当前位置:文档之家› 操作系统进程控制与调度

操作系统进程控制与调度

操作系统进程控制与调度
操作系统进程控制与调度

操作系统实验报告

2012年12月19 日

一、实验内容

1、自定义进程相关的数据结构;

2、利用MFC类库中的栈(queue),链表(list),向量(vector)等模板模拟进程控制块队列、进

程控制块优先级队列、统计信息链表及其指令集合;

3、利用MSDN和MFC API编程实现常见的进程控制和调度策略(先来先服务算法、时间

片轮转算法、最高优先权优先调度算法、最短进程优先调度算法);

4、测试以上进程调度策略的周转时间、带权周转时间、平均周转时间和平均带权周转时间,并定性评价它们的性能。

二、实验要求

用高级语言编写和调试进程调度的模拟程序,以加深对进程调度算法的理解。

三、实验步骤

typedef struct PCBNode

{

int ID;

int Priority;

int CPUtime;

int Alltime;

int Arrivetime;

int state;

int counter;

struct PCBNode *next;

}PCB;//定义数据结构

PCB *run;

PCB *ready;

PCB *over;

PCB *head;

//定义状态量

int Min(PCB *head)//挑选出队列中的拥有最小alltime 值的块,返回块号,用于sjf 算法

{

PCB *p;//q用来记录这个块的地址

int min,id;//记录最小值和块号

p=head->next;

if(p)

{

min=p->Alltime;

id=p->ID;

while(p->next)

{

if(min>p->next->Alltime)

{

min=p->next->Alltime;

id=p->next->ID;

p=p->next;

}

else

{

p=p->next;

}

}

}

return id;

}

int Max(PCB *head)//挑选出队列中的拥有最大优先级的块,返回块号,用于prio 算法

{

PCB *p;//q用来记录这个块的地址

int max,id;//记录最大和块号

p=head->next;

if(p)

{

max=p->Priority;

id=p->ID;

while(p->next)

{

if(max<=p->next->Priority)

{

max=p->next->Priority;

id=p->next->ID;

p=p->next;

}

else

{

p=p->next;

}

}

}

return id;

}

PCB *CreatPCB(int n)

{

操作系统复习题(2)及答案

一.名词解释 抢占式进程调度进程状态系统调用中断响应线程联想存储器死锁通道地址重定位高速缓存可再入程序 抖动索引文件作业控制块目录项设备驱动程序虚存逻辑空间物理空间 二.填空题 1.现代操作系统的两个最基本的特征是(),(),()和() 2.操作系统是计算机系统中的一个(),它管理和控制计算机系统中的()3.允许多个用户以交互方式使用计算机的操作系统称为(),允许多个用户将多个作业提交给计算机集中处理的操作系统称为(),计算机系统能及时处理过程控制数据并做出响应的操作系统称为()。 4.用户与操作系统之间的接口主要分为()和()两类。 5.进程控制块的初始化工作包括(),()和()。 6.在操作系统中引入线程概念的主要目的是()。 7.程序并发执行与顺序执行时相比产生了一些新特性,分别是:(),()和()。 8.进程是一个程序对某个数据集的()。 9.如果系统有N个进程,则在等待队列中进程的个数最多可为()个。 10.在操作系统中,不可中断执行的操作称为()。 11.如果信号量的当前值为-4,则表示()。 12.在有M个进程的系统中出现死锁时,死锁进程的个数K应该满足的条

件是()。 13.不让死锁发生的策略可以分为静态和动态的两种,死锁避免属于()。 14.若使当前运行进程总是优先级最高的,应选择()进程调度算法。 15.在进程中,访问()的代码称为临界区。为保证进程()使用临界区,应在进程的临界区前设置(),在临界区后设置()。 16.在采用请求分页式存储管理的系统中,地址变换可能会因为(),(),和() 等原因而产生中断。 17.在可变分区存储管理中,分区的保护通常采用()和()两种方式。 18.在分区分配算法中,首次适应算法倾向于优先利用存中()部分的空闲分区,从而保留了()部分的大空闲区。 19.不让死锁发生的策略可以分为静态和动态的两种,死锁避免属于()。 20.若使当前运行进程总是优先级最高的,应选择()进程调度算法。 21.缓冲区由()和()组成? 22.进行设备分配时所需的数据表格主要由(),(),()和()等。 23.设备管理中引入缓冲机制的主要原因由(),()和() 24.使用位示图(20行,30列)表示空闲盘块状态。当分配一个盘块号为132号时,其在位示图中的行,列数为(),()。当释放一个盘块号为318时,其所在位示图中的行,列数位(),()。(注:行为0-――19,列为0-――29,首盘块号为1)。

