当前位置:文档之家› 擂台机器人运动控制系统的设计

擂台机器人运动控制系统的设计

擂台机器人运动控制系统的设计
擂台机器人运动控制系统的设计

擂台机器人运动控制系统的设计

摘要

本文论述了一个以凌阳SPCE061A单片机和国家半导体LMD18200电机驱动芯片为控制核心的擂台机器人运动控制系统的硬件设计及软件开发的过程。首先介绍了擂台机器人在我国的发展现状以及未来的发展趋势,并对南京工业大学机器人武术擂台赛项目竞赛规则加以说明。接着阐述了系统的设计思路并通过介绍所使用的各元件的规格、参数、性能等对选型条件和理由加以说明。之后分别介绍了硬件电路和基于该电路的软件的工作流程和设计思想,主要包括电机的基本控制原理、PWM信号的产生和处理、系统电源的分配设计等。并在附录中附有使用CAD软件(Protel99 SE)绘制的系统原理图和印刷电路板,以及以C语言和汇编语言编写的基本驱动控制程序。

关键词:擂台机器人SPCE061A单片机LMD18200电机驱动芯片PWM控制

The design of a tournament robot’s motion control system

Abstract

This thesis introduces the hardware and software design process of a tournament robot’s motion control system which based on SPCE061A(Sunplus) and LMD18200(National Semiconductor). It introduces the current situation and prospects in future of tournament robot’s development in China, and the rules of robot combat tournament in Nanjing University of Technology. Moreover, it elaborates the system’s design philosophy and introduces the properties of components which are in use to illustrate the reason of choice. In addition it describes the circuit and the software which based on it. Mainly about the basic motor control theory, PWM signal generation and processing, power distribution system design. And in the appendix attached to schematic drawing and PCB drawing of the system as well as the basic motor driving programs in C and assembly language.

Keywords: Tournament robot; MCU SPCE061A; Motor driving chip LMD18200; PWM control;

目录

摘要 ........................................................................................................................ I Abstract ................................................................................................................... II 第一章绪论. (1)

1.1概述 (1)

1.2南京工业大学机器人武术擂台赛项目竞赛规则简介 (1)

1.3主要的任务和目标......................................................................... 错误!未定义书签。第二章擂台机器人运动控制系统的硬件设计 (2)

2.1实现功能 (2)

2.2基本设计思路 (2)

2.2.1擂台机器人的运动方式 (2)

2.2.2对电机的PWM控制 (3)

2.3主板电路设计 (3)

2.3.1适用集成电路的介绍及选型 (3)

2.3.2由LMD18200构成的驱动控制电路设计 (4)

2.3.3基于SPCE061A单片机的配套电路设计 ......................... 错误!未定义书签。

2.4 PCB板设计 .................................................................................... 错误!未定义书签。第三章擂台机器人运动控制系统的软件设计 (6)

3.1 SPCE061A单片机的编程特点 (6)

3.2初始化程序的编写 (6)

3.3电机控制程序的编写..................................................................... 错误!未定义书签。结语 (6)

参考文献 (7)

附录1:主板的电路原理图和PCB图 (8)

附录2:电机的基本驱动程序 (9)

第一章绪论

1.1概述

机器人是一种集从机械、电气和电子工程到计算机、认知和社会科学等各种工程和科学学科于一身的产物,广泛应用于各种工业生产和研究探索等领域。为了提高人们对机器人技术的兴趣并带动相关产业和技术的发展,目前,国际的机器人比赛已经举办多届,并且种类繁多,国内机器人比赛经过起步阶段,发展迅速,规模逐渐开始壮大,各项技术更新很快,运动控制系统、视觉处理系统、智能决策系统都有了较大的飞跃,而擂台机器人比赛综合了传感器检测技术、多信息融合技术、先进运动控制技术,具有极高的应用价值。在规则范围内以各自组装或者自制的自主机器人互相搏击并争取在比赛中获胜的对抗性竞技形式极大的引起了以大学生为主体的青少年的研究热情。比赛的基本规则可以是多种多样的,例如:在指定的擂台上,以模拟人类自由搏击赛的形式,双方机器人互相击打或者推挤,如果一方机器人整体离开擂台区域,则另一方获胜。如果双方均未离开擂台,则在比赛时间结束后,距离擂台中央的擂主区域近的一方获胜。场地也依据不同的比赛类型而有所差别,通常都会有灰度和颜色特征以供机器人定位和决策。要完整文章毕业论文的+扣扣:(149-908-83-24)去掉中间的横线

随着各门学科和技术的继续发展以及人们对于擂台机器人竞赛兴趣的持续上升,可以预见,将有越来越多的爱好者投入到擂台机器人的研究和设计中来,该类竞赛的技术水平将日渐提高,对相关产业以及各学科的发展起到大力推动的作用。

1.2南京工业大学机器人武术擂台赛项目竞赛规则简介

比赛场地(即擂台)大小为长3600mm,宽2400mm,高200mm,外侧为白色赛道用于机器人沿赛道展示,赛道左右两边各有一个白色的十字交叉线作为展示的出发点,赛道上还有。中心区域为擂主区域,一半为正红色,一半为正蓝色;场地周围0.5米处有高400mm、厚10mm的方形白色围栏。比赛开始后,白色围栏内不得有人活动。要完整文章毕业论文的+扣扣:(149-908-83-24)去掉中间的横线

第二章擂台机器人运动控制系统的硬件设计

2.1实现功能

在场外调试和实际比赛中,擂台机器人能够配合传感器传入的信号,在预设程序策略的指引下迅速而流畅的完成前进、后退和转弯等基本动作,启动平滑,刹车灵敏,可以根据实际情况和需要对移动速度进行控制,并且在电源供给充足的情况下能够长时间稳定运作,不出现不受控制的抖动或者行为紊乱现象。

