当前位置:文档之家› 4125A 型柴油机曲轴结构有限元模态分析

4125A 型柴油机曲轴结构有限元模态分析

4125A 型柴油机曲轴结构有限元模态分析
4125A 型柴油机曲轴结构有限元模态分析

毕业设计(论文)

课题名称 4125A 型柴油机曲轴结构有限元模态分析

学生姓名

学号 1141103044 系、年级专业机械与能源工程系

指导教师

教师职称副教授

2015年 5 月30 日

摘要

曲轴是发动机的主要受力构件之一,也是发动机重要的构成部件,其尺寸和参数决定着发动机整体构成以及其性能和机构尺寸与发动机的寿命和可靠性。曲轴的工作环境决定曲轴受力比较复杂,曲轴不仅要受压力,惯性力还要受弯矩,由于曲轴受力比较复杂,所以在对曲轴进行设计时要求也比较高。为了避免曲轴在工作时发生共振,导致曲轴失效需要对曲轴进行模态分析,这样可以求出曲轴共振频率,以及曲轴在工作时的振型及其载荷的变化规律,从而在设计时可以规避共振对曲轴损坏,这对提高曲轴的寿命和可靠性是很有效的。

该课题研究的是4125A型柴油机曲轴有限元分析。通过ANSYS有限元分析软件对此柴油机的曲轴进行建模然后进行静力学分析和模态分析,由此可以了解曲轴在工作时所受的工作载荷,以及工作危险截面和曲轴工作的共振频率、振型。这样可以了解曲轴的实际工作情况,就可以在进行曲轴设计时合理的安排曲轴的结构和尺寸,在设计时采取各种措施提高曲轴危险截面的强度更好的规避曲轴的共振区间,以提高曲轴设计和工作的可靠性,减少开发周期,从而提高柴油机曲轴的设计质量。

1.运用ANSYS14.0建立曲轴的三维实体模型以及确定网格单元的相关参数

类型。

2.先在ANSYS中确定网格划分精度和网格划分密度等,然后对所建立的三

维实体模型进行网格划分,限制模型的自由度以及对其进行加载力。

3.用ANSYS中的相关模块对所建立的三维实体模型进行静力学分析和模

分析,就可以的得到相应的结果

关键字:曲轴;模态分析;有限元分析

ABSTRACT

Crankshaft is one of the main components of the engine and the important engine of the stress components, the size and parameters determines engine overall structure, performance and organization size and engine life and reliability. Crankshaft working environment decided to entertain the crankshaft complex, the crankshaft must not only pressure, inertia force but also by the moment, because the crankshaft accept more complex, so in the design of the crankshaft requirements are relatively high, in order to avoid showing off the crankshaft at work when resonance occurs, resulting in failure of the crankshaft to the modal analysis of the crankshaft, so that we can find the resonance frequency of the crankshaft, and crankshaft at work and the mode of vibration load variation, which in the design can avoid resonance of crankshaft damage, which to improve the service life and the reliability of the crankshaft isvery effective.

The paper is on the study of 4125A diesel engine crankshaft finite element analysis. Through the finite element analysis software ANSYS in this regard diesel engine crankshaft modeling and static analysis and modal analysis, then we can know the work load of crankshaft, and dangerous work section and crankshaft of resonance frequency, vibration mode. Thus the actual working condition of crankshaft can be in for the crankshaft design reasonable arrangement of the crankshaft structure and size to improve the crankshaft design and working reliability, At design time, take various measures to improve the strength of crankshaft resonance interval to avoid the dangerous section of the crankshaft,reduce the development cycle,So as to improve the design quality of the crankshaft of the diesel engine.

(1)The use of ANSYS14.0 to build three-dimensional model of the crankshaft and the parameter determination unit and grid type.

(2)first in ANSYS determine the meshing accuracy and mesh density, then carries on the grid division of the three-dimensional solid model established, the restricted model degrees of freedom and the for loading.

(3)Using ANSYS module in 3D model based on the static analysis and modal analysis.