操作系统课程设计报告进程调度

前言 操作系统(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。 操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。 操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如系统软件和应用软件等。 操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。 本次课程设计我们将对上学期所学的知识进行系统的应用,而达到巩固知识的作用

目录 1问题概述 (2) 2需求分析 (2) 3 概要设计 (2) 3.1主要功能 (2) 3.2 模块功能结构 (3) 3.3 软硬件环境 (3) 3.4数据结构设计 (3) 4 详细设计 (4) 4.1“先来先服务(FCFS)调度算法” (4) 4.2“短进程调度算法(SPF)” (7) 4.3“高响应比优先调度算法” (10) 4.4“优先级调度(非抢占式)算法” (14) 5 系统测试及调试 (16) 5.1测试 (16) 5.2调试过程中遇到的问题 (17) 6 心得体会 (18) 7 参考文献 (19) 8 附录 (20)

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

操作系统:进程调度实验报告

设计性实验报告 一、实验目的 1.在Linux下用C语言编程模拟优先级进程调度算法和时间片轮转进程调度算法。 2.为了清楚地观察每个进程的调度过程,每次调度程序应将各个进程的情况显示出来。 二、总体设计(设计原理、设计方案及流程等) 1、优先级进程调度算法 采用动态优先级进程调度算法,其基本思想是每次调度总是把处理机分配给优先级最高的进程,同时在运行过程中进程的优先级随着执行或等待的时间而降低或增加。 在该实验中每个进程用一个进程控制块( PCB)表示。进程控制块包含如下信息:进程号,进程名、优先数、需要运行时间、已用CPU时间、进程状态。进程号,名字,优先数,运行的时间,事先人为地指定。每个进程的状态可以是就绪,执行,阻塞或完成4种状态之一。 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。就绪队列中的进程在等待一个时间片后,优先级增1。如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时将进程的优先级减1,然后把它插入就绪队列等待CPU。 2、时间片轮转调度算法 采用简单时间片轮转调度算法,其基本思想是:所有就绪进程按 FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片相同。如果运行进程用完它的时间片后还未完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。直至所有的进程运行完毕。 三、实验步骤(包括主要步骤、代码分析等) 1.打开linux虚拟机,用vim编辑器打开代码进行修改和调整。用gcc编译器进行编译编译运行首先运行优先级算法,如图所示:

操作系统课程设计报告进程调度

前言操作系统(OperatingSystem,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。 操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。 操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如系统软件和应用软件等。 操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。

本次课程设计我们将对上学期所学的知识进行系统的应用,而达到巩固知识的作用

目录 1问题概述.................................................................................................... 2需求分析.................................................................................................... 3概要设计.................................................................................................... 3.1主要功能................................................................................................. 3.2模块功能结构 ........................................................................................ 3.3软硬件环境............................................................................................. 3.4数据结构设计 ........................................................................................ 4详细设计.................................................................................................... 4.1“先来先服务(FCFS)调度算法” ....................................................... 4.2“短进程调度算法(SPF)”.................................................................. 4.3“高响应比优先调度算法”................................................................. 4.4“优先级调度(非抢占式)算法”.......................................................... 5系统测试及调试 ....................................................................................... 5.1测试......................................................................................................... 5.2调试过程中遇到的问题 ........................................................................ 6心得体会.................................................................................................... 7参考文献.................................................................................................... 8附录............................................................................................................

