin cos cos sin sin sin sin cos cos cos ???则 [][][]X r X O '+='

参考系和坐标系的理解

第01章第01节对质点、参考系和坐标系的理解 质点 (1)用来代替物体的有质量的点叫做质点. (2)研究一个物体的运动时,如果物体的形状和大小对问题的影响可以忽略,就可以看做质点. (3)质点是一种理想化模型,实际并不存在. 【例1】下列关于质点的说法中,正确的是() A.质点是一个理想化的模型,实际并不存在 B.因为质点没有大小,所以与几何中的点没有区别 C.凡是轻小的物体,都可看作质点 D.如果物体的形状和大小在所研究的问题中属于次要因素,就可以把物 体看作质点 解析质点是一个理想化的物理模型,实际上不存在.物体能否看成质点要满足D项的条件,A、D正确;质点是有质量的,它是人们为了研究问题的方便而抽象出来的点,与物体大小没有直接关系,B、C项错. 答案AD 【变式题组】 1.下列关于运动的说法中,正确的是() A.物体的位置没有变化就是不运动B.两物体间的距离没有变化,两物体一定都是静止的 C.自然界中没有不运动的物体,运动是绝对的,静止是相对的 D.为了研究物体的运动,必须先选择参考系,平常说的运动或静止是相 对于地球而言的. 答案CD 解析物体的位置对某一参考系不变.但对另一参考系可能变化了,所以物体可能在运动,故A错误;两物体间的距离没有变化,二者可能静止,也可能以相同的速度运动,故B错误;由于参考系的选择是任意的,对于不同的参考系,同一物体可能静止,也可能运动,故C、D正确. 2.下列情形中,不可以把物体看作质点的是() A.研究高速旋转的砂轮的运动 B.研究芭蕾舞演员的动作 C.研究花样滑冰中的运动员 D.研究飞行中直升机上的螺旋桨 答案ABCD 3.在研究下列问题时,可以把汽车看作质点的是() A.研究汽车在行驶时车轮的转动情况 B.研究人在汽车上的位置 C.研究汽车在上坡时有无翻车的危险 D.计算汽车从北京开往大连的时间 答案 D 解析A、B、C三项的物体均需要考虑汽车的形状

MapX中的坐标系定义与转换

GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。 1. 椭球体、基准面及地图投影 GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须 弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国 的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测 量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之 间的转换可查阅国家测绘局公布的对照表。WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多 以WGS1984为基准。 上述3个椭球体参数如下: 椭球体Mapinfo中代号年代长半轴短半轴1/扁率 Krassovsky 3 1940 6378245 6356863 298.3 IAG 75 31 1975 6378140 6356755 298.25722101 WGS 84 28 1984 6378137.000 6356752.314 298.257223563 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的 Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准 面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地 理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定 义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时, 分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。 MapX中基准面定义方法如下: Datum.Set(Ellipsoid, ShiftX, ShiftY, ShiftZ, RotateX, RotateY, RotateZ, ScaleAdjust, PrimeMeridian) 其中参数:Ellipsoid为基准面采用的椭球体; ShiftX, ShiftY, ShiftZ为平移参数;

相关主题
文本预览
相关文档 最新文档