目录

摘要................................................................................................................ I ABSTRACT.............................................................................................................. II 1 绪论 (1)

1.1 现代设计理论和方法在柴油机设计中的应用 (1)

1.2 柴油机曲轴有限元分析的目的和意义 (2)

1.3 柴油机曲轴有限元分析国内外研究现状 (2)

1.4本论文的研究内容 (3)

2有限元理论及其分析软件 (5)

2.1 有限元分析法 (5)

2.2 ANSYS 软件的介绍 (5)

2.3 ANSYS14.0的分析流程 (6)

2.4 影响有限元分析精度的因素 (7)

2.5 提高有限元分析精度地方法 (8)

3柴油机曲轴三维模型的建立 (9)

3.3 曲轴建模的准备工作 (9)

3.4 曲轴有限元模型的建立 (10)

3.5曲轴网格单元的划分 (16)

3.6本章小结 (18)

4柴油机曲轴的静力分析 (19)

4.1 施加约束 (19)

4.2 施加载荷 (19)

4.3柴油机曲轴的静力分析 (20)

4.4柴油机曲轴的静力分析结果 (21)

4.5结论分析 (21)

5柴油机曲轴的模态分析 (22)

5.1 柴油机曲轴模态分析的概述 (22)

5.2模态分析的理论基础 (22)

5.3模态分析的基本方法 (22)

5.4模态分析的基本步骤 (23)

5.5模态分析结果 (25)

5.6 结果分析 (32)

6结论与展望 (34)

6.1 结论 (34)

6.2 展望 (34)

参考文献 (35)

/36

1绪论

1.1现代设计理论和方法在柴油机设计中的应用

柴油机是所有热机中热效率最高的,也是当今人类社会中应用最广的一种热机,它广泛地应用于包括汽车在内的各个领域。近年来,由于市场激烈的竞争,许多企业希望通过提高转速和增压等各种方法来提高柴油机的动力性能指标,以及改善它的经济性和排放性能等指标。在对通用非增压柴油机进行增压改进时,首先考虑的是原发动机主要受力零部件的结构强度以及动力性能是否满足增压的要求,这要求柴油机厂商通过技术积累以及结合国内外先进技术来提高自己的设计和制造水平。当下市场竞争越来越激烈,这就要求不断退出性能更高的产品并且缩短自身产品开发周期,以满足市场需求。同时,为了提高产品质量以及降低生产成本,再设计产品时需做大量的分析实验和数据的处理,这都增加了设计的工作量,依靠传统手段进行分析和设计是不能满足现代设计要求的。所以当前各大发动机生产厂商在做产品设计时,大量采用现代设计理论和方法[1]。柴油机设计的一个基本要求便是要保证其主要零部件在设计的使用期限内可靠的工作,同时又尽可能的减小柴油机的体积、重量。为了达到这一要求,就需要在设计过程中评估柴油机各个零部件的强度性能以及其可靠性,这就需要掌握零件的热负荷和机械负荷等性能以及其应力、应变的情况。传统设计方法的特点有:静态的、手工式的、经验的,而现代设计方法具有科学和动态特点。这就是说,传统设计方法是被动的和重复的分析产品性能,而现代设计方法则可能做到主动的设计产品和参数[2]。现代柴油机设计的重点应放在综合应用现代设计方法和理论,将复杂的柴油机工程问题抽象出来,然后建立该工程问题的物理和数学模型,并通过在计算机上进行分析、模拟实际的工程状况,这样就可以在设计阶段就将柴油机产品的性能以及未来产品品质确定下来。而无需试制出产品在检验产品的性能,现代设计方法和理论中的有限元分析技术和模态分析在柴油机设计上得到了不同程度的应用[3]。随着计算机技术、数值计算方法以及有限元分析软件的发展。当前的国内外软件已经从单纯的结构设计,发展到变量设计和参数化设计阶段,在建立机体模型时所需要花费的时间较少,大部分设计时间是用在对原机体进行调整和修改,利用3D CAD 技术可大大提高设计的效率,曲轴的三维实体模型不但可以对曲轴进行静力学分析,还可以进行动力学分析计算,并且可以方便的转化为二维的工程图[4]。