2.2基本设计思路

2.2.1擂台机器人的运动方式

运动机构对于一台能够实现自主移动的机器人是必不可少的,以便使其在所处的环境中为达到其工作目的而自由运动。但是运动有众多不同的可能途径,常见的应用于在地面上工作的机器人的运动方式包括使用各种各样的轮式机构或者带有关节的腿。但其复杂的运动方式给控制系统带来了十分高的要求,而以目前的技术水平要想达到腿式机构要求的足够的平衡度和协调度比较困难,加之擂台机器人运行在平坦的场地内,而轮式运动在平地上运动效率大大高于腿式运动,因此本擂台机器人的运动方式选择轮式运动机构。

图2-1运动结构的两种方案示意图

方式,需要2个为驱动轮提供动力的电机,以及1个用于控制舵轮角度的舵机。驱动轮用于控制机器人运动的前后方向和运动速度,舵机则控制机器人的运动角度。该方案的关键在于对舵机的精确控制,因此最好能使用直流步进电机作为舵机,控制的复杂程度相对较高,但可以达到量化的更加精确的控制效果。相比较之下,方案2的复杂程度大大降低,

成本也相对更低。仅靠2个驱动电机即可完成各种运动姿态,后部的万向轮仅用于承重和机体平衡,虽然该方案在转弯时的控制精度较为粗糙,需要通过反复的实验以确定各种情况下电机的对应转动方式,但擂台机器人在实际比赛中可供移动的范围相对较大,这意味着其动作拥有很大的裕度,并且考虑到比赛过程的连续性,过分追求对单一动作的精确控制意义并不大。因此综合考虑各种因素后,决定选择方案2作为运动的基本方案。要完整文章毕业论文的+扣扣:(149-908-83-24)去掉中间的横线

2.2.2对电机的PWM控制

脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。脉冲宽度调制是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。[1]

2.3主板电路设计

2.3.1适用集成电路的介绍及选型

1.单片机的介绍及选型

擂台机器人的整个硬件系统并不仅仅只包含运动控制部分,还包含负责感知外部情况并将其转化为电信号送给处理单元的传感器部分以及负责和上位机等外部系统进行数据交换的无线通信部分,因此需要使用单片机综合处理各种数据。常用的51系列八位单片机虽然具有外围电路简单、编程难度小、价格低廉等优点,但本身具备的通过内部硬件实现的扩展功能较少,需要编写复杂的程序来实现各项拓展工作,其能力在应付擂台机器人的各种需要时略显紧张。因此本系统选择使用凌阳的SPCE061A十六位单片机作为运算核心,其内核采用凌阳最新推出的μ’nsp十六位微处理器,即μ’nSP TM,具有以下特点:(1)体积小、集成度高、可靠性好且易于扩展:μ’nSP TM 家族把各功能部件模块化的集成在一个芯片里,内部采用总线结构,因而减少了各功能部件之间的连线,提高了其可

靠性和抗干扰能力。另外,模块化的结构易于系统扩展,以适应不同用户的需求。

(2)具有较强的中断处理能力:μ’nSP TM家族的中断系统支持10个中断向量及10余个中断源,适合实时应用领域。

(3)高性能价格比:μ’nSP TM家族片内带有高寻址能力的ROM、静态RAM和多功能的I/O口。另外,μ’nSP TM还提供了能加速数字信号处理的指令:高速的16位×16位乘法运算指令,以及内积(乘加)运算指令,使得μ’nSP TM家庭应用在复杂的数字信号处理时,更加便利,又比专用的DSP芯片廉价。

(4)功能强、效率高的指令集:μ’nSP TM指令集的格式紧凑,执行迅速,并且其指令集提供了对高级语言的支持,这可以大大缩短产品的开发时间。

(5)低功耗、低电压:μ’nSP TM家族采用CMOS制造工艺,并提供了可由软件控制的3种省电模式,大大的降低了其耗电量。另外,μ’nSP TM家族的工作电压范围大,能在低电压供电时正常工作,且能用电池供电,这对于其在便携式领域中的应用具有特殊意义[2]。

在一般的实际应用中常用BJT管和MOS管作为开关元件,通过对基极(或栅极)进行数字逻辑控制来得到需要的通断状态。H桥控制电机的正常工作方式有两种,如图2-4所示,当Q1和Q4导通时,电机以某种方向旋转,而当Q3和Q2导通时,电机则向相反的方向旋转。这样可以在单电源的情况下使负载的极性根据需要来回翻转,从而达到对电机转向的控制目的。H桥除了正常工作的两种导通方式以外还存在其它的导通方式,其中同一侧臂的两个开关元件是绝对禁止同时导通的,否则会近似于将电源和地短路,导致开关元件烧坏或击穿报废。而当Q1和Q3(或Q2和Q4)同时导通时,电机两端瞬间的极性变化会产生短暂的与原先极性相反的电势,这将导致电机的转速急剧下降,接着由于失去动力而停止转动,从而达到“刹车”的效果。

经过参阅和对比相关集成电路的技术手册,意法半导体的L298、飞思卡尔半导体的MC33886以及国家半导体的LMD18200从其技术规格和参数上看较为适合用于擂台机器人的运动控制系统。

2.3.2由LMD18200构成的驱动控制电路设计

整个擂台机器人运动控制系统中的动力环节共包括2个驱动电机和1个为“击鼓”和“攻击”等动作提供动力的电机。因此共需要3块电机驱动芯片,LMD18200(T型)的实际外形和引脚如图2-8所示,其1号和11号引脚与10nF的自举电容相连,自举电容常