操作系统进程调度实验报告

实验一进程调度实验 专业:XXXXX 学号:XXXXX 姓名:XXX 实验日期:20XX年XX月XX日

一、实验目的 通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。 二、实验要求 编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。 三、实验方法内容 1.算法设计思路 将每个进程抽象成一个控制块PCB,PCB用一个结构体描述。 构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。 主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、完成容器。 当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。 2.算法流程图 主程序的框架: 开始 选择调度算法void FCFS();//先来先服务 void SJF();//最短进程优先调度void RR();//简单时间片轮转void PD();//最高优先数优先 输入进程信息 将输入容器中以满足进入条件的进程调入就绪队列 判断就绪容器和输入容器是否为空!processScheduler.m_WaitQueue.empty()|| !processScheduler.m_ProcessQueue.empt() void ProcessQueueProcess(); //查看当前时间下,有无进程加 入。若有则把该进程调入就绪队列 void PCBInput();//输入进程信息 Y 打印各进程信息 进行统计计算周转 时间等 结束void PCBDisplay(); //打印当前状况下。就绪队列、完成队列、运行中的进程信息 void SchedulerStatistics(); //调度统计,计算周转时间等 按照选择的算法开 始选择就绪队列的 进程开始执行 void ProcessSelect(); //若当前就绪队列不为空则根 据选择的调度算法开始调度,否则,系统时间加一个时间片.以等待新的进程到

计算机操作系统进程调度实验报告

计算机操作系统进程调度 实验报告 This manuscript was revised on November 28, 2020

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块( PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。

操作系统五种进程调度算法的代码

进程调度算法的模拟实现 ?实验目的 1.本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 2.利用程序设计语言编写算法,模拟实现先到先服务算法FCFS、轮转调度算法RR、最短作业优先算法SJF、优先级调度算法PRIOR、最短剩余时间优先算法SRTF。 3.进行算法评价,计算平均等待时间和平均周转时间。 ?实验内容及结果 1.先来先服务算法

2.轮转调度算法

3. 优先级调度算法

4. 最短时间优先算法 5. 最短剩余时间优先算法

?实验总结 在此次模拟过程中,将SRTF单独拿了出来用指针表示,而其余均用数组表示。 ?完整代码 【Srtf.cpp代码如下:】 //最短剩余时间优先算法的实现 #include #include #include typedef struct { int remain_time; //进程剩余执行时间 int arrive_time; //进程到达时间 int Tp; //进入就绪队列的时间int Tc; //进入执行队列的时间int To; //进程执行结束的时间int number; //进程编号 }Process_Block; //定义进程模块 typedef struct _Queue { Process_Block PB; struct _Queue *next; }_Block,*Process; //定义一个进程模块队列中结点 typedef struct { Process head; //队列头指针 Process end; //队列尾指针

操作系统进程调度

1.实验目的: 进程是操作系统最重要的概念之一,进程调度又是操作系统核心的重要内容。通过该实验,要求同学们了解各进程在执行过程中的状态和参数的变化情况,以便于观察诸进程的调度过程 2.内容与要求: 按剥夺式优先数法对三个进程P1,p2,p3进行模拟调度,各进程的优先数静态设置,其中P1的优先数最高,P3的优先数最低。每个进程都处于执行E(execute),就绪R(ready)和等待W(wait)三种状态之一,并假定初始状态均为R.。 三个进程有如下同步关系:P1因等待事件1被阻塞后由P2发现并唤醒之,P2因等待事件2被阻塞后由P3发现并唤醒之。 当系统进入运行,在完成必要的初始化工作以后便进入进程调度,首先选择优先数最高的进程使其进入执行(分配CPU)。当执行进程因等待某个事件被阻塞或唤醒某个等待进程时,转入进程调度。 如果被唤醒的进程的优先数大于现行的执行进程,则剥夺现行进程的执行权,而将CPU分配给被唤醒的进程。当系统处于死锁或三个进程都执行完毕时系统退出运行。 系统中应用到如下数据结构: *进程控制块PCB; *信号量sem; *其它需要的数据结构。由自己设计。 3.流程图: 根据现代操作系统的特征 1.并发性(concurrence); 2.共享性(sharing); 3.虚拟性(virtual); 4.异步性(asynchronism) 。 模拟出进程在执行中的状态变化过程; 体会进程申请资源、使用资源、归还资源; 体会死锁。

