当前位置:文档之家› 矩阵理论第一二章典型例题

矩阵理论第一二章典型例题

矩阵理论第一二章典型例题
矩阵理论第一二章典型例题

《矩阵理论》第一二章 典型例题

一、 判断题

1.A n 为阶实对称矩阵,n R x 对中的列向量,

||x |A

x =定义, ||x||x 则为向量 的范数. ( )

提示:因为非负性不成立,故结论错误。

2.设A n 为阶Hermite 矩阵,

12,,,n λλλ是矩阵A 的特征值,则2

2

21

||||n

m i i A λ==∑.

( )

提示:A n 为阶Hermite 矩阵?22

2

212||||||(,,

,)||H m n m A Udiag U λλλ= 2

212||(,,

,)||n m diag λλλ=21

n

i i λ==∑.

3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( )

提示:AA -为幂等矩阵?AA -

的特征值为0或1。又0A ≠,?A AA -

≥秩()=秩()1?

0AA -≠?1是AA -的特征值

?2||||AA -=max ()i AA λ-=

=1

4. 若设n

x R ∈

,则212||||||||||x x x ≤≤. ( ) 提示: 2

2

2

2

2

2

1221

||||||||||||||x x x x x =++

+≤, 11||||||n i i x x ==∑1

||1n

i i x ==?∑

21/21

||)n

i i x =≤

∑2||x =

5. 设m n

A R

?∈的奇异值为12n σσσ≥≥

≥,则2

22

1

||||n

i i A σ==∑. ( )

6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11

||()||1||||

E A A -->

-,

其中E 为n 阶单位矩阵. ( )

提示:

111()()()()E E A E A E A A E A ---=--=---?11()()E A E A E A ---=+-? 11||()||||()||E A E A E A ---=+-1||||||||||()||E A E A -≤+-?

1||||1

||()||1||||1||||

E E A A A --≤

=--

7. 设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =

( )

提示:(2)H H H A E uu =- (2)H H E uu =-2H E uu =-A =

(2)(2)H H H A A E u u E

u u =--224H H H

H E u u u u u u u u E

=--+=

2||||m

A n

∴8. 设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( )

9.设n

n C

A ?∈可逆,n

n C

B ?∈,若对算子范数有1

||||||||1A B -?<,则B A +可逆.

( ∨ )

10. 设A 为m n ?矩阵,P 为m 阶酉矩阵, 则PA 与A 有相同的奇异值. ( ) 11. 设n n

A C

?∈,且A 的所有列和都相等,则()r A A ∞=. ( )

12. 如果12(,,

,)T n n x x x x C =∈,则1||||min i i n

x x ≤≤=是向量范数. ( )

13. 设,n n A C ?∈则矩阵范数m

A ∞

与向量的1-范数相容. ( )

14、设n n

A C

?∈是不可逆矩阵,则对任一自相容矩阵范数

有1I A -≥, 其中I 为单位矩

阵. ( )

二、 设m n

A C

?∈,,||

||||ij i j

A a =,证明:

(1)||||A 为矩阵范数; (2)||||A 为与向量2-范数相容.

三、 试证:如果A 为n 阶正规矩阵,且Ax x λ=和Ay y μ=,其中,λμ≠,那么x 与y

正交.

证: A 为n 阶正规矩阵?H

A U U =Λ?

Ax x λ=?H

U Ux x λΛ=?Ux Ux λΛ='

''x Ux

x x λ=Λ=

'''1(,,)T n x x x =设?',0i i x λλ≠=时

Ay y λ=?H U Uy y μΛ=?Uy Uy μΛ=?'''y Uy y y λ=Λ=

?'

,0i i y μμ≠=时

λμ≠?''

(,)0x y =

()

''0,()H x y Ux Uy ==H

H

x U Uy =H

x y =(),x y =

四、 (1) 设(1)n n

A C

n ?∈>为严格对角占优矩阵,1122(,,

,)nn D diag a a a =,其中

(1,2,

,)ii a i n =为A 的对角元,E 为n 阶单位矩阵,则存在一个矩阵范数||||?使得

1()1r E D A --<.

(2) 设n n

A C ?∈, ε为任意给定的正数,()r A 为矩阵的谱半径。证明:至少存在一

个矩阵范数||||A 使得||||().A r A ε≤+

五.设矩阵U 是酉矩阵, 12diag(,,

,)n A a a a =, 证明: UA 的所有特征值λ满足不等式

{||}||{||}max min i i i

i

a a λ≤≤.

六. 设||||a ?是n n

C

?上的相容的矩阵范数, 矩阵,B C 都是n 阶可逆矩阵, 且1

||||a B

-及

1||||a C -都小于或等于1, 证明: 对任意矩阵n n A C ?∈

||||||||b a A BAC =

定义了n n

C

?上的一个相容的矩阵范数.