图2-8 LMD18200的外形和实际引脚分布

用于提升电路中某部分的电压,用以驱动电压需求高于电源值的元件。单独搭建自举电路的时候通常还要配合一个二极管以防止电流倒灌,自举电路提供的电压就是电路输入的电压加上电容上的电压。由于电机在遭遇外部阻力时所消耗的功率会突然上升,为了保证其工作平稳正常,故需要设置自举电容以提高驱动能力。2号和10号引脚与各自对应电机插针的两端相连,插针再分别与各电机的两个引出端相连,用以根据收到的PWM波形信号来控制电机电源供给的有无。3号引脚和外部的方向信号输入端相连,在本设计中方向信号输入端为SPCE061A的IOA_14、IOA_12和IOA_10,分别控制两个驱动轮以及动作电机的转动方向。4号引脚与外部的刹车控制信号输入端相连,在本设计中刹车控制信号输入端为SPCE061A的IOA_15、IOA_13和IOA_11。5号引脚与外部的PWM波形控制信号输入端相连,在本设计中由于动作电机只有转动和停止两种状态,不需要进行调速,因此对应LMD18200的PWM引脚只需接一个普通的I/O引脚(本设计中的IOA_9),而两个驱动轮所有可能的状态组合中并不存在两边的转动速度不同的状态,所以两边各自对应的LMD18200的PWM引脚可以接在一起接收同样的PWM波形信号,在本设计中均和SPCE061A中能够自动循环产生PWM波形信号的IOB_8相连。6号引脚与电机使用的电源相连,在本设计中由于使用了12V的直流电机,因此需和调压前的由电池提供的12V电压源相连。7号引脚是接地引脚。8号引脚用于外部系统监测LMD18200的内部电流情况,在本设计中并未用到,故悬空。9号引脚用于外部系统监测LMD18200的温度情况,在片内温度超过145?C时输出一个低电平,因为3台电机中的任何一台发生过热时整个系统便无法工作,所以3片LMD18200的9号引脚连接在一起后和SPCE061A的IOB_2号引脚相连。

1.具有电隔离的功能

它的输入、输出信号间完全没有电路的联系,所以输入和输出回路的电子零位可以任意选择。绝缘电阻高达10G~1000G?,击穿电压高达100~25KV,耦合电容小于1pF。

2.信号传输方式

信号传输是单向性的,脉冲、直流信号都可以传输。要完整文章毕业论文的+扣扣:(149-908-83-24)去掉中间的横线

第三章擂台机器人运动控制系统的软件设计

3.1 SPCE061A单片机的编程特点

I/O端口作为将单片机与外部环境联系起来的重要环节,其读写方式对于编写程序来讲是十分重要的。SPCE061A提供了位控制结构的I/O 端口,每一位都可以被单独定义用于输入或输出数据,通常,对某一位的设定包括以下 3 个基本项:数据向量Data、属性向量Attribution和方向控制向量Direction。3个端口内每个对应的位组合在一起,形成一个控制字,用来定义相应I/O 口位的输入输出状态和方式。A口和B口的Data、Attribution 和Direction 的设定值均在不同的寄存器里,其组合控制设置表如表3-1所示。但其I/O端3.2初始化程序的编写

根据PCB板上安排的实际连接情况,IOA_0~IOA_3供4个超声波传感器输入数据,IOA_4和IOA_5供2个灰度传感器输入数据,IOA_6闲置(亦当作输入用),IOA_7和IOA_8供2个光敏传感器输入数据,以上9个引脚皆设为“不带唤醒功能的悬浮式输入管脚”,3个参数依次设置为“011”。IOA_15、IOA_13、IOA_11分别用于输出3块LMD18200所需的刹车信号,IOA_14、IOA_12、IOA_10分别用于输出3块LMD18200所需的方向信号,IOA_9用于输出动作电机对应的LMD18200的一分位PWM波形信号,以上7个引脚皆设为“带数据缓存器的输出”,具体输出电平可依实际情况再进行修改,初始化时先设为高电平,3个参数依次设置为“111”。综上所述,控制单元P_IOA_Data(0x7000)应初始化为“0xFFFF”,P_IOA_Dir(0x7002)应初始化为“0x00FF”,P_IOA_Attrib (0x7003)应初始化为“0xFFFF”。

结语

本文详细描述了擂台机器人运动控制系统的一种软硬件设计方案。擂台机器人作为一个集各种工程技术于一身的产物,对其进行研究和设计具有十分重大的科研意义。根据任

务书的要求,在整个毕业设计中,我主要完成了电机驱动电路的选型和搭建,整个擂台机器人系统主电路板的设计和制作,以及配套的供策略程序调用的电机驱动子程序的编写。要完整文章毕业论文的+扣扣:(149-908-83-24)去掉中间的横线

参考文献

[1]百度百科[OL].https://www.doczj.com/doc/0b3638299.html,/view/168039.htm,2008年10月29日.

[2]罗亚非.凌阳16位单片机应用基础[M]. 北京:北京航空航天大学出版社,2005.

[3]孙刚,李永新,李尚荣,陈盛,朱璐,陈浩耀.Robocup小型足球机器人的控制系统研究——Robocup系列研究之一[J].自动化与仪表,2003,(3):33~36.

[4]王为.基于LM629 对足球机器人运动控制的设计[J].武汉工程大学学报,2008,30(1):104~107.

[5]张洪宇,张鹏程,刘春明,宋金泽.基于动力学模型的轮式移动机器人运动控制[J]。兵工自动化,2008,27(11):79~82.

[6]任华,刘国栋.基于模糊PID的RoboCup小型组运动机器人的研究[A].2007中国控制与决策学术年会论文集[C].499~502.

[7]蔡继祖,陈健,黎勉.基于运动控制器的伺服电机同步控制插补算法改进[J].广东工业大学学报,2008,25(3):70~72.

[8]宋立博,李劲松,费燕琼.四轮差动驱动型AGV嵌入式运动控制器设计与研究[J].中国机械工程,2008,19(24):2903~2907.

[9]程智远, 谭宝成.移动机器人运动控制的模糊逻辑系统设计[J].电子元器件应用,2008,10(1):54~59.

[10]曾孟雄,方春娇.运动控制系统的PID参数模糊自整定[J].三峡大学学报(自然科学版).2008,30(4):52~54.