4.部分代码及截图: #include #include #include int find(); void find1(); void find2(int j); void find3(int i); int totaltime=0; int lockpcb[3]={0}; int success[4]={0}; struct pcb{ int name; char state; int ntime; int rtime; int priority; }pcb[4]; void main() { printf(" ========================================================\n"); printf(" 进程调度演示\n"); printf(" ========================================================\n"); printf("\n"); printf(" 1.演示算法\n"); printf(" 2.退出程序\n"); printf("\n"); printf("\n"); printf(" 选择进程调度方法:"); int choose; scanf("%d",&choose); int j; for(j=1;j<=3;j++) { pcb[j].name=j; pcb[j].state='r'; pcb[j].rtime=0; pcb[j].ntime=3; pcb[j].priority=abs(4-j); }

操作系统进程调度习题

进程调度习题 1.有5个进程P1、P2、P3、P4、P5,它们同时依次进入就绪队列,它们的优先数和需要的处理器时间如表所示: (1)写出分别采用“先来先服务”和“非抢占式的优先数”调度算法选中进程执行的次序。 (2)分别计算出上述两种算法中各进程在就绪队列中的等待时间以及两种算法下的平均等待时间,假设优先数越大优先级越高。 2. 在单处理器环境中,有4道作业,其进入系统的时间和所需要的执行时间如下表所示: 周转时间是指作业从进入系统开始到作业完成离开系统所花费的时间。 (1)先来先服务调度算法; (2)可剥夺的优先数调度算法,优先数采用动态优先数(假设优先数改变时机是在新进程进入系统时,优先数越大优先级越高),其计算方法如下:

作业已等待时间 优先数=初始优先数十------------------- 作业要求运行时间 3.设有PA、PB、PC、PD四个进程同时依次进入就绪队列它们所需的处理器时间和优先数如下表所示: 进程处理器时(秒) 优先数 PA 20 2 PB 15 3 PC 10 5 PD 12 3 若不计调度等所消耗的时间。请回答:(1)分别写出采用“先来先服务”和“非抢占式的优先数”调度算法选中的进程执行的次序;(2)在上述两种算法下,分别算出每个进程在就绪队列的等待时间和平均等待时间。假设优先数越大,优先级越高。 4. 某多道程序设计系统采用可变分区内存管理,供用户使用的主存为200KB,磁带机5台。采用静态方式分配外围设备,且不能够移动在主存中的作业,忽略用户作业的I/O时间、调度时间和移动作业时间。现有如下作业序列: 作业调度采用最高响应比优先算法、进程调度采用SPF算法时,求作业调度选中作业的次序及各作业的周转时间。 5.假设有一个多道程序设计系统,采用可变分区方式管理主存器,且允许移动已在主存器中的作业。若供用户使用的主存空间为200KB,忽略系统调度所花

操作系统实验报告(进程调度算法)

操作系统实验报告实验1 进程调度算法 报告日期:2016-6-10 姓名: 学号: 班级: 任课教师:

实验1 进程调度算法 一、实验内容 按优先数调度算法实现处理器调度。 二、实验目的 在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。 三、实验原理 设计一个按优先数调度算法实现处理器调度的程序。 (1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为: P1,P2,P3,P4,P5。 指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。 要求运行时间——假设进程需要运行的单位时间数。 优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。 状态——可假设有两种状态,“就绪”状态和“结束”状态。五个进程的初始状态都为“就绪”,用“R”表示,当一个进程运行结束后,它的状态为“结束”,用“E”表示。 (2) 在每次运行你所设计的处理器调度程序之前,为每个进程任意确定它的“优先数”和“要求运行时间”。 (3) 为了调度方便,把五个进程按给定的优先数从大到小连成队列。用一单元指出队首进程,用指针指出队列的连接情况。例: 队首标志 K2 K3 K4 K5 (4) 处理器调度总是选队首进程运行。采用动态改变优先数的办法,进程每运行一次优先数就减“1”。由于本实验是模拟处理器调度,所以,对被选中的进程并不实际的启动运行,而是执行:

操作系统原理---进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++ 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR 原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。

计算机操作系统进程调度实验报告

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。重复以上过程,直到所要进程都完成为止。 四、实验算法流程