1.2柴油机曲轴有限元分析的目的和意义

目前,柴油机设计应用更加向着大功率、高转速、轻质量的方向发展,与此同时它的刚度也不断减小,这使得曲轴等零部件的振动更加剧烈了,这直接影响了柴油机的可靠性和寿命。所以在柴油机进行产品设计开发过程中对其进行强度分析和模态分析就成为设计过程中必不可少的环节,因此,对柴油机进行动态特性的研究,揭示出外界振源与结构本身固有特性之间的关系具有重要的意义[5]。这向产品设计人员设计出低振动、高强度的柴油机提供了理论基础。曲轴是柴油机的重要部件之一,其尺寸参数在很大程度上影响着柴油机整体的尺寸和重量,曲轴也在很大程度上决定了柴油机的寿命和可靠性,且曲轴承担着在柴油机中承担着燃料化学能向动能转换的功能,因此,改善曲轴的性能在柴油机设计与改进中占有很重要的地位。曲轴也是柴油机中受力最复杂的零件,它承受着气缸内气体作用力、旋转运动惯性力以及往复运动惯性力引起的周期性变化载荷且要对外输出扭矩,所以曲轴要承受交变的扭转、弯曲和压缩的复合应力,同时还会产生扭转振动和弯曲振动。在周期性交变载荷的作用下,曲轴在柴油机工作频率会内产生共振、附加动态应力,导致曲轴过早的出现扭转疲劳破坏和弯曲疲劳破坏。掌握曲轴在工作过程中载荷变化规律和振动规律,对提高曲轴寿命和可靠性具有十分重要的意义。

1.3柴油机曲轴有限元分析国内外研究现状

当今世界科学技术飞速发展,汽车工业作为技术和知识密集型产业一直都是技术发展及应用的最前端。随着计算机技术的发展,利用有限元方法解决结构静、动态特性分析计算成为一种有效的辅助设计的手段与方法[6]。有限元方法是结构分析的一种数值方法,随着计算机的发展应运而生,并得到了广泛应用[7]。有限元方法是结构分析的一种计算方法,它是矩阵方法在结构动力学和弹性力学领域的应用和发展,它的基本思想是将弹性体划分为有限个计算单元,并对每个单元用有限个参数来描述其力学特性,而整个连续弹性体的力学特性可以认为是这些小单元力学特性总和,由此建立起连续体的力平衡关系,这种方法常用于复杂弹性振动系统[8]。作为一种现代设计方法,有限元技术越来越广泛地应用于汽车设计工程领域。由于其具有较高的简单的应用方法和广阔的计算能力深受工程界的欢迎,也是最有效的强度计算方法[9]。柴油机零部件设计是有限元技术最早应用的领域之一[10]。在发达国家和地区有限元技术早

已成为一种基本的设计手段,如在柴油机产品开发中,有限元技术的应用提高了柴油机零部件设计的可靠性,缩短了设计周期,大大推动了柴油机工业的发展[11]。尽管目前柴油机有限元技术应用有了较大的进展,但在实际应用中也存在许多的问题,主要有:

(1)采用特定类型的单元进行有限元分析时,计算精度和网格的密度之间没有可供参考的量化关系。但对复杂的缸盖、机体等分析模型,通常情况下,硬件资源很难达到所要计算的要求。今后,对特定的分析课题,这方面的研究具有重要的选题价值[12]。

(2)对大多数几何结构复杂的零件如曲轴等,自动生成的有限元网格一般为四面体单元(该种单元精度不高),要达到一定的计算精度则网格必须具有相当的密度或提高单元的阶次,这样增大了计算量。六面体的使用可以在较小的计算规模下达到较高的计算精度,但这种单元的网格自动划分是比较困难的。复杂零部件六面体单元的完全自动划分仍是有限元前处理技术方面一个很有意义的课题[13]。

(3)柴油机曲轴的工作状态一般都比较复杂,全面准确地确定它的边界条件非常困难,特别是作动态分析,确定诸如激励等边界条件时,问题更为突出。另外,对铸造件的分析,铸造残余应力的确定无论从理论计算上还是实验都存在一定困难,影响此类零部件的分析精度[14]。

(4)基于有限元法的优化分析是近年来CAA(计算机辅助分析)领域的一项重要研究课题。有限元方法已经成为结构优化设计中常用方法。但是由于优化分析往往需要大量的迭代计算,特别是对于最具工程实用意义的CAD 技术,在几何结构优化设计的迭代过程中需要重构有限元模型,这样一方面增加了计算量,另一方面几何量变化后有限元模型的重新生成存在困难[15]。但其分析结果能到满足生产实际的要求。

1.4本论文的研究内容

该课题研究的是4125A型柴油机曲轴有限元分析。通过ANSYS有限元分析软件对此柴油机的曲轴进行建模然后进行静力学分析和模态分析,由此可以了解曲轴在工作时所受的工作载荷,以及工作危险截面和曲轴工作的共振频率、振型。这样可以了解曲轴的实际工作情况,就可以在进行曲轴设计时合理的安排曲轴的结构和尺寸,在

