当前位置:文档之家› 电路元件特性曲线的伏安测量法和示波器观测法实验报告

电路元件特性曲线的伏安测量法和示波器观测法实验报告

电路元件特性曲线的伏安测量法和示波器观测法实验报告
电路元件特性曲线的伏安测量法和示波器观测法实验报告

课程名称:电路与模拟电子技术实验指导老师:孙晖成绩:__________________

实验名称:电路元件特性曲线的伏安测量法和示波器观测法实验类型:______ _同组学生姓名:__________

一、实验目的和要求(必填)二、实验内容和原理(必填)

三、主要仪器设备(必填)四、操作方法和实验步骤

五、实验数据记录和处理六、实验结果与分析(必填)

七、讨论、心得

一、实验目的和要求

1、熟悉电路元件的特性曲线

2、学习非线性电阻元件的特性曲线的伏安测量法

3、掌握伏安测量法中测量样点的选择和绘制曲线的方法

4、学习非线性电阻元件特性曲线的示波器观测方法

5、设计实验方案,用示波器观测电容的特性曲线。

二、实验内容和原理

1、在电路原理中,元件特性曲线是指特定平面上的定义的一条线,其函数关系式称为

元件的伏安特性曲线。电阻元件的伏安特性曲线是在U-I平面上的一条曲线,当曲

线为直线时,对应的元件是线性元件,斜率为电阻值。线性电阻的伏安特性曲线符

合欧姆定律,在U-I平面内是过原点的直线,与电压、电流无关;非线性元件在

U-I内是一条曲线。

2、普通警惕二极管的特点是正反向电阻差别很大,正向压降很小,正向电流随着正向

压降的上升而急骤上升,而反向电压从零一直增加到十几伏到几十伏时,其反向电

流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反响电压加的

过高,超过管子的极限值,会导致管子击穿损坏。

3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向

特性则与普通二极管不同。在反向电压开始增加时,其反向电流几乎为零,但当反

向电压增加到一定数值时(称为管子的稳压值)。电流将突然增加,以后它的端电压

将维持恒定,不再随外加的反向电压升高而增大。这两种二极管的特性属于单调型,电压与电流之间为单调函数。二极管的特性参数有开启电压U th、导通电压U on,反

向电流I R、反向击穿电压U Br以及最大整流电流I F。

三、主要仪器设备。

1、数字万用表;

2、电工综合实验台;

3、DG07多功能网络实验组件;

4、信号源;

5、示波器。

四、操作方法和实验步骤。

1、元件的伏安特性曲线可以用电压表、电流表测定,称为逐点伏安测量法。伏安法原

理简单,测量方便,但由于一起内阻会影响测量的结果,因此必须注意仪表的合理接法。采用伏安法测量二极管特性时,限流电阻以及之流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压区间具有不同的形状,因此测量时要合理采用调电压或调电阻的方法来有效控制测量样点。

2、在示波器观测法中,U s(t)是正弦波信号发生器提供的输出电压,R是被测电阻元件,

r是电流取样电阻。将示波器置于X-Y工作模式,电阻电压接入示波器Y轴输入端,取样电阻电压接入X轴输入端,适当调节Y轴和X轴的幅值,荧光屏上就会显示出R的伏安特性曲线。

五、实验数据记录与处理

1、伏安逐点测量法

31 0.756 19.83

六、实验结果及分析

1、(1)、对普通二极管的特性进行分析:施加正向电压时,在0~0.400V之间几乎没有电流,之后随着二极管导通,电压升高,电流增大。在电压超过0.600V之后,电流急剧增大。由于施加反向电压可能造成二极管击穿,所以没有采集反向电压电流数据。

(2)、对稳压二极管的特性进行分析:施加正向电压的结果与普通二极管类似,只是导通电压,也就是电流急剧增大的时候,是在电压超过0.700V之后,但是最大电压并没有超过0.800V。施加反向电压时,当电压很小时基本没有电流,当电压达到-4.7V以上时,电流急剧增大。但是当电压接近-5.1V时,电压不再增大,也就是实现了稳压。观察电阻箱上的二极管标志,为“5.1V/5.4W”,说明实验数据符合理论情况。