七.设A 是可逆矩阵,

λ是A 的一个特征值, 对于任意的算子范数||||?, 证明1

1

||||||

A λ-≥

. 八. 设A 是Hermite 矩阵()H

A A =,且A 的特征值12n λλλ===,证明矩阵A 的

Rayleigh 商恒等于1λ.

九.已知n n C ?中的两种矩阵算子范数|| ||a 与|| ||b , 对于任意矩阵n n A C ?∈, 验证

||||||||||a b A A A =

+ 是n n C ?中的相容矩阵范数.

十.设矩阵m n

r

A C ?∈的非零奇异值为12,,

,r σσσ(0r >), 求证

1

22

1

||||().r

F i i A σ==∑

十一. 设矩阵n n

A C

?∈可逆, 矩阵范数||||?是n

C 上的向量范数||||v ?诱导出的算子范数, 令

()L x Ax =, 证明:

||||11||||1

max ||()||||||||||min ||()||v v v

x v

y L x A A L y =-==?.

证明: 根据算子范数的定义, 有||||1

max ||()||||||x L x A ==,

1

11

00||||1||||1

0||||||||111

||||max max ||||||||||||min ||||min ||()||min ||||

y A x x y y y y A x y A Ay x Ay Ay L y y --=-≠≠==≠=====,

结论成立.

十二. 设矩阵n n

A C ?∈为单纯矩阵, 证明: A 的特征值都是实数的充分必要条件是存在正定

矩阵n n

H C

?∈, 使得HA 为Hermite 矩阵.

证明: (充分性) (0)Ax x x λ=≠, ,(0,)H

H

H

H

x HAx x Hx R x Hx x HAx R λ=∈>∈,

R λ∈.

(必要性) A 为单纯矩阵, 所以1

1, (,

,),n i A P DP D diag R λλλ-==∈,

令H H P P =, 则1H H

HA P PP DP P DP -==为Hermite 矩阵. 十三. (1) 设矩阵()ij n n A a ?=, 则

,||||max ||a ij i j

A n a =?

是矩阵范数.

(2) 设,,,n x y p q C ∈, 矩阵H H A xp yq ,x y,p q =+⊥⊥其中,求2||||m A .

2矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; } (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(== 若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。

2.1.2 矩阵的运算 1.加法 ~ (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 . (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置 ~ (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )(=, (2)运算规律 ①;)(A A T T = ②T T T B A B A +=+)(;

矩阵理论第一二章典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x||x 则为向量 的范数. ( ) 提示:因为非负性不成立,故结论错误。 2.设A n 为阶Hermite 矩阵, 12,,,n λλλ是矩阵A 的特征值,则2 2 21 ||||n m i i A λ==∑. ( ) 提示:A n 为阶Hermite 矩阵?22 2 212||||||(,, ,)||H m n m A Udiag U λλλ= 2 212||(,, ,)||n m diag λλλ=21 n i i λ==∑. 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( ) 提示:AA -为幂等矩阵?AA - 的特征值为0或1。又0A ≠,?A AA - ≥秩()=秩()1? 0AA -≠?1是AA -的特征值 ?2||||AA -=max ()i AA λ-= =1 4. 若设n x R ∈ ,则212||||||||||x x x ≤≤. ( ) 提示: 2 2 2 2 2 2 1221 ||||||||||||||x x x x x =++ +≤, 11||||||n i i x x ==∑1 ||1n i i x ==?∑ 21/21 ||)n i i x =≤ ∑2||x = 5. 设m n A R ?∈的奇异值为12n σσσ≥≥ ≥,则2 22 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11 ||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 提示:

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

矩阵练习带答案详解

一、填空题: 1.若A ,B 为同阶方阵,则2 2 ))((B A B A B A -=-+的充分必要条件是 BA AB =。 2. 若n 阶方阵A ,B ,C 满足I ABC =,I 为n 阶单位矩阵,则1 -C = AB 。 3. 设A ,B 都是n 阶可逆矩阵,若??? ? ??=00A B C ,则1 -C = ??? ? ??--00 11B A 。 4. 设A=? ??? ??--1112,则1 -A =??? ? ??2111。 5. 设???? ??--=111111A , ??? ? ??--=432211B .则= +B A 2??? ? ??--731733。 6.设???? ? ??=300020001A ,则1 -A = ??????? ? ? ? 310 0021000 1 7.设矩阵 1 -1 3 2 0,2 0 10 1A B ????== ? ? ???? ,T A 为A 的转置,则B A T =???? ? ??-160222. 8. ??? ? ? ??=110213021A ,B 为秩等于2的三阶方阵,则AB 的秩等于 2 . 二、判断题(每小题2分,共12分) 1. 设B A 、均为n 阶方阵,则 k k k B A AB =)((k 为正整数)。……………( × ) 2. 设,,A B C 为n 阶方阵,若ABC I =,则1 11C B A ---=。…………………………… ( × ) 3. 设B A 、为n 阶方阵,若AB 不可逆,则,A B 都不可逆。……………………… ( × )