设计时采取各种措施提高曲轴危险截面的强度更好的规避曲轴的共振区间,以提高曲轴设计和工作的可靠性,减少开发周期,从而提高柴油机曲轴的设计质量。在本课题研究是所做的具体工作如下:

1.运用ANSYS14.0建立曲轴的三维实体模型以及确定网格单元的相关参数

类型。

2.用ANSYS中的相关模块对所建立的三维实体模型进行静力学分析和模

分析,就可以的得到相应的结果。

3.先在ANSYS中确定网格划分精度和网格划分密度等,然后对所建立的三

维实体模型进行网格划分,限制模型的自由度以及对其进行加载力。

2有限元理论及其分析软件

2.1 有限元分析法

2.1.1 弹性力学基本假设

由于结构有限元分析是以弹性力学为理论基础的,它必然遵守弹性力学的基本假设[11]:

(1)连续性假设:组成固体的物质不留空隙地充满固体的体积,这样才能保证应力、应变、位移等物理量作为位置的连续函数表示它们的变化规律。

(2)匀质性假设:整个固体内到处有相同的物理性质,这样才能保证各点具有相同的弹性。

(3)各向同性假设:物体在各个方向都具有相同的物理性质,这样才能保证在每个方向上都有相同的弹性。

(4)完全弹性假设:载荷取出后变形的物体能够完全恢复原形而没有任何剩余变形量,这样才能保证单元的应力、应变符合胡克定律。

2.1.2 有限元法的基本原理

实体离散化是有限元法的基本思想,也就是把弹性连续体分割为有限个实体单元,并且这些单元之间仅在节点处相连。根据物体的几何形状特征、边界约束特征、载荷特征等,单元有各种类型,节点一般在单元边界上,节点的位移分量作为结构的基本未知量。这样就组成有限单元集合体,并引进节点约束条件与等效节点力,因为节点数目有限,就将原来的无限多自由度的不间断的实体等效转换成有限多自由度的有限元计算模型。

2.2 ANSYS 软件的介绍

ANSYS软件是由20世纪70年代诞生的美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo, NASTRAN, Alogor, I-DEAS, AutoCAD等

ANSYS是一个功能强大的设计分析以及优化并集热、流体、电磁场、声场分析于一体的大型通用有限元分析软件之一。自20世纪70年代诞生以来,伴随着计算机

技术和有限元思想的快速发展,以其易操作性、通用性、分析模拟准确使其在生产生活得到了广泛的运用。ANSYS 广泛运用于机械工程、航空航天、能源、交通运输、土木建筑、水利工程、国防军工、电子、生物医学科研等领域[16]。

2.3 ANSYS14.0的分析流程

(1)分析问题

在有限元分析之前,必须对所分析的问题进行考察:所分析问题的领域、怎样建模、是否可以简化、载荷是集中载荷还是均匀载荷。

(2)建立分析模型

ANSYS14.0的建模有多种方法:自上而下建模、自下而上的建模方法、参数化建模、从其他软件中导入。

1)定义单元类型

ANSYS14.0中提供了各种单元类型,如Link、Solid、Beam、Shell等不同的单元类型,我们需要根据分析类型确定单元类型。

2)定义单元常数

单元实常数是由不同的单元类型的特性所决定的,在ANSYS中不一定要定义实常数,需要根据不同的分析问题所确定。

3)定义材料的参数

ANSYS14.0提供的材料特性有:线性的和非线性的;正交异性的或非弹性的;也有随温度变化的和不随温度变化的,如果定义线弹性材料只需定义其泊松比和杨氏模量。

4)创建几何图形

创建几何图形也就是建模,这是所有分析的前提,所有的分析都需要建立正确地三维模型。

(3)网格划分

网格划分是有限元分析重要的一环,网格化分的质量和精度直接影响计算的精度,所以在划分网格时需要进行网格的质量评估。

(1)施加载荷

1)定义分析类型和分析选项

在进行有限元分析时需要定义合适的分析类型,ANSYS14.0提供了模态分析、静力学分析、瞬态分析、谱分析、屈曲分析和谐响应分析等不同的分析类型。

2)施加载荷

施加载荷是有限元分析的重要组成部分,在ANSYS14.0中有自由度约束、力、表面分布载荷,惯性载荷等。

3)指定载荷步

载荷步是指进行求解的在和配置,指定载荷步就是指对载荷步进行控制。

(2)进行求解

在上面的设置完成后对模型进行相关分析。

(3)观察结果

当ANSYS计算完后就可以通过后处理器对计算结果进行观察、分析和评估。计算结果可以以不同的形式表现出来如通过云图、图表和曲线等不同的形式表现出来[16]。

图2-1有限元分析流程

2.4 影响有限元分析精度的因素

有限元分析精度主要取决于单元尺寸的选取和插值函数阶次,通常情况下,由于所解决实际工程问题一般都比较复杂,不容易确定,所以影响分析结果的因素也比较复杂,主要有:

1) 单元类型的选取,不同的单元类型的插值精度和计算量是不同的,采用三维等插值函数精度较高,由于其力学模型更完善,同时计算量也比较大。

2) 网格形式,包括网格类型的和网格精度以及网格划分的密度。但是随着选择的计算精度提高和网格化分密度的细化,模型计算分析也会更复杂,所以在选择网格

划分精度和网格划分密度时需要考虑计算机硬件所能达到的计算要求。

2.5 提高有限元分析精度地方法

提高有限元分析的精度可以使得分析结果更精确,更符合工程实际,提高有限元分析精度的方法有:

1)充分考虑实际的工程问题,由于建模是会对模型进行简化,就需要确定影响数学物理方程的因素,使所建立的数学模型更合理。这样才能使分析结果更接近实际。

2)通过各种相关软件建立更精确合理的三维实体模型,不同的软件对所建模操作复杂程度不同,选择操作简便,建模精度高的软件,以减小不合理模型对结果的影响。

3)通过理论分析确定合理的边界条件以及合理的加载边界条件,由于不同的模型在分析时边界条件和所受载荷差异较大,所以需认真分析模型的边界条件和所受载荷。使模拟结果更精确。

4)通过材料实验,确定材料常数在不同条件下的变化情况。

5) 选用更精确地差值函数,提高插值精度,不同的差值函数精度是不同的,阶数越高精度越高,但选择时需要考虑硬件水平。

6)合理安排精度和计算规模的协调问题。

3柴油机曲轴三维模型的建立

3.1 4125A 型柴油机曲轴简介

本课题研究的是4125A 型柴油机曲轴,相比于单缸机四缸柴油机稳定性好,同时柴油机燃油效率高,并且四缸机设计制造技术比较成熟,所以该曲轴广泛用于汽车、船舶等机械领域。

3.2曲轴三维实体模型相关参数

表3.1曲轴的基本参数

主轴颈直径: 85mm

连杆轴颈直径:85mm 曲柄壁厚b : 23mm 曲柄宽度L : 132mm 曲柄半径d :

76mm

主轴颈长度l : 50mm 连杆轴颈长度: 50mm 缸径D : 125mm 最大爆发力:

7.5MPa

转速n : 1500r/min 行程S: 152mm 材料:

45 钢

表3.2材料的力学性能

弹性模量

泊松比 密度 抗拉强度 屈服强度 3.3 曲轴建模的准备工作

本课题在对曲轴进行三维建模时,在满足课题研究的前提下,结合实际生产生活对曲轴模型做了相应的简化工作,在简化后的模型中没有平衡重、曲柄的形状也简化成在建模时比较容易创建的形状以及曲轴上相应的润滑油孔也省略了,这些对曲轴模型的简化的措施会使建模过程简单易控,但会使课题的研究结果偏离实际,会导致曲轴的刚度降低,从而使得曲轴共振频率区间向下移,(当前,发动机朝着高转速的方向发展,通过提高发动机转速来提高发动机功率是一种常用的措施,这使得发动机的工作转速范围更广。)建模过程中省略了平衡重也会加剧曲轴的振动,降低曲轴的使用寿命。所以实际生产生活中可以通过改善曲轴的结构等措施尽可能的提高曲轴的刚度以提高曲轴的共振频率以及通过添加平衡重防止在曲轴的工作转速下发生共振,导

致曲轴的失效,提高发动机的使用寿命。曲轴的实体模型如下图:

图3.1曲轴实体

图3.2 曲柄侧向简图

上图中L为曲柄宽度且L=132,

因为d1 =85mm d2=85mm d=76mm

又因为

)

()

(

128585

2769

22

d d

A d

++

=-=-=(3.1)

所以

12859

38

2222

d A

B=-=-=(3.2)