[11]余群明,王会方,张骏,周兵,朱德康.足球机器人运动控制算法研究[J].湖南大学学报(自然科学版),2006,33(6):42~45.

[12]吴洪兵.足球机器人运动控制研究[J].机床与液压,2009,37(1):128~130.

[13]Johann Borenstein and Yoram Koren.MOTION CONTROL ANALYSIS OF A MOBILE ROBOT[J].Transactions of ASME, Journal of Dynamics, Measurement and Control, V ol. 109, No. 2, pp. 73-79.

[14]Igor E. Paromtchik and Uwe M. Nassal.Reactive Motion Control for an Omnidirectional Mobile Robot[C].ECC 95 European Control Conference, Rome, September 5-8 1995. [15]Ken Goldberg and Billy Chen.Collaborative Control of Robot Motion: Robustness to Error[C].IEEE/RSJ International Conference on Robots and Systems, October 2001, Maui, HI.

附录1:主板的电路原理图和PCB图

附录2:电机的基本驱动程序

初始化程序:

.PUBLIC _Initiate

_Initiate:.PROC

R1=0x0100;

[P_IOB_Dir]=R1;

[P_IOB_Attrib]=R1;

R1=0x0000;

[P_IOB_Data]=R1;

R1=0x000F;

[P_IOA_Dir]=R1;

[P_IOA_Attrib]=R1;

R1=0x0015;

[P_IOA_Data]=R1;

R1=0x0400;

[P_INT_Ctrl]=R1;

INT OFF;

RETF;

.ENDP

延时程序:.PUBLIC _Delay

_Delay:.PROC

R1=0xEFFF;

[P_TimerB_Data]=R1;

R1=0x0004;

[P_TimerB_Ctrl]=R1;

R1=0x0400;

loop:

R1=0x0001;

[P_Watchdog_Clear]=R1

TEST R1,[P_INT_Ctrl];

JZ loop;

[P_INT_Clear]=R1;

R1=0x0006;

[P_TimerB_Ctrl]=R1;

RETF;

.ENDP

调速程序:

.PUBLIC _PWMGenerate

_PWMGenerate:.PROC

PUSH BP TO [SP];

BP=SP;

R1=[BP+4];

[P_TimerA_Ctrl]=R1;

R2=0xFFFE;

[P_TimerA_Data]=R2;

POP BP FROM [SP];

RETF;

.ENDP

刹车程序:

void Brake1()

{

int drctn,temp;

drctn=*P_IOA_Buffer;

temp=drctn & 0x4000;

temp>>=14;

if(temp==0)

{

temp=drctn | 0x4000;

*P_IOA_Data=temp;

}

else

{

temp=drctn & 0xBFFF;

*P_IOA_Data=temp;

}

Delay();

temp=drctn | 0x8000;

*P_IOA_Data=temp;

status1=1;

}

前进程序:

void Forward1()

{

int temp;

temp=*P_IOA_Buffer;

temp=temp & 0x3FFF;

*P_IOA_Data=temp;

status1=0;

}

后退程序:

void Retreat1()

{

int temp;

temp=*P_IOA_Buffer;

temp=temp & 0x7FFF;

temp=temp | 0x4000;

*P_IOA_Data=temp;

status1=2;

}

跳舞机器人设计毕业设计论文

课程设计任务书 ( 2015 级) 目录 摘要------------------------------------------------------4 引言------------------------------------------------------5 任务书-----------------------------------------------------6 第一章 我国机器人技术的发展概况------------------------------------7 第二章机器人的总体设计解剖 1.1资料的收集与阐述-----------------------------------------7 1.2机器人工作原理简介 1.总体设计剖------------------------------------------------8 2.伺服电机的剖析--------------------------------------------9 第三章机器人总体设计综述 ---------------------------------12 1、1设计课题的阐述-----------------------------------------12 1、2单片机的选择-------------------------------------------12 1、3主控板部分简介-----------------------------------------12 第四章机器人的总体设计方案与部分简介 1、1设计方案-----------------------------------------------13 1、2各部分功能及原理简介-----------------------------------13 第五章机器人的原理图设计、仿真及电路板制作 1、1机器人的原理图设计-------------------------------------15 1、2电源部分-----------------------------------------------16 1、3稳压电源部分-------------------------------------------16 1、5接口电路部分-------------------------------------------17 1、6单片机最小系统和ISP在线编程---------------------------18 1、9电路板制作---------------------------------------------18 第六章机器人电路板的调试与结论

全向移动机器人的运动控制

全向移动机器人的运动控制 作者:Xiang Li, Andreas Zell 关键词:移动机器人和自主系统,系统辨识,执行器饱和,路径跟踪控制。 摘要:本文主要关注全向移动机器人的运动控制问题。一种基于逆运动学的新的控制方法提出了输入输出线性化模型。对执行器饱和及驱动器动力学在机器人性能体现方面有重要影响,该控制法考虑到了以上两个方面并保证闭环控制系统的稳定性。这种控制算法常用于真实世界的中型组足球机器人全方位的性能体现。