2、用示波器观察二极管的伏安特性曲线时,信号源提供电源,示波器CH1是显示总电压,CH2是显示电阻电压,在Y-T模式下两者都为正弦波,当消去时间T之后,切换到X-Y模式,一开始二极管未导通,则电阻无穷大,即电阻所占的电压为零,符合曲线一开始的水平线情况。当二极管导通后,随着总电压升高,电阻与二极管成比例分得电压,于是出现了一条斜线。实验结果符合理论分析。

七、讨论、心得

1、在使用逐点测量法时,需要预先对被测的元件进行预处理,确认是否正常工作。其次,确定大致的工作范围,选择测量取样的样本数据间隔。推荐的范围是在正向:(0~0.5V)3 点;

(0.5~0.65V)5 点;(0.66~0.8V)8 点;反向:5 点测定稳压二极管的伏安特性曲线反向:(0~4.7V)8 点;(4.7~5.5V)12 点。当然,数据越多,测量结果越精确。

2、对于不同的测量仪表,先确认其测量精度。不同的测量精度会有对应的误差,这些应该予以消除。这一步往往在设计实验电路的时候就需要考虑到,以及对应的参数。在供电端,既要控制输出电压,也需要将电路调整加入一个限流电阻R,防止电流表在二级管击穿时被烧坏。

3. 使用示波器和函数发生器时,最大的问题是不能快速的找到需要的功能,我们需要熟悉示波器的操作。同时,对于得到的波形图像往往需要进行适当的调整,才能够满足分析的需要。对于使用的双通道示波器,主要部件都已经数字化,在接线上需要唯一注意的是接地极是否已经连接(示波器内部已经连接)。

4. 函数发生器的输出电压不应该过低,如果过低就会无法实现稳压管的半波整流和反向稳压,实际上应该大于5V。

镍氢电池制作实验报告

方形800mA镍氢电池的制备及其性能测试 1 引言 1.1实验背景 化学电源也就是通常所说的电池,是一类能够把化学能转化为电能的便携式移动电源系统,现已广泛应用在人们日常的生产和生活中。电池的种类和型号(包括圆柱状、方形、扣式等)很多,其中,对于常用的电池体系来说,通常根据电池能否重复充电使用,把它们分为一次(或原)电池和二次(或可充电)电池两大类,前者主要有锌锰电池和锂电池,后者有铅酸、镍氢、锂离子和镍镉电池等[1]。除此之外,近年来得到快速发展的燃料电池和电化学电容器(也称超级电容器)通常也被归入电池范畴,但由于它们所具有的特殊的工作方式,这些电化学储能系统需特殊对待。在这些电池的制备和使用方法上,有很多形似的地方,因此通过熟悉一种电池可以达到了解其它电池的目的。本实验即通过制备一种扣式可充电的镍氢电池,并通过测试电池的性能,使同学们在电池制备及其性能表征等方面得到训练。 1.2实验意义 随着市场的需求,新型绿色环保型镍氢电池正朝着高容量、小型化、高功率方向发展。镍氢电池产业将成为21世纪能源领域的重大产业之一。镍氢电池产业的发展有利于促进城市环境的改善,使国民经济可持续发展;有助于移动通讯,无污染电动车等的高新技术产业的发展;同时将带动上游原材料工业的发展……所以,研究镍氢电池是一个新的趋向。 1.3实验原理 镍氢电池的正极活性物质为Ni(OH)2,负极为贮氢合金,正负电极用隔膜分开,根据不同使用条件的要求,采用KOH 并加入LiOH 或NaOH的电解液。电池充电时,正极中Ni(OH)2被氧化为NiOOH,而负极则通过电解水生成金属氢化物,从而实现对电能的存储。放电时,正极中的NiOOH被还原为Ni(OH)2,负极中的氢被氧化为水,同时在这个反应过程中向外电路释放出电量。电极反应如下:(“?”表示充电;“?”表示放电) 正极:Ni(OH)2 + OH-? NiOOH + H2O + e-