这样就可以确定主轴颈和连杆轴颈相对于曲柄中心的位置,这是曲轴建模所必需的计算数据。

3.4 曲轴有限元模型的建立

3.4.1 ANSYS 软件建模的介绍

ANSYS程序为用户提供了四种模型生成方法:直接生成法、在ANSYS中创建实体模型、在计算机辅助设计(CAD)系统建模、参数化建模。

(1)直接生成法

直接建模方法是指直接在ANSYS 中建立有限元模型,而不必先建几何模型。其方法与较早编制的程序系统基本相同,即先对结构进行节点和单元编号,然后输入节点坐标,这种方法是直接建立节点和单元的编号,从而建立有限元模型。这种方法对于小型简单模型生成比较方便,但是对于大型复杂模型的建模非常复杂,且对于3D 实体模型靠人工去划分网格容易出错。

(2)在ANSYS中创建实体模型

实体模型在ANSYS程序中包括两种建模方法:

1)自底向上构造实体模型。这种方法按照点、线、面、体的顺序来创建模型

首先建立点,再由点生成线,然后由线组成面,最后由面生成体。

2)自顶向下构造实体模型。这种生成实体的方法比较高级,在这种方法下ANSYS在生成一种体素时就会自动生成所有的从属于该体素的低级图元。

(3)在计算机辅助设计系统建模

虽然ANSYS有强大的建模工具但是与专门的CAD软件比起来还是比较弱的,对于复杂的实体模型可以在CAD软件中创建,然后再导入到ANSYS程序中进行处理。ANSYS14.0提供了丰富的CAD接口,大部分主流CAD文件可以直接导入ANSYS 中进行分析。ANSYS14.0支持Pro/E、Solidworks、CATIA、UG等设计软件。

(4)参数化建模

参数化建模就是用参数变量而不是数字建立和分析模型,在ANSYS程序中除了结构尺寸可以参数化以外,对其他特征也可以,如材料属性、约束数、温度、应力以及最大纵向变形都可以参数化[17]。

3.4.2 4125A型柴油机曲轴的建模

在实际生产中曲轴的模型往往比较复杂,曲轴复杂的结构导致其建模非常复杂,为了减少建模的工作,在不影响对曲轴分析的情况下在对曲轴建模时进行相应的简化。这些措施可能导致曲轴的分析与曲轴实际工作情况有偏差。这就需要控制简化程度,防止分析结果严重偏离工作情况。

曲轴的建立步骤:

(1)建立曲轴曲柄的矩形图元

以整体坐标原点为矩形的中心建立长为132,宽为48,厚为23的矩形单元,其在ANSYS中的操作如下:

GUI: ANSYS Main Menu—Preprocessor—Modeling—Create—V olumes—Block—By Dimensions

输入坐标如下图:

图3.3 矩形图元输入参数

图3.4 矩形图元

(2)移动工作坐标建立圆柱单元

把工作坐标向y轴正方向以24,得到一个新的工作原点,建立下一个半径为66,厚为23的圆柱,其在ANSYS中的操作如下:

GUI: ANSYS Main Menu—Preprocessor—Modeling—Create—V olumes—Cylinder—By Dimensions

输入坐标如下图:

图3.5 圆柱图元输入参数

图3.6圆柱图元

(3)移动工作坐标建立下一圆柱单元

将工作坐标向下移48,同上建立一个圆柱行图元,其在ANSYS中的操作如下:

GUI:ANSYS Main Menu—Preprocessor—Modeling—Create—V olumes—Cylinder—By Dimensions

建立如下图元:

图3.7圆柱图元

(4)移动工作坐标建立下一圆柱单元

把工作坐标向上移62,建立一个主轴颈图元,其半径为42.5,长度为50,其在ANSYS中的操作如下:

GUI: ANSYS Main Menu—Preprocessor—Modeling—Create—V olumes—Cylinder —By Dimensions

输入坐标如下图:

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

基于有限元法的门座起重机结构强度分析_黄文翰

质量技术监督研究 Quality and Technical Supervision Research 2012年第3期(总第21期) NO.3.2012General No.21 基于有限元法的门座起重机结构强度分析 黄文翰 (福建省特种设备检验研究院,福建 福州 350008) 摘要:采用有限元分析软件ANSYS对门座式起重机建立整体结构计算分析有限元模型,进行了两种危险工况下 的应力计算,并通过将有限元计算结果与实测应力结果进行比较,验证了有限元计算结果的可靠性,为门座式起重机的强度分析提供了可行的有限元参考方法。 关键词:门座式起重机;有限元;强度分析 随着贸易经济高速发展和港口货物吞吐量不断增长,门座起重机由于其良好的工作性能和通用性,成为港口装卸作业不可缺少的重要设备。门座起重机的整体金属结构作为主要的承载部件,由于其露天、腐蚀性的工作环境以及较高的使用频率和工作强度,易产生疲劳裂纹、腐蚀等缺陷,影响结构强度和刚度等力学性能,并危及起重机使用安全。因此,分析门座起重机的金属结构强度并为生产和维修提供依据,具有十分重要的意义。传统的门座起重机结构分析多采用力学计算方法,由于其设计变量较多,受力复杂,因此计算量大且较多采用经验简化或估算,势必影响计算结果的准确性。有限元分析方法具有建模方便快捷、计算结果准确的突出优点,日益成为起重机结构强度分析广泛使用的分析方法[1]。 1 SDMQ1260/60E型门座起重机概况 本文分析的SDMQ1260/60E门座起重机由某水工 机械厂1990年制造安装,用于某电站建设施工,1998年起移至某造船厂用于造船用部件和材料的吊运。该起重机自重约377t(含压重56t),结构大体可分为上部旋转部分和下部运行部分(见图1),旋转部分包括臂架系统(由象鼻梁、吊臂、大拉杆、小拉杆、变幅拉杆等组成)、人字架、平衡重、转柱、转台等,通过起升、变幅、旋转运动实现在环形圆柱体空间升降物品;运行部分主要是由门架和运行台车组成[2]。其中转柱、门架和臂架系统是门座起重机最重要的承载构件。 图1 门座式起重机结构简图 收稿日期:2012-05-09 基金项目:本文工作受国家质检总局科技计划项目(编号:2010QK048)资助 作者简介:黄文翰,男,福建省特种设备检验研究院宁德分院副院长,工程师,检验师,硕士 DOI:10.15902/https://www.doczj.com/doc/0b7957558.html,ki.zljsjdyj.2012.03.012

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

汽车起重机转台有限元分析及优化

汽车起重机转台的有限元分析及优化 摘要:汽车起重机的转台是用来安装吊臂、起升机构、变幅机构、回转机构、上车发动机、司机室、液压阀组及管路等的机架。转台通过回转支承安装在起重机的车架上,为了保证起重机的正常工作,转台应具有足够的刚度和强度。对于汽车起重机,为了有较好的通过性和较低的成本,应尽量减小转台的外形尺寸及重量。 随着计算机辅助工程(CAE)技术在工业应用领域中的广度和深度的不断发展,它在提高产品设计质量、缩短设计周期、节约成本方面发挥了越来越重要的作用。目前CAE分析的对象已由单一的零部件分析拓展到系统级的装配体,如挖掘机、汽车起重机等整机的仿真,而且,CAE分析不再仅仅是专职分析人员的工作,设计人员参与CAE分析已经成为必然。 关键词:汽车起重机;转台;有限元分析 1.引言 1.汽车起重机转台作为起重机三大结构件之一,负责起重机上车和底盘之间力 的传递。在现今高强板大量使用的情况下,如何简化结构、减少重量是起重机设计的难题之一。经典ANSYS有限元分析界面是用板壳单元在ANSYS里面建模并进行计算,但是存在建模过于复杂,难以修改,模型无法导出的问题,属于验证性计算,而使用ANSYS Workbench Enviroment(AWE)则可以用PRO/E 软件建立模型,再导入AWE进行计算,且在PRO/E中修改模型后再次导入可以保留之前设置的边界条件,设计效率成倍提高。 ANSYS Workbench Enviroment(AWE)作为新一代多物理场协同CAE仿真环境,其独特的产品构架和众多支承性产品模块为整机、多场耦合分析提供了非常优秀的系统级解决方案。具体来讲,AWE具有的主要特色如下: 1.强大的装配体自动分析功能

ansys齿轮模态分析

基于ANSYS 的齿轮模态分析 齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速内发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。 本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。 1.模态分析简介 由弹性力学有限元法,可得齿轮系统的运动微分方程为: []{}[]{}[]{}{()}M X C X K X F t ++= (1) 式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,, ,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。若无外力作用,即{}{()}0F t =,则得 到系统的自由振动方程。在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理 [2]。无阻尼项自由振动的运动方程为: []{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+ 则有 2{}{}sin()X t ωφωφ=+ 代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2, ,i n =。 2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。设有模数m=2.5mm ,齿数z=20,压力角β=20°,齿宽b=14mm ,孔径为¢20mm 的标准齿轮模型。如图1