1.介绍 最近,全方位轮式机器人已在移动机器人应用方面受到关注,因为全方位机器人“有一个满流动的平面,这意味着他们在每一个瞬间都可以移动,并且在任何方向都没有任何调整”。不同于非完整的机器人,例如轮式机器人,在执行之前具有旋转任何所需的翻译速度,全方位机器人具有较高的机动性并被广泛应用在动态环境下的应用,例如在中型的一年一度的足球比赛。 大多数移动机器人的运动控制方法是基于机器人的动态模型或机器人的运动学模型。动态模型直接描述力量施加于车轮和机器人运动之间的关系,以外加电压的每个轮作为输入、以机器人运动的线速度和角加速度作为输出。但动态变化所造成的变化的机器人惯性矩和机械组件的扰动使控制器设计变得较为复杂。假设没有打滑车轮发生时,传感器高精度和地面足够平坦,由于结构的简单,因而运动模型将被广泛应用于机器人的设计行为中。作为输入运动学模型是机器人车轮速度,输出机器人的线速度和角速度,机器人的执行器的动力都快足以忽略,这意味着所需的轮速度可以立即达到。然而,该驱动器的动态极限,甚至降低了机器人在真实的情况中的表现。 另一个重要方面是机器人控制的实践:执行器饱和。因机器人轮子的指挥电机速度是有饱和的界限的,执行器饱和能影响到机器人的性能,甚至使机器人运动变得不稳定。 本文提出了一个全方位的机器人的一种运动控制方法,这种控制方法是基于逆输入输出的线性的运动学模型。它需要不仅考虑到驱动器动力学的识别,但也需要考虑到执行器饱和控制器的设计,并保证闭环控制系统系统稳定性。 本文其余的部分:在2节介绍了运动学模型的一个全方位的中型足球机器人;在3节介绍了路径跟踪与定位跟踪问题基于逆运动学模型的输入输出线性化的解决方法,其中包括执行器饱和分析;4部分介绍了动态识别器及其在控制性能方面的影响;最后的实验结果和结论讨论部分分别在5和6。

擂台机器人运动控制系统的设计

擂台机器人运动控制系统的设计 摘要 本文论述了一个以凌阳SPCE061A单片机和国家半导体LMD18200电机驱动芯片为控制核心的擂台机器人运动控制系统的硬件设计及软件开发的过程。首先介绍了擂台机器人在我国的发展现状以及未来的发展趋势,并对南京工业大学机器人武术擂台赛项目竞赛规则加以说明。接着阐述了系统的设计思路并通过介绍所使用的各元件的规格、参数、性能等对选型条件和理由加以说明。之后分别介绍了硬件电路和基于该电路的软件的工作流程和设计思想,主要包括电机的基本控制原理、PWM信号的产生和处理、系统电源的分配设计等。并在附录中附有使用CAD软件(Protel99 SE)绘制的系统原理图和印刷电路板,以及以C语言和汇编语言编写的基本驱动控制程序。 关键词:擂台机器人SPCE061A单片机LMD18200电机驱动芯片PWM控制

The design of a tournament robot’s motion control system Abstract This thesis introduces the hardware and software design process of a tournament robot’s motion control system which based on SPCE061A(Sunplus) and LMD18200(National Semiconductor). It introduces the current situation and prospects in future of tournament robot’s development in China, and the rules of robot combat tournament in Nanjing University of Technology. Moreover, it elaborates the system’s design philosophy and introduces the properties of components which are in use to illustrate the reason of choice. In addition it describes the circuit and the software which based on it. Mainly about the basic motor control theory, PWM signal generation and processing, power distribution system design. And in the appendix attached to schematic drawing and PCB drawing of the system as well as the basic motor driving programs in C and assembly language. Keywords: Tournament robot; MCU SPCE061A; Motor driving chip LMD18200; PWM control;

喷漆机器人控制系统方案设计

喷涂机器人控制系统初步方案 一、控制系统组成框图 本控制系统采用了以PC104为核心,以步进电机驱动网为低层控制通道的开放式控制器。下图是整个控制系统的组成框图。

二、PC104模块选型 采用PC104是因为它有如下特点:结构小巧紧凑, 仅96 mm ×90 mm面积内集成了PC 机所有功能;采用自栈接的母线结构,级联牢固,易于扩充;整机功耗低;兼容性好,可以借鉴PC机成熟技术;外设丰富,应用简单。 本控制系统PC104模块选用研华PCM-3343F。其组成如下:核心模块DM&P V ortex86DX 的高性能低功耗CPU 模块,CPU 速度1.0 GHz,带有浮点运算单元,在板集成了256MB DDR2 SDRAM(最大可支持512MB)、显示控制器(支持LCD显示,最高分辨率为1024×768),以太网控制器等。带有PA TA硬盘接口1个,PC104扩展插槽1个,KB/MS插槽1个,USB2.0接口4个,16位GPIO口,RS-232接口3个,RS-232/422/485接口1个。 选择该嵌入式主板时,应注意: 1)购买时,要求将系统内存升级到512MB; 2)购买时,要求配齐以下配件: ①键盘及鼠标的接口线共2根(编号及图片如下); p/n: 1703060053p/n: 1700060202 ②VGA接口线1根(编号及图片如下); p/n: 1700000898

③US B×2接口线1根(编号及图片如下); p/n: 1703100260 ④RS-232×2接口线1根(编号及图片如下); p/n: 1701200220 ⑤RS-422/485接口线1根(编号及图片如下);p/n: 1703040157 ⑥IDE接口线1根(编号及图片如下); p/n: 1701440350 ⑦外接Li电池1个(编号及图片如下); p/n: 1750129010

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

武术擂台机器人上台装置的结构设计

龙源期刊网 https://www.doczj.com/doc/0b3638299.html, 武术擂台机器人上台装置的结构设计 作者:李庆洋 来源:《科技风》2018年第08期 摘要:在众多的机器人赛事当中,武术擂台机器人项目因为其观赏性和趣味性吸引着越来越多的人参加。近年,因为比赛规则的改变,机器人由原来的斜坡上台改为了无斜坡自主登台,因此,对擂台机器人又提出了新的要求,本文针对新规则设计出新的上台装置,并且在实战当中取得了不错的成绩。 关键词:武术擂台;机器人;自主登台 1 项目简介 机器人武术擂台赛是一种对抗性比赛,比赛场地是正方形6cm高的矮台,台上即为擂台 场地,场地四周700mm处有高500mm的方形黑色围栏。比赛时需要参赛双方机器人自主登上6cm高的比赛场地,寻找对手并将对手推下擂台。在此过程中,如机器人掉下或被推下擂台,机器人需要自主登上擂台继续比赛,如在10秒倒计时后仍未能登台,则给对方加1分,随后以每10秒得1分给对方加分,直至机器人登上擂台[1]。因此,如何能快速简单的登台在比赛中变得至关重要。 2 武术擂台机器人的登台机构设计 2.1 新的比赛要求 传统的武术擂台赛的场地为大小为长、宽分别为是 2400 mm,高 150mm 的正方形矮台,台上表面即为擂台场地。场地的两个角落设有坡道,机器人从出发区启动后,沿着该坡道走上擂台[2]。 新的武术擂台赛比赛场地是大小为长、宽分别为是 2400 mm,高 60mm 的正方形矮台,台上表面即为擂台场地。无斜坡,机器人从出发区启动后,可以从任意地方登台。 2.2 上台装置设计 因为新的比赛规则去除了坡道的设置,所以机器人要想登上60mm高的擂台,必须要对机器人的结构进行重新设计,为登台设计专门的机构,实现机器人的自主登台。 根据对比赛场地的分析,登上60mm高的擂台方式有如下几种: 2.2.1 直接登台式