充放电实验

实验报告 专业:实验日期: 2016.5.16 班级:授课教师: 学号:指导教师: 姓名:成绩评定: 实验2 电容与电感的充放电实验 一、实验目的 1.熟悉电感与电容的充放电过程,掌握充放电过程中电流、电压的计算公式; 2.明确时间常数τ对电感与电容充放电时间的影响; 3.掌握信号发生器与示波器的使用方法; 4.学习分析充放电过程中电压、电流波形的变化规律,比较当τ改变时对波形的影响。 二、实验电路 将一个0.22μF 的电容器、一个4.7kΩ的电阻与函数发生器按图1(a)实验电 路联接。设定函数发生器,使其输出6V/100Hz,占空比为50%的方波。输出6V时模 拟电容器充电; 输出OV时,模拟电容器放电。联接示波器,接通函数发生器的电源 开关,用A通道观察方波,用B通道观察电容器上的电压。 U=6V f=100Hz 方波 A 示波器 Y1 Y2 图1(a) 将一个100mH的电感与一个1 kΩ的电阻串联,然后联接到电压为6V 、频率为1 kHz 的方波上,如图1(b)所示。用示波器观察电感上电压的变化规律。

. U=6V f=1KHz 方波 A B C 示波器 Y1 Y2 图1(b) 三、实验设备 1.Multisim电路仿真软件(机房上机运行); 2.函数发生器、电阻、电容、电感; 3.示波器。 四、电路联接 通过实验1的学习在掌握Multisim电路仿真软件放置电源、电阻、开关等原件,以及连线的基础上,学习函数发生器、示波器的使用方法。 1.函数发生器 函数发生器位于仿真菜单下的仪器选项中,可以产生不同频率、占空比、振幅、以及偏置的正弦波、三角波、方波。 2.示波器 示波器的位置与函数发生器相同。利用示波器能观察各种 不同信号幅度随时间变化的波形曲线,还可以用它测试各种 不同的电量,如电压、电流、频率、相位差、调幅度等等。 五、仿真测试 1.电容的充放电实验 按照图1(a)在Multisim电路仿真软件中连接电路,并进行仿真。 将上述电路中的4.7kΩ固定电阻换成10kΩ的电阻,观察充放电曲线的变化。 实验结论: 将电阻值固定为4.7kΩ,将电容器换成10μF,观察充放电曲线的变化。

幅频特性和相频特性图

速度控制环优化 速度控制环的优化主要是速度调节器的优化。速度调节器主要优化比例增益与积分时间常数两个数据,先确定它的比例增益,再优化积分时间常数。如果把速度调节器的积分时间常数(MD1409)调整到500ms,积分环节实际上处于无效状态,这时PI速度调节器转化为P调节器。为了确定比例增益的初值,可从一个较小的值开始,逐渐增加比例增益,直到机床发生共振,可听到伺服电机发出啸叫声,将这时的比例增益乘以0.5,作为首次测量的初值。 MD1407—速度增益Kp MD1409—积分时间Tn 速度环手动优化的具体步骤: 步骤一、用适配器将驱动器和计算机相连接,启动计算机和系统(电缆连接必须断电) 步骤二、等机床准备好后使机床工作在JOG方式下。 步骤三、在计算机上运行“SIMODRIVE 611D START TOOL”软件,首先会弹出画面如图

【Axis-】出现如下画面 所示

步骤六、点击【Drive MD】,进入如下画面 步骤七、点击【Boot file/Nck res...】,再点击【Measuring parameters】,进入如下画面,Amplitude为输入信号幅值,峰值力矩的百分比;Bandwidth 为测量带宽;Averaging 为平均次数,次数越多,越精确,时间越长,通常20次;Settling time 为建立时间,注入测量信号和偏移,到记录测量数据 间的时间;Offset为斜坡偏移量(避免启停时出现浪涌电流)。

提示画面,机床参数MD1500应设置为0,如下图所示 步骤九、点击【OK】,出现提示画面如下图

步骤十、按机床NC Start按钮,开始优化,在计算机上点击【Display】,出现如下画面(如果在此时伺服电机发生特别大的噪声,这时应紧急按下急停 按扭)。 通过得到的曲线可以看出,改变MD1407和MD1409的值就可以使曲线发生变化。速度环参数的调节是驱动参数调节的重点,有时在电机的标准机床数据的情况下,电机可能会产生噪声。这种情况下,应先减小速度环的增益值。在改变增益时,观察调节器的幅频特性曲线的变化趋势,使曲线的幅值在0dB 位置达到最宽的频率范围,优化调整方法如下: ○1如果速度调节器的幅频特性曲线的幅值不超过0dB,可提高比例增益MD1407,频宽也增加,响应特性得到改善。当比例增益增大到一定数值后,幅 频特性曲线中的幅值会极度变化,频宽变窄,系统的动态特性降低。