操作系统进程调度模拟程序实验报告

目录 1、课程设计目的 (3) 2、课程设计要求 (3) 3、相关知识 (3) 4、需求分析 (4) 5、概要设计 (5) 6、详细设计 (6) 7、测试,修改及运行结果 (13) 8、参考文献 (15) 9、结束语 (15) 10、附件 (15)

1、课程设计的目的 理解操作系统进程管理中进行进程调度的过程和编程方法,掌握先来先服务调度算法和最高优先数优先的调度算法,创建进程控制块PCB。理解进程的状态及变化,动态显示每个进程的当前状态及进程的调度情况 2、课程设计要求 编写一个进程调度程序,允许多个进程共行的进程调度程序 1).进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优 先数最高的进程)和先来先服务算法。 2).每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进 程状态等等. 3).进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为输入进程的时间。 4).进程的运行时间以时间片为单位进行计算。 5).每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。. 6).就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1 来表示。 7).如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 8).每进行一次调度程序都打印一次运行进程、就绪队列、以及 各个进程的PCB,以便进行检查。 重复以上过程,直到所要进程都完成为止 3、相关知识 进程:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动 进程的状态: 运行状态:进程正在处理器上运行 就绪状态:一个进程获得了除处理器外的一切所需资源,一旦得 到处理器即可运行 等待状态:一个进程正在等待某一事件发生而暂时停止运行

操作系统课后习题答案

1.2 操作系统以什么方式组织用户使用计算机? 答:操作系统以进程的方式组织用户使用计算机。用户所需完成的各种任务必须由相应的程序来表达出来。为了实现用户的任务,必须让相应功能的程序执行。而进程就是指程序的运行,操作系统的进程调度程序决定CPU在各进程间的切换。操作系统为用户提供进程创建和结束等的系统调用功能,使用户能够创建新进程。操作系统在初始化后,会为每个可能的系统用户创建第一个用户进程,用户的其他进程则可以由母进程通过“进程创建”系统调用进行创建。 1.4 早期监督程序(Monitor)的功能是什么? 答:早期监督程序的功能是代替系统操作员的部分工作,自动控制作业的运行。监督程序首先把第一道作业调入主存,并启动该作业。运行结束后,再把下一道作业调入主存启动运行。它如同一个系统操作员,负责批作业的I/O,并自动根据作业控制说明书以单道串行的方式控制作业运行,同时在程序运行过程中通过提供各种系统调用,控制使用计算机资源。 1.7 试述多道程序设计技术的基本思想。为什么采用多道程序设计技术可以提高资源利用率? 答:多道程序设计技术的基本思想是,在主存同时保持多道程序,主机以交替的方式同时处理多道程序。从宏观上看,主机内同时保持和处理若干道已开始运行但尚未结束的程序。从微观上看,某一时刻处理机只运行某道程序。 可以提高资源利用率的原因:由于任何一道作业的运行总是交替地串行使用CPU、外设等资源,即使用一段时间的CPU,然后使用一段时间的I/O设备,由于采用多道程序设计技术,加之对多道程序实施合理的运行调度,则可以实现CPU和I/O设备的高度并行,可以大大提高CPU与外设的利用率。 1.8 什么是分时系统?其主要特征是什么?适用于哪些应用? 答:分时系统是以多道程序设计技术为基础的交互式系统,在此系统中,一台计算机与多台终端相连接,用户通过各自的终端和终端命令以交互的方式使用计算机系统。每个用户都感觉到好像是自己在独占计算机系统,而在系统内部则由操作系统以时间片轮转的方式负责协调多个用户分享CPU。主要特征是: 并行性:系统能协调多个终端用户同时使用计算机系统,能控制多道程序同时运行。 共享性:对资源而言,系统在宏观上使各终端用户共享计算机系统中的各种资源,而在微观上它们则分时使用这些资源。 交互性:人与计算机以交互的方式进行工作。 独占性:使用户感觉到他在独占使用计算机。 现在的系统大部分都是分时系统,主要应用于人机交互的方面。 2.1 什么是中断?什么是异常?它们有何区别? 答:中断是指来自CPU执行指令以外的事件发生后,处理机暂停正在运行的程序,转去执行处理该事件的程序的过程。 异常是指源自CPU执行指令内部的事件发生后,处理机暂停正在执行的程序,转去处理该事件的过程。 区别:广义的中断包括中断和异常,统一称为中断。狭义的中断和异常的区别在于是否与正在执行的指令有关,中断可以屏蔽,而异常不可屏蔽。 2.2什么是多级中断?为什么要把中断分级?试述多级中断的处理原则。 答: 中断分级是根据中断的轻重缓急来排序,把紧迫程度大致相当的中断源归并在同一级,而把紧迫程度差别较大的中断源放在不同的级别。一般来说,高速设备的中断优先级高,慢速设备的中断优先级低。这就是多级中断。这所以引入多级中断是因为:为使系统能及时的