智能聊天机器人

智能聊天机器人(小黄鸭)软件开发 课程名:模糊系统 小组成员:曹杰何敢谢新明 任课教师:於世为

目录 目录 ............................................................................................. 错误!未定义书签。 一、小黄鸭的背景 (2) 二、小黄鸭的原理 (2) 2.1 训练 (2) 2.1.1分词方法 (2) 2.1.2词库设计 (3) 2.2 匹配 (4) 三、属于自己的小黄鸭制作(简要步骤+截图说明) (6) 3.1 代码编写 (6) 3.2构建运行环境 (6) 3.3申请获取官方API Key (6) 3.4生成项目 (6) 3.5修改源代码 (6) 3.6修改项目其他项 (6) 四、文档附件说明 (7) 五、小黄鸭代码(含小组接口设计) (12) 5.1 AboutBox1.cs文件 (12) 5.2Form1.cs文件 (13) 5.3Program.cs文件 (17) 5.4 Simjosn.cs文件 (22) 5.5 AssemblyInfo.cs文件 (23) 5.6 AboutBox1.Designer.cs文件 (23) 六、总结 (29) 、

一、小黄鸭的背景 小黄鸭是根据人人网上的小黄鸡为模板,而进行的一个开发,小黄鸭与小黄鸡应该来说是一样的,小黄鸭智能聊天机器人也是一样采用通过调用韩国智能聊天机器人Simsimi的数据库来,当然,前提是获取到了网络接口(这个应该很容易),进而实现计算机和软件之间的通信 二、小黄鸭的原理 AI聊天机器人小黄鸡的工作可以被分成两个部分:训练+匹配。(其实很多AI的东西都可以被这么划分,比如人脸识别,语音识别等等) 2.1 训练 Simsimi中的“教学”,就是训练的过程,目的在于构建或是丰富词库。 流程描述如下: S1:用户通过教学界面向系统提出一个话题与相应应答; S2:系统对该话题进行分词,判断该话题在系统知识库中应存放的位置; S3:在系统知识库中添加该话题及相应应答。 可以看到,这里涉及到两个问题:给出一个话题,系统是如何分词的?词库要如何设计才能又快又准地应答? 2.1.1分词方法 有人认为我教小黄鸭“埃菲尔铁塔上45度角仰望星空”回答是“呵呵”,那下次它再看到“埃菲尔铁塔上45度角仰望星空”整句话的时候才会有相应回答。但实际上,下次只要它看到“埃菲尔铁塔”就会“呵呵”了好嘛。 这是因为聊天机器人的存储并不以句子为单位(那样太费时费空间),而是以词。于是,分词,几乎成为聊天机器人的核心。 英文分词好说,人家用空格什么的就搞定了,但中文不一样,对于一句话,人们可以用自己的认识区分词语,而机器人要怎么做,就是中文分词算法的研究范畴了。

舞蹈机器人设计方案

舞蹈机器人设计方案 一、比赛场地:待定 二、比赛时间:时间定为3到5分钟 三、机器人技术要求: (1)构造:机器人采用17个舵机,可以做出人形机器人,两只手臂,各3个舵机,分别模仿人的肘关节,肩关节和胳膊横向的旋转。 两条腿各有5个舵机,分别模仿人的胯关节,膝关节(两个舵 机)和脚踝关节。头部有一个舵机,来控制机器人头部的转动。(2)外形:身上的连接件可采用硬质铝合金或者铁片加工连接,建议采用硬质铝合金连接件,这样可以让机器人重量减轻一点。 外表在不影响动作的条件下,可以给它穿上衣服,服装搭配一 定要恰当。 (3)要求:机器人的身高、体重要符合比赛要求,电源线路不能外露,能保证机器人在做动作时不会摔倒。 (4)背景音乐:有4个背景音乐,第一个是准备音乐,机器人能够按照需求站好,准备跳舞。其他3个音乐为机器人的舞蹈音乐。(5)其他:电池和控制芯片需要安放在合理的位置。 四、机器人舞蹈选择: 我们可以做3个机器人,形成一个组合上场比赛。机器人呈竖线排列,面向裁判。首先准备音乐响起,第一个机器人不动,可做一些有趣动作,比如扭胯,伸展胳膊等,后面两个分别向两边分开,走到一定位置停下,走路可以模仿太空步,滑过去的,调整步伐,形成一

个等边三角形,以第一个机器人为中心,这个过程差不多40秒。切换音乐,第一个机器人开始跳舞,后面两个机器人伴舞,这个过程一分钟左右,动作停止,机器人复位为直立状态。第三首音乐响起,然后第一个机器人与第二个机器人互换位置,继续跳舞,持续一分钟左右。最后响起第四首音乐,第二个机器人和第三个机器人互换,开始跳舞,持续一分钟左右结束,向裁判敬礼。 五、造价: 舵机必须选择金属齿轮的舵机,并且能旋转180°,有足够大的扭力,这样才能承受机器人的重量和运动,一般价格在80~500元之间。这样一个机器人造价五千五百元左右。