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

用示波器测电容实验报告

用示波器测电容 摘要:电容在交流电路中电压发生了变化,相位也发生了变化,而通过示波器可以清楚的观察到这些变化,本实验利用示波器和电容的交流特性,通过实验得出谐振频率的特殊值进而通过公式计算,得出电容器的电容值大小。 关键词:电容RLC谐振频率阻抗相位差电流峰值 一、引言 电容是电容器的参数之一,对于解决生活及实验中的实际问题,有着很重要的作用,不同电容的电容器因所需不同而被应用在不同的地方,在实验中测电容器的电容,已成为大学物理实验中很重要的一个环节,在此实验中,我们用示波器测量电容的容量,该方法操作简单,且能加深我们对电容和电容性质的理解,巩固我们所学的知识。 二、实验任务利用示波器测量电容器的电容量C。 三、实验仪器 200欧姆电阻一个,10mH电感一个,信号发生器一台, 双踪示波器一台,面包板一个, 电容一个,导线若干。 四、实验原理 测RLC谐振频率 RLC串联电路如图1所示: 所加交流电压U(有效值)的角频率为w,则电路的的复阻抗 为: 复阻抗模为: 复阻抗的幅角: 即该电路电流滞后于总电压的位差值。回路中的电流I(有效值)为 上面三式中Z﹑﹑I均为频率f(或角频率,)的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a)(b)(c)分别为RLC串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b)图-f曲线称为相频特性曲线;(c)图i-f曲线称为幅频特性曲线。由曲线图 可以看出,存在一个特殊的频率特点为 (1)当f<时,<0,电流相位超前于电压,整个电路 呈电容性。 (2)当f>时,>0,电流相位滞后于电压,整个电路 呈电感性。 (3)当时,即或 时,=0,表明电路中电流I和电压 U同相位,整个电路呈纯电阻性。 这就是串联电路谐振现象,此时电路总阻抗的模最小,电流达到极大值,易知只要调节f﹑L﹑C中任意一个量,电路就能达到谐振。 根据LC谐振回路的谐振频率或可求得。 五、实验内容(或步骤) 1.电路连接如图1,其中L=10mH,R=,U=2V。 2.用万用电表测出待测电容。 3.调节信号发生器的频率同时观察两端电压变化,当调至某一频率时,电压最大,测得这个最大值及信号的周期(或频率)。 4.由这个最大值的周期(或频率)计算出电容的值。 六、数据处理和分析 测RLC谐振频率数据记录表 5.9 6.9 7.9 8.910.911.912.913.914.915.916.917.9 f (KHZ) 331362393412434442431421402390381372 (mv)

电磁炮及其相关材料技术--实验报告

电磁炮及其相关材料技术 物理学理论的不断发展与完善,促进了军事能源的不断变革,促进作战兵器的不断更新。枪、炮是作战的主要武器之一。随着作战空间的不断加大,火药对提高炮弹在炮口的发射速度的能力已很有限,很有必要另辟新径。 1985年,美国国防科学委员会在装甲/ 反装甲技术讨论会上就做出结论:“未来的高性能兵器必然以电能为基础。”电磁炮是利用电磁发射技术制成一种先进的杀伤武器,在未来战争中有着广阔的应用前景。 本次试验以电磁炮为切入点,通过对电磁炮原理和性能的分析讲解,引出电磁炮广阔的应用前景和发展阻碍,并提出解决相关问题的材料学途径,包括实验用的可控硅开关、超级电容器、超导材料、纳米技术等等,“一个实验,多项技术”是在设计整个试验时的思路。 实验目的 1、理解电磁炮的组成结构及工作原理; 2、熟悉增强电磁炮威力的相关技术手段; 3、理解可控硅开关控制电路通断和电容器的原理; 4、了解在实用化道路上电磁炮需要解决的诸多材料学难题及其解决方案; 5、了解电磁炮的优缺点及其在未来战争中的应用。 实验原理 1、电磁炮的简介及分类 电磁炮是利用电磁发射技术制成的一种先进动能杀伤武器。与传统大炮将火药燃气压力作用于弹丸不同,电磁炮是利用电磁系统中电磁场产生的洛伦兹力来对金属炮弹进行加速,使其达到打击目标所需的动能,与传统的火药推动的大炮,电磁炮可大大提高弹丸的速度和射程。 根据加速方式,电磁炮分为线圈炮、轨道炮、电热炮和重接炮。本次试验重点演示的便是线圈炮。 2、基本原理 (1)线圈炮