4. 设B A 、为n 阶方阵,且0AB =,其中0A ≠,则0B =。……………………… ( × ) 5. 设C B A 、、都是n 阶矩阵,且I CA I AB ==,,则C B =。……………………( √ ) 6. 若A 是n 阶对角矩阵,B 为n 阶矩阵,且AC AB =,则B 也是n 阶对角矩阵。…( × ) 7. 两个矩阵A 与B ,如果秩(A )等于秩(B ),那么A 与B 等价。 …………( × ) 8. 矩阵A 的秩与它的转置矩阵T A 的秩相等。 ……………………………………( √ ) 三、选择题(每小题3分,共12分) 1.设A 为3×4矩阵,若矩阵A 的秩为2,则矩阵T A 3的秩等于( B ) (A) 1 (B) 2 (C) 3 (D) 4 2.假定A 、B 、C 为n 阶方阵,关于矩阵乘法,下述哪一个是错误的 ( C ) (A))(BC A ABC = (B))(kB A kAB = (C )BA AB = (D)CB CA B A C +=+)( 3. 已知B A 、为n 阶方阵,则下列性质不正确的是( A ) (A) BA AB = (B) )()(BC A C AB = (C ) BC AC C B A +=+)( (D) CB CA B A C +=+)( 4. 设I PAQ =,其中P 、Q 、A 都是n 阶方阵,则( D ) (A )111 ---=Q P A (B )111---=P Q A (C )PQ A =-1 (D)QP A =-1 5. 设n 阶方阵A ,如果与所有的n 阶方阵B 都可以交换,即BA AB =,那么A 必定是( B ) (A)可逆矩阵 (B)数量矩阵 (C)单位矩阵 (D)反对称矩阵 6. 两个n 阶初等矩阵的乘积为( C ) (A )初等矩阵 (B )单位矩阵 (C)可逆矩阵 (D)不可逆矩阵 7. 有矩阵 23?A ,32?B ,33?C A ) (A )AC (B )BC (C)ABC (D )C AB - 8. 设A 与B 为矩阵且AC CB =,C 为m n ?的矩阵,则A 与B 分别是什么矩阵( D ) (A) n m m n ?? (B) m n n m ??

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

可逆矩阵判定典型例题

典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若0||≠A , 则 T T A A )()(11--=; (2)若A 、B 都是n 阶可逆矩阵, 则* **)(A B AB =; (3) T T A A )()(**=; (4)若0||≠A , 则* 11*)()(--=A A ; (5) * 1*)1()(A A n --=-; (6)若0||≠A , 则l l A A )()(11--=(l 为自然数); (7) * 1*)(A k kA n -=. 证 (1)因为0||≠A , 故A 是可逆矩阵, 且 E AA =-1 两边同时取转置可得 E E A A AA T T T T ===--)()()(11 故由可逆矩阵的定义可知 T A )(1-是A T 的逆矩阵. 即 1 1)()(--=T T A A (2)利用方阵与其对应的伴随矩阵的关系有 E AB AB AB ||)()(*= (2-7) 另一方面 B I A B B A A B AB A B )|(|)())((*****== E AB E B A B B A |||| ||||*=== (2-8) 比较式(2-7)、(2-8)可知 ))(()()(***AB A B AB AB = 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘1 )(-AB 可得 ***)(A B AB = (3)设n 阶方阵A 为 ?????????? ????=nn n n n n a a a a a a a a a A 2 1 2222111211 于是可得A 的伴随矩阵* A 为

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

第11章典型例题分析2号

典型例 题分析 例11-1已知三个码组为(001010), (101101), (010001). 若用于检错,能检出几位错码?若用于纠错,能纠正几位错码?若同时用于检错和纠错,各能纠、检几位错码? 解:根据三个码组可知码的最小码距为 04d =。当用于检错和纠错时,由d 0 ≥t+e+1可得t=1, e=2, 即检测出3位错码,纠正1位错码,。 ★例11-2 设线性码的生成矩阵为 001011100101010110G ????=?????? (1) 求监督矩阵H, 确定(n, k )码组中的n, k; (2) 写出监督码位的关系式及该(n, k)码的所有码字;

(3) 确定最小码距d 0. 解:(1)将生成矩阵G 变成典型形式的生成矩阵,即初等行变换将G 化为典型阵: 0010111001 10010101010101100010G ??????=→????????? 可得矩阵为101110011Q ????=?? ???? , 对应的P 矩阵为 110011101T P Q ?? ??==?? ???? 可得监督矩阵H 为 []? ???=?????? r 110100H =PI 011010101001,由生成矩阵可得n=6, k=3