机器人控制系统设计(毕业设计)文献综述

一、前言 1.课题研究的意义,国内外研究现状和发展趋势 1.1课题研究的意义 随着机器人在工业装配线的应用越来越广泛,工业环境对其控制系统的要求也越来越高,所以开放式机器人控制系统的设计具有工程实际意义。 课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。 在机械工业中,应用机械手的意义可以概括如下: ①以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ②以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 ③可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产 随着机器人技术的发展,机器人应用领域的不断扩大,对机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到机器人控制系统的实时操作中,是一项富有挑战性的研究工作。而具有开放式结构的模块化、标准化机器人,其控制系统的研究无疑对提高机器人性能和自主能力,推动机器人技术的发展具有重大意义。 1.2国内外研究现状和发展趋势 随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向。近几年,日本、美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构、网络功能的机器人控制器。我国863计划智能机器人主题也已对这方面的研究立项。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发一个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC

机器人设计方案

机器人设计方案 一、设计要求 设计一具有独立前进、转弯、后退、避障、救人等功能的救援机器人。 二、设计任务 1.电子控制组:设计好控制电路及原理图,各类传感器电路及稳压电源,并制作成独 立模块,按程序要求进行调试(超声波、雷达和红外线传感器的感应距离)。 2.机械设计组:设计机器人各部分结构(包括机械手、身躯、底盘)以及各类传感器 模块的安装。 3.程序设计组:按照具体设计要求进行编程及调试、烧录等工作。 4. 三、设计思路 机器人在封闭场地内利用红外线传感器自动搜索安装了红外线发射管的洋娃娃。一旦发现目标便向目标靠近,途中发现障碍物则侧移距离L或转弯角度a然后继续前进,当机器人与洋娃娃之间距离达到S(此时红外线传感器比超声波传感器或雷达优先级更高)时,触发控制机械臂抓向小人,机械臂的“手指”部分装有压力传感器(或轻触开关代替触觉传感器实现),当抓紧小人时触发单片机控制(入口设一200W白炽灯光感返回或者程序倒退返回)机器人返回,并翻转电机松开洋娃娃。 四、场地模拟 有一封闭场地并设立一入口, 机器人从入口出发,利用红外线 传感器搜索救援目标洋娃娃,没 有搜索到时则继续前进,遇到障 碍物时侧移并转弯绕过障碍物继 续前进,直到接近目标控制机械 臂抓紧小人并返回,途中屏蔽掉 红外线感应,只绕过障碍返回。 返回到达入口白炽灯处手部电机 反转松开小人并复位。

五、机器人运作流程图:

六、电路模块设计 1.超声波发射电路: 2.超声波接收电路:

3.红外线发射电路: 4.红外线接受电路 5.直流电机的驱动电路

6. 5V与12V直流电源电路 7.压力或触觉传感器 8. 步进电机驱动电路(1):

AUV水下机器人运动控制系统设计方案(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告课程名称:运动控制技术 姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中

武术擂台机器人设计报告说明书 -2

《武术擂台机器人》毕业设计说明书 系部:机电工程系 专业:机电一体化 班级:机电133班 学生姓名:程远东 学号:130212325 指导教师:尹伟锋

毕业设计(论文)开题报告 一、选题来源、目的和意义: (一)选题来源:教师自拟 (二)选题目的及意义:目前,国内外的许多大学及研究机构都在积极投入人力、财力研制开发针对特殊条件下的安全监测系统。其中包括研究使用远程、无人的方法来进行实现,如机器人、远程监控等。无线传输的发展使得测量变得相对简单而且使得处理数据的速度变得很快甚至可以达到实时处理”。 该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。 通过构建智能小车系统,培养设计并实现自动控制系统的能力。在实践过程中,熟悉以单片机为核心控制芯片,设计小车的检测、驱动和显示等外围电路,采用智能控制算法实现小车的智能循迹。灵活应用机电等相关学科的理论知识,联系实际电路设计的具体实现方法,达到理论与实践的统一。在此过程中,加深对控制理论的理解和认识。 (1)掌握基本构型和传感器的安装方法,并能搭建出能完成一定功能的机器人,利用创意之星组件,进行避障小车的组装,调试,利用红外传感器进行路障感应,完成避障功能。 (2)会用控制器联机调试舵机工作状态,会查询各种传感器的数据。 (3)能通过编程实现智能小车自主躲避障碍物的功能 (4)对避障小车的避障原理有充分的理解,掌握其避障的方法,能够对实验过程中出现的问题进行解决,发现问题,解决问题。

对话机器人

机器人概论课程论文论文题目:对话机器人

摘要:对话机器人可以解决空巢老人或者一些住院者的无人倾诉的问题。本文简单的介绍了对话机器人的工作原理,包括机器人“耳朵”的构造以及机器人对“听到”的句子进行“思考”并作出回答的过程。 关键词:口语对话系统,句子相似度,聊天语句库 Abstract:A conversation robot can solve some problems that the old of empty nest or the people in hospital can talk to nobody. This paper simply introduce the operating principle of conversation robot, such as the construction of a robot’s ear, and the process of a robot hears sentences and answer it. Keyword: conversational system, the similarity of sentence, chat statement repertioy 一.机器人的听觉 对于人来说,听觉是由声波传入到耳膜,引起听觉神经的冲动,继而传入到大脑的听觉区的过程。对于机器人来说,它的耳朵则是一家无线电接收机,声音通过录音机或微音器而传入“大脑”。 要使机器人的听觉比人的听觉更灵敏的话,可以采用一种叫做钛酸钡的压电材料做机器人的耳朵。这样,即使是很细小的东西(如