图 1 B沿轴线方向的分布 线圈炮的主要部件是螺线管,它是线圈均匀地密绕在炮筒上,螺线管的单位长度的匝数为n,炮筒的内半径为R,螺线管的长度为l。螺线管通入电流i时,根据电磁学理论,螺线管沿轴的B - x 关系如图1,在螺线管中部磁场均匀,端口附近磁场发散。螺线管端口附近p点B的轴向分量为 (1) 式中μo为真空磁导率,x为p点坐标。 图 2 线圈炮简单电路图 线圈炮的简单电路图如图2所示:220V交流电经过整流器的整流之后变成直流电,K1接通后,电容C开始充电,等到电容充电完成后,断开K1。线圈相当于炮身,在线圈的合适部位装上弹丸,接通K2,在线圈处便会产生一个由脉冲电流产生的强大磁场,如公式(1)所示,磁场会驱动铁制弹丸前进,从而将弹丸发射出去。 (2)轨道炮

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

电路元件特性曲线的伏安测量法和示波器观测法实验报告

课程名称:电路与模拟电子技术实验指导老师:孙晖成绩:__________________ 实验名称:电路元件特性曲线的伏安测量法和示波器观测法实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、熟悉电路元件的特性曲线 2、学习非线性电阻元件的特性曲线的伏安测量法 3、掌握伏安测量法中测量样点的选择和绘制曲线的方法 4、学习非线性电阻元件特性曲线的示波器观测方法 5、设计实验方案,用示波器观测电容的特性曲线。 二、实验内容和原理 1、在电路原理中,元件特性曲线是指特定平面上的定义的一条线,其函数关系式称为 元件的伏安特性曲线。电阻元件的伏安特性曲线是在U-I平面上的一条曲线,当曲 线为直线时,对应的元件是线性元件,斜率为电阻值。线性电阻的伏安特性曲线符 合欧姆定律,在U-I平面内是过原点的直线,与电压、电流无关;非线性元件在 U-I内是一条曲线。 2、普通警惕二极管的特点是正反向电阻差别很大,正向压降很小,正向电流随着正向 压降的上升而急骤上升,而反向电压从零一直增加到十几伏到几十伏时,其反向电 流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反响电压加的 过高,超过管子的极限值,会导致管子击穿损坏。 3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向 特性则与普通二极管不同。在反向电压开始增加时,其反向电流几乎为零,但当反 向电压增加到一定数值时(称为管子的稳压值)。电流将突然增加,以后它的端电压 将维持恒定,不再随外加的反向电压升高而增大。这两种二极管的特性属于单调型,电压与电流之间为单调函数。二极管的特性参数有开启电压U th、导通电压U on,反 向电流I R、反向击穿电压U Br以及最大整流电流I F。 三、主要仪器设备。 1、数字万用表; 2、电工综合实验台; 3、DG07多功能网络实验组件; 4、信号源;

实验十二 幅频特性和相频特性

实验十二 幅频特性和相频特性 一、实验目的:研究RC串、并联电路的频率特性。 二、实验原理及电路图 1、实验原理 电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。即: ()2 1U H j U ω= 1)低通电路 R C 1 U 2 U 10.707 () H j ω0 ωω 图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。当输入为1U ,输出为2U 时,构 成的是低通滤波电路。因为: 1 1 2 111U U U j C j RC R j C ωωω=?=++ 所以: ()()()211 1U H j H j U j RC ωω?ωω===∠+

()() 2 11H j RC ωω= + ()H j ω是幅频特性,低通电路的幅频特性如图 4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的 角频率称为截止频率,记为0ω。 2)高通电路 C R 1 U 2 U ω ω0 0.707 1() H j ω 图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性 12 1 11U j RC U R U j RC R j C ωωω=?= ?+?? + ??? 所以: ()()()211U j RC H j H j U jRC ωωω?ω===∠+ 其中()H j ω传输特性的幅频特性。电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0 ωω<<时,即低频时 ()1 H j RC ωω=<< 当0ωω>>时,即高频时, ()1 H j ω=。 3)研究RC 串、并联电路的频率特性:

扣式碳基电容器的组装及电容测试实验报告资料

扣式碳基电容器的组装及电容测试 申卓凡吉林大学化学学院14级9班 【实验目的】 1.掌握双电层的理论、基本模型及双电层电容器的工作原理。 2.了解扣式电容器的构造,组成材料,掌握电容器的组装工艺。 3.了解电容性能测试仪使用及数据分析方法,探索影响电容性能的因素。 【实验原理】 一、什么是超级电容器 超级电容器(Super Capacitor),也叫电化学电容器(Electro Chemical Capacitor),是性能介于传统电容器和电池之间的一种新型储能装置,兼有电池高比能量和传统电容器高比功率的特点。其比容量是传统电容器的20~200倍,比功率一般大于1000 W/kg,远远大于二次电池,循环寿命也优于电池。此外,超级电容器还具有能瞬间大电流充放电、工作温度范围宽、安全、无污染等优点,因而在许多场合有着独特的应用优势和广阔的应用前景。 二、超级电容器的特点 超级电容器作为一种新型的储能元件,具有如下优点: ①较高的容量。超级电容器的容量范围为0.1~6000 F,比同体积的电解电容器容量大 2000~6000倍。 ②超高功率密度。超级电容器能提供瞬时的大电流,在短时间内电流可以达到几百到几千 A,其功率密度是电池的10~100倍,可达到10×103 W/kg左右。 ③高充放电效率,超长寿命。超级电容器的充放电过程通常不会对电极材料的结构产生影 响,材料的使用寿命不受循环次数的影响,充放电循环次数在105以上。 ④放置时间长。长时间放置超级电容器的电压会下降,再次充电可以充到原来的电位,对 超级电容器的容量性能无影响。 ⑤工作温度区间宽。超级电容器电极材料的反应速率受温度影响不大,可在-40~70℃的 温度范围内工作。 ⑥免维护,环境友好。超级电容器用的材料是安全、无毒的,而铅酸蓄电池、镍镉蓄电池 用的材料具有毒性。 超级电容器的不足之处表现为能量密度偏低,漏电流较大,单体工作电压低。水系电解液超级电容器单体的工作电压只有1 V左右,要通过多个电容器单体的串联才能得到较高的工作电压。而多单体电容器串联对电容器单体的一致性要求很高。非水系电解液超级电容器单体的工作电压高一点,可以达到3.5 V。但非水系电解液要求有高纯度、无水等很苛刻的条件。 三、超级电容器的工作原理 超级电容器按储能机理不同可以分为双电层电容器和氧化还原准电容器两种类型。 1. 双电层电容器(Electric Double Layer Capacitor, EDLC) ①双电层的结构 双电层的结构可以在物理化学课程中电动势产生的原理部分以及胶体与界面可以学习

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

实验七-实验报告

实验七:超声化学法制备纳米多孔氧化物及其电化学性能研究专业:材料物理姓名:许航学号:141190093 一、实验内容与目的 1、学习超声化学反应的基本原理,熟悉反应装置的构成; 2、通过与其他方法比较,了解超声化学法在多孔纳米材料制备方面的优缺点; 3、学习超声化学法制备多孔金属氧化物的实验步骤,了解多孔纳米材料的表征方法; 4、学习电化学工作原理,掌握电容测试方法,熟悉超级电容器常用的金属氧化物材料。 二、实验原理 超声化学主要源于声空化导致液体中微小气泡形成、振荡、生长收缩与崩裂及其引起的物理、化学效应。液体声空化是集中声场能量并迅速释放的过程,空化泡崩裂时,在极短时间和空化极小空间内,产生5000K以上的高温和约5.05×108Pa的高压,速度变化率高达1010K/s,并伴有强烈的冲击波和时速高达400km的微射流生成,使碰撞密度高达1.5kg/s;空化气泡的寿命约0.1μs,它在爆炸时释放出巨大的能量,冷却速率可达109K/s。这为一般条件下难以或不能实现的化学反应提供了一种特殊的环境。这些极端条件足以使有机物、无机物在空化气泡内发生化学键断裂、水相燃烧和热分解条件,促进非均相界面之间搅动和相界面的更新,极大提高非均相反应的速率,实现非均相反应物间的均匀混合,加速反应物和产物的扩散,促进固体新相的生成,并控制颗粒的尺寸和分布。通过将超声探头浸入反应溶液中就可将超声波引入到一个有良好控温范围的反应系统。利用超声来使反应体系中的物质得到充分的反应,从而制备出颗粒分布、大小尺寸均匀的纳米多孔氧化物。