(2)由于0T T H A ?= ,即 543210000a a a a a a ????????????????=???????????????????????? 110100011010101001 由此可得监督关系 式为 23130000a a a a a a a a a ⊕⊕=?? ⊕⊕=??⊕⊕=?5445 设A 为许用码组,则

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

小度写范文【可逆矩阵判定典型例题】 矩阵可逆模板

【可逆矩阵判定典型例题】矩阵可逆典型例题(二)方阵可逆的判定 例1 设A是n阶方阵, 试证下列各式: (1)若|A|≠0, 则(AT)-1=(A-1)T ; (2)若A、B都是n阶可逆矩阵, 则 (AB)*=B*A* ;(3) (AT)*=(A*)T;(4)若|A|≠0, 则(A*)-1=(A-1)* ;(5) (-A)*=(-1)n-1A*;(6)若|A|≠0, 则(Al)-1=(A-1)l (l为自然数);(7) (kA)*=kn-1A*. 证(1)因为|A|≠0,故A是可逆矩阵, 且 AA-1 =E两边同时取转置可得 (AA-1)T=(A-1)TAT=(E)T=E 故由可逆矩阵的定义可知 (A-1)T是AT的逆矩阵. 即 (A-1)T=(AT)-1 (2)利用方阵与其对应的伴随矩阵的关系有 (AB)*(AB)=|AB|E 另一方面

(B*A*)(AB)=B*(A*A)B=B*(|A|I)B =|A|B*B=|A| |B|E=|AB|E 比较式(2-7)、(2-8)可知 (AB)*(AB)=(B*A*)(AB) 又因为A、B均可逆, 所以(AB)也可逆, 对上式两端右乘(AB)-1 可得 (AB)*=B*A* (3)设 n 阶方阵A为 ?aa12 a?11 1n?A=?a??21a22 a2n?? ? ??aa? ?n1n2 ann? 于是可得A的伴随矩阵A* 为 ?AA?11 21 An1?A*=?A??12A22 An2?? ? ???AA?1n2n Ann注意到?A 的转置矩阵为 2-7)2-8)( ( T 可推出A的伴随矩阵为 ?a11??a12

北京理工大学出版社矩阵分析习题解答

2005级电路与系统矩阵分析作业 3-1已知)(ij a A =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 []n x x x ,,,21 =α ,[]n y y y ,,,21 =β定义内积*),(βαβαA =。 (1)证明在上述定义下,n C 是酉空间;(2)写出n C 中的Canchy -Schwarz 不等式。 (1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H = ),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A A H A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时, 由上可知 c n 是酉空间。証毕。 (2)解: ∑∑==n j n i j ij i H y a x A |||),(|β αβα ∑∑= =n j n i j ij i x a x ),(||||ααα,∑∑= =n j n i j ij i y a y ),(||||βββ 由Cauchy-Schwarz 不等式有: ∑∑∑∑∑∑≤ n j n i j ij i n j n i n j n i j ij i j ij i y a y x a x y a x * 3-3(1)已知.A =???? ??????502613803 ---,试求酉矩阵U,使得U*AU 是上三角矩阵 解:由|λE-A| = (λ+1) 3 得 λ= -1是A 的特征值,当λ=-1时,可得|λE-A|=0 00000 2 01于是ε1= (0,1,0)T 是A 的特征向量。选择与ε1正交,并且互相也正交两个向量组成酉阵:U 1= ???? ??????100001010 则U 1*A U 1= ?? ?? ??????---52083063 1 取A 1= ??????--5283,|λE- A 1| = (λ+1)2 λ= -1是A 1的特征值。 当λ=-1时,可得|λE- A 1|=0021,于是,α1 =( --52,5 1)T 是A 的特征向量,选择与α1 正交的向量组成酉阵U 2 = ????? ? ??? ???525 1515 2 -,U 2*A 1U 2 = 51??????-2112??????--5283??????-2112 =?? ????---10101 3-9若S ,T 分别是实对称矩阵和反实对称矩阵,且0)det(≠--iS T E ,试证:1 ))((---++iS T E iS T E 是酉矩阵,。 证明:令1)(),(---=++=iS T E C iS T E B ,BC iS T E iS T E A =--++=))((,==A BC A A * *)( 1**1**))(()())((----++++--=iS T E iS T E iS T E iS T E A B C ,又S ,T 分别是实对称矩阵和反实 对称矩阵,即有T T S S -==**,,则有,)()())((* *1**iS T E iS T E iS T E A B C ++++--=- 111))()(()()(-----++--++=--iS T E iS T E iS T E iS T E iS T E ,因为))((iS T E iS T E ++--

相关主题
文本预览
相关文档 最新文档