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

有限元模态分析报告实例

ANSYS 模态分析实例 5.2ANSYS 建模 该课题研究的弹性联轴器造型如下图 5.2 : 图勺2弹性联轴器 1-联接柴油机大铁圈;茁橡胶膜片;3-联接电动机小铁圈 在ANSYS 中建立模型,先通过建立如 5.2所式二分之一的剖面图,通过绕中轴线 旋转建立模拟模型如下图 5.3资料个人收集整理,勿做商业用途 _.:q: 4 1(. 片三 _」」_止

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划 分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2 网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分 后模型如图5.4。资料个人收集整理,勿做商业用途 5.4边界约束 建立柱坐标系R- &Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转资料个人收集整理,勿做商业用途 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。资料个人收集整理,勿做商业用途在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。资料个人收集整理,勿做商业用途 5.5.1联轴器材料的设置 材料参数设置如下表5-1 : 表5.1材料参数设置 表5.1材料参数设置 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率

门座起重机结构与力学分析

1 引言 近年来,国内在门座起重机设计和制造上,已有很大的提高。但在现代的港口中,还有很多服役达十多年的门座式起重机仍承担着港口繁重的吊装业务。在门座式起重机进行生产作业的过程中,由于许许多多无法避免的因素使起重机出现各种破坏及故障,以至降低或失去其预定的功能。由于起重机体积大、造价高,不可能一发生故障就即时更换,因此很多起重机普遍存在严重裂纹但仍服役生产第一线,给安全生产带来了极大隐患,甚至造成严重的以至灾难性的事故,致使生产过程不能正常运行而造成巨大的经济损失。“门座起重机风险评估”的研究已成为是国内许多检验机构正在努力探讨的一个研究课题,而找出主要部件的受力最危险点和应力集中区则是这项课题研究的重要基础。 2 门座起重机的结构模型简化 由于门座起重机结构复杂,对门座起重机金属结构进行建模分析时不可能将所有因素都考虑进去,因此必须对其金属结构进行合理有效的简化,建立一个既能方便分析计算,又尽可能的与实际使用工况相符的有限元模型。基于对门座起重机结构的认识,本文主要对港口门座起重机进行了如下的假设和简化: (1)门座起重机模型是参照图纸尺寸建立的,为方便建模计算,其中一些加强筋,肋板等细部结构,在不影响分析结果的可靠性的前提下做适当的简化。 (2)鉴于门座起重机结构复杂,在建立臂架模型分析时对电机、钢丝绳、铰轴等结构做适当的简化处理。 (3)臂架上的梯子结构,均匀分布于臂架整体结构,对分析影响不大,在建模分析时不予考虑,最后采用密度补偿法来考虑其自重对臂架结构的影响。 (4)建模分析时,只考虑门座起重机结构的自重及起吊重量,不考虑风载、地震载荷等附加载荷的影响。 3 门座起重机结构参数 本文以某单位一台45t-60m港口门座起重机为研究对象,对其进行有限元建模、有限元模 门座起重机结构与力学分析 Analysns of structure and mechanics of prortale crane 张 健 (福建省特种设备检验研究院莆田分院 福建莆田 351100)摘要:如何准确高效的对门座起重机金属结构进行受力分析,进而判断疲劳裂纹等危险隐患的存在,正成为检验检测领域当前迫切需要解决的问题之一。本文以一台门座起重机的主要受力部件受力分析为例,分析计算了臂架结构、筒体和底座行走机构这三个主要受力部件在各种极限工况下最危险状况,为有限元分析计算及“门座起重机风险评估”的研究奠定了基础。 关键词:门座起重机,模型简化,危险工况,力学分析 中国分类号:TS213.4

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得 1 有限元分析方法原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。由于其方法的有效性,迅速被推广应用于机械结构分析中。随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。 随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。 ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。 有限元分析一般由以下基本步骤组成: ①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点; ②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解; ③建立单元刚度方程; ④组装单元,构造总刚度矩阵; ⑤应用边界条件和初值条件,施加载荷; ⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移; ⑦通过后处理获得最大应力、应变等信息。 结构的离散化是有限元的基础。所谓离散化就是将分析的结构分割成为有限

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

相关主题
文本预览
相关文档 最新文档