三、实验数据及处理 1.循环伏安曲线 在恒定扫描速率下,伏安特性曲线为闭合曲线,且扫描速率越快,围成的图形面积越大。 2.恒流充放电电压-时间曲线 曲线包括充电和放电两个过程,设定电压从0V充到0.6V,再放电到0V。随着充电电流的增加,充放电总时间增长,曲线的峰点向时间增加的方向移动。

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

电工电子学实验报告常用电子仪器的使用

电工电子学实验报告04常用电子仪器的使用 实验报告课程名称:电工电子学实验指导老师:实验名称:常用电子仪器的使用一、实验目的1.了解常用电子仪器的主要技术指标、主要性能以及面板上各种旋钮的功能。2.掌握实验室常用电子仪器的使用方法。二、主要仪器设备1.XJ4318 型双踪示波器。2.DF2172B 型交流电压表。3.XJ1631 数字函数信号发生器。 4.HY3003D-3 型可调式直流稳压稳流电源。5.10kΩ 电阻和0.01μ F 电容各一个。三、实验内容1.用示波器检测机内“校正信号”波形首先将示波器的“显示方式开关(VERTCAL MODE)”置于单踪显示,即Y 1 (CH1)或Y 2 (CH2),“触发方式开关(TRIGGER)”置于“自动(AUTO)”即自激状态。开启电源开关后,调节“辉度(INTEN)”、“聚焦(FOCUS)”“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。将示波器的“校正信号”引入上面选定的Y 通道(CH1 或CH2),将Y 轴“输入耦合方式开关” 置于“AC”或“DC”,调节X 轴“扫描速率选择开关”(t/div 或t/cm)和Y 轴“轴入灵敏度开关(V/div 或 V/cm)”,并且将各自的“微调”旋钮置于校正位置,使示波器显示屏上显示出约两个周期,垂直方向约4~8div(cm)的校正信号波形。从示波器显示屏的坐标刻度上读得X 轴(水平)方向和Y 轴(与X 轴垂直)方向的原始数据(即从示波器刻度上读取的刻度数值和所选的刻度单位值),填入表4-1,并计算出对应的实测值。校正信号标称值示波器测得的原始数据测量值幅度U P-P 0.2V 4div 0.05V/div 0.2V 频率f 1000Hz 5div 0.2ms/div 1000Hz 表4-1 观察“Y 轴输入灵敏度微调开关”和“X 轴扫描速率微调开

超级电容器实验报告

实验报告 题目C,MnO2的电化学电容特性实验姓名许树茂 学号20104016005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的

示波器实验报告

示波器的原理和使用及声速测量实验报告2016年5月6日星期五粟鹏文2015011744 核51 示波器的原理和使用及声速测量 一、示波器的原理和使用 实验目的 (1)了解示波器的基本结构及其工作原理,学习使用示波器。 (2)学习电信号有关参数的基本概念及其测量。 实验原理 示波器原理 示波器按显示方式可分为阴极射线示波管和液晶显示两种。阴极射线示波器一般包括示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 示波管为示波器的主要部分,包括电子枪、偏转系统和荧光屏三部分,全部密封在真空玻璃外壳内。 电子枪由灯丝、阴极、控制栅极、第一阳极及第二阳极组成。灯丝加热表面涂有氧化物的阴极,使其发射电子。因控制栅极电位比阴极低,初速度较大的电子才能通过控制栅极,示波器上的亮度就是通过调整栅极电位来控制的。阳极电位比阴极电位高很多,电子被阴阳极间的电场加速而形成阴极射线。当控制栅极、第一阳极及第二阳极的电位调节合适时,射线收到聚焦。所以第一阳极也称聚焦阳极,而第二阳极电位更高,称为加速阳极。 偏转系统由互相垂直的偏转板组成。如果在竖直偏转板上加待测电压,在水平偏转板上加上与待测电压同周期或周期为整数倍的扫描电压,则在荧光屏上将能显示出完整周期的所加待测电压的波形图。 荧光屏上涂有荧光粉,电子打上去能发出荧光,形成光斑。性能较好的示波管中,荧光屏玻璃内表面直接刻有坐标刻度,荧光粉紧贴坐标刻度以消除视差。 李萨如图形的基本原理 如果示波器的X和Y输入是频率相同或成简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图称为李萨如图形。如果做一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数n x与竖边上的切点数n y之比恰好等于Y和X输入的两正弦信号的频率之比。即:f y:f x=n x:n y,若有端点与假想边框相接时,应把一个端点记为1/2个切点。利用李萨如图形能方便得比较出两个正弦信号的频率。 实验仪器 (1)SS-7802双踪示波器 实验用SS-7802双踪示波器能够同时测量频率在20MHz范围内的两个电压信号。借助于电子开关可将两个信号交替加到示波管的Y偏转板上,当电子开关的频率足够高时,在屏上可以同时得到两个信号。其基本使用方式如下。 1.X方式选择按键(HORIZ DISPLAY):通常选“A”方式,需要显示李萨如图时选择“X-Y”,此时CH-1为X输入,CH-2为Y输入。 2.触发方式选择按键(SWEEP MODE):通常选“AUTO” 方式。 3.打开信号通道,如果信号线插在CH1通道,按下“CH1”键,使屏幕左下方显示“1:”,如果信号线插在CH2通道,按下“CH2”键,使屏幕左下方显示“2:”,注意,“2:”前不能出现“+”号,如果出现“+”,请看第10步。 4.如果屏幕正上方有“TV”字符显示,按下“TV”键,将该功能取消。