操作系统进程调度算法模拟实验报告

进程调度算法模拟 专业:XXXXX 学号:XXXXX 姓名:XXX 实验日期:20XX年XX月XX日

一、实验目的 通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。 二、实验要求 编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。 三、实验方法内容 1.算法设计思路 将每个进程抽象成一个控制块PCB,PCB用一个结构体描述。 构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。 主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、完成容器。 当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。 2.算法流程图 主程序的框架: 开始 选择调度算法void FCFS();//先来先服务 void SJF();//最短进程优先调度void RR();//简单时间片轮转void PD();//最高优先数优先 输入进程信息 将输入容器中以满足进入条件的进程调入就绪队列 判断就绪容器和输入容器是否为空!processScheduler.m_WaitQueue.empty()|| !processScheduler.m_ProcessQueue.empt() void ProcessQueueProcess(); //查看当前时间下,有无进程加 入。若有则把该进程调入就绪队列 void PCBInput();//输入进程信息 Y 打印各进程信息 进行统计计算周转 时间等 结束void PCBDisplay(); //打印当前状况下。就绪队列、完成队列、运行中的进程信息 void SchedulerStatistics(); //调度统计,计算周转时间等 按照选择的算法开 始选择就绪队列的 进程开始执行 void ProcessSelect(); //若当前就绪队列不为空则根 据选择的调度算法开始调度,否则,系统时间加一个时间片.以等待新的进程到

操作系统 模拟进程调度算法

操作系统 ——项目文档报告 进程调度算法 专业: 班级: 指导教师: 姓名: 学号:

一、核心算法思想 1.先来先服务调度算法 先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。 2.短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 3.高响应比优先调度算法 在批处理系统中,短作业优先算法是一种比较好的算法,其主要不足之处是长作业的运行得不到保证。如果我们能为每个作业引人动态优先权,并使作业的优先级随着等待时间的增加而以速率a提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为: 优先权=(等待时间+要求服务时间)/要求服务时间 即优先权=响应时间/要求服务时间 如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因而该算法有利于短作业。 当要球服务的时间相同时,作业的优先权决定于其等待时间,等待时间越长,优先权越高,因而它实现的是先来先服务 对于长作业,作业的优先级可以随着等待时间的增加而提高,当其等待时间足够长时,其优先级便可以升到很高,从而也可获得处理机。 4.时间片轮转算法 在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。 二、核心算法流程图

操作系统课程设计报告进程调度

前言操作系统(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。 操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。 操作系统的主要功能是资源管理,和等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如,主存储器,,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如系统软件和应用软件等。 操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。 本次课程设计我们将对上学期所学的知识进行系统的应用,而达到巩固知识的作用

目录

1问题概述 编写一个进程调度程序,允许多个进程并发执行。采取多种进程调度算法(先来先服务(FCFS)调度算法,短进程调度算法(SPF),高响应比优先调度算法,优先级调度(非抢占式)算法)。分析比较各个算法的优缺点。 2需求分析 进程调度的功能是记录系统中所有进程的执行情况、从就绪态队列中选择一个进程,进行进程上下文的切换。采取不同的算法根据外部环境及条件进行进程的切换。 3 概要设计 主要功能 进程调度的功能是记录系统中所有进程的执行情况、从就绪态队列中选择一个进程,进行进程上下文的切换。采用先来先服务(FCFS)调度算法,短进程调度算法(SPF),高响应比优先调度算法,优先级调度(非抢占式)算法进行进程的切换。 模块功能结构

相关主题
文本预览
相关文档 最新文档