函数幅频特性曲线

1:已知x(t)=1,试用MATLAB 分析其幅频特性曲线。 解:因为x(t)=1是连续非周期信号,其对应的频谱是非周期连续的,对于连续的信号计算机不能直接加以处理,因而,需要将其先离散化,再利用离散傅里叶变换(DFT )对其进行分析实现其近似计算。对连续时间信号x(t)可以分解成x(t)=u(t)+u(-t-1),通过采取不同的采样间隔来分析其频谱。 (a)对x(t)离散化的采样间隔取R=0.005,对F(W)取N=7000,图像如图a ; (b)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=30,图像如图b ; (c)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=7000,图像如图c 。 针对(a)情况的程序如下:R=0.005;t=-5:R:5; f=Heaviside(t)+Heaviside(-t); W1=2*pi*2; N=7000;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:7001)]; F=[fliplr(F),F(2:7001)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('x(t)'); title('x(t)函数的图像'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('x(t)函数的傅里叶变换F(w)'); 图a R=0.005, N=7000

图b R=0.01,N=30 图c R=0.01,N=7000

太阳能电池对储能装置两种方式充电实验(实验报告)

光伏工程实验报告 实验名称:太阳能电池对储能装置两种方式充电实验学院:材料科学与工程学院 专业:应用物理 指导教师: 报告人:学号:1班级: 实验时间:2015/1/5 实验报告提交时间:2014/12/

一、实验目的 1. 了解超级电容放电的实验; 2. 了解太阳能组件直接对超级电容充电的实验; 3. 了解太阳能组件加DC-DC模块后对超级电容充电实验; 4. 熟悉恒压和恒定功率计算充电效率的方法; 5. 通过对两组实验结果进行比较,找出实现最佳充电效率的方法。 二、实验原理 1.DC-DC模块 DC-DC为直流电压变换电路,能将直流电压 转换为直流电压,相当于交流电路中的变压器,就 是相当于我们平常使用的电源充电器,最基本的 DC-DC变换电路如图1所示。 图1中,Ui为电源,T为晶体闸流管,uC为 晶闸管驱动脉冲,L为滤波电感,C为电容,D为 续流二极管,RL为负载,uo为负载电压。调节晶 闸管驱动脉冲的占空比,即驱动脉冲高电平持续时 间与脉冲周期的比值,即可调节负载端电压。 DC-DC的作用: 当电源电压与负载电压不匹配时,通过 DC-DC调节负载端电压,使负载能正常工作。本实 验的太阳能组件输出电压可以超过10V,而超级电 容器的额定电压为3V左右,因此需要用到DC-DC 模块进行电压的转换。 通过改变负载端电压,改变了折算到电源端的等效负载电阻,当等效负载电阻与电源内阻相等时,电源能最大限度输出能量。 在本实验中,DC-DC模块用于控制太阳能电池,使其始终以最大限度输出能量,保证以恒定功率输出。 2.超级电容 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

相关主题
文本预览
相关文档 最新文档