火柴棍)反射回来的声波都能被很准确的听到。如果用来监听粮库,就算在二到三公斤的粮食堆的一条小虫的爬行声音也能被听到。 当压电材料受到压力 或拉力的时候,会产生电 压,而这种电压能够使电路 发生变化,这种特性就叫做 就会产生不断变化的电压,而不断变化的电压又会产生不断变化的电流,电流又经过放大器放大,继而送入计算机中,这样机器人就有了听觉系统。 图2所示为机器人的听觉原 理图。声波通过MIC-1到MIC-4 这四个由压电材料所构成的传感 器传入电路板中的工作区,再经 过放大器处理,从USB 接口传入 到电脑中。 二. 机器人的口语对话 1. 对话的分类 和机器人的对话大概分为三类,分别为机器人主导对话(由机器人完全主导对话流程,向用户提出问题并让用户回答,但是灵活度不高,过程比较死板,对话的成功率比较高),用户主导对话(对话流程完全由用户主导,用户提出问题由机器人回答。

机器人分布式控制系统设计与实现

机器人分布式控制系统设计与实现 1引言 目前,机器人系统的特点是开放式机器人控制,强调结构化、模块化、 可扩展性、交互性,是对机器人设计结构单一、信息封闭、缺少交互性缺点的突破。分层分布式控制系统采用集中管理,分散控制方式,这种控制方法优点体 现在:集中监控和管理,管理和现场分离,管理更加综合化和系统化;实现分 散控制可使各功能模块的设计、装配、调试以及维护相互独立,系统控制的危 险性分散,可靠性提高,投资减小;采用网络通信技术,可根据需要增加以微 处理器为核心的功能模块,具有良好的系统开放性、扩展性和升级特性。 本论文详细介绍了一种分层分布式控制系统的设计方案,系统由上到下分 为主控中心决策层、车载PC运算层、下位机驱动子层以及位置反馈子层。主 控中心决策层是系统的主层,可以是台式机或笔记本电脑,基于VC++编译环 境设计的人机交互界面,满足友好、便于操作的要求,主控中心决策层的功能 是总体规划和分配任务,对机器人进行远程监控;车载PC运算层为一台笔记 本电脑,基于VC++编译环境设计了控制界面,通过无线网卡与主控中心决策 层进行数据传输,采用面向连接可靠的TCP传输控制协议,保证数据传输的可 靠性;下位机驱动子层和位置反馈子层是相互独立的功能模块,与车载PC运 算层之间通过串口进行通信;下位机驱动子层是一个完整的直流电 机闭环控制系统,包括CPU、控制芯片、驱动芯片以及增量式光电编码器;位置反馈子层通过CPU的I/O口和中断得到机器人车轮轴转角信息,结合机器 人机械系统的实际尺寸计算机器人中心的实际位置信息,处理好的位置信息通 过串口反馈给车载PC运算层。该控制系统应用在国家自然科学基金资助项目 和国家重点基础研究发展计划973项目的移动机器人平台上,运动控制测试结 果表明,分层分布式控制方式控制精度高,稳定性好,系统响应迅速;同时该 控制系统具有超强的计算能力和二次开发潜力,根据项目研究需要可在各个子 层进行分布式扩展,比如在下位机驱动子层和位置反馈子层的同级层中扩展传 感器功能子层,增加机器人的智能。该控制系统为项目的实验工作奠定基础。 2分层分布式控制系统设计 1. 基于VC++的主控中心决策层设计 主控中心决策层的作用是总体规划和分配任务,对机器人进行远程监控。 基于VC++编译环境,采用模块化方法对人机交互系统进行设计,分为网络数 据传输模块、运动参数输入模块、轨迹显示模块、视觉监控模块。如图

机器人的运动控制

2.4 手臂的控制 2.4.1 运动控制 对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉及末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾及它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。 1.关节伺服和作业坐标伺服 现在来研究n个自由度的手臂,设关节位移以n i个关节的位移,刚性臂的关节位移和末端位置、姿态之间的关系以下式给出: (1) m维末端向量,当它表示三维空间内的位置姿态 时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。 设刚性臂的运动方程式如下所示: (2) 量为粘性摩擦系数矩阵;表示重力项的向量; 机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的 1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成 1) 关节伺服控制 讨论以各关节位移的形式给定手臂运动目标值的情况。 令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算得出 1()d r d q f r -= (3) 图2 关节伺服构成举例 如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q

四足机器人方案设计书

浙江大学“海特杯”第十届大学生机械设计竞赛“四足机器人”设计方案书

“四足机器人”设计理论方案 自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。仿照生物的各种功能而发明的各种机器人越来越多。作为移动机器平台,步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路面的要求很低,它可以跨越障碍物,走过沙地、沼泽等特殊路面,用于工程探险勘测或军事侦察等人类无法完成的或危险的工作;也可开发成娱乐机器人玩具或家用服务机器人。四足机器人在整个步行机器中占有很大大比重,因此对仿生四足步行机器人的研究具有很重要的意义。 所以,我们在选择设计题目时,我们选择了“四足机器人”,作为我们这次比赛的参赛作品。 一.装置的原理方案构思和拟定: 随着社会的发展,现代的机器人趋于自动化、高效化、和人性化发展,具有高性能的机器人已经被人们运用在多种领域里。特别是它可以替代人类完成在一些危险领域里完成工作。 科技来源于生活,生活可以为科技注入强大的生命力,基于此,我们在构思机器人的时候想到了动物,在仔细观察了猫.狗等之后我们找到了制作我们机器人的灵感,为什么我们不可以学习小动物的走路呢,于是我们有了我们机器人行走原理的灵感。 为了使我们所设计的机器人在运动过程中体现出特种机器人的性能及其运动机构的全面性,我们在构思机器人的同时也为它设计了一些任务: 1. 自动寻找地上的目标物。 2. 用机械手拾起地上的目标物。 3.把目标物放入回收箱中。 4. 能爬斜坡。 图一 如图一中虚线所示的机器人的行走路线,机器人爬过斜坡后就开始搜寻目

标物体,当它发现目标出现在它的感应范围时,它将自动走向目标,同时由于相关的感应器帮助,它将自动走进障碍物中取出物体。 二.原理方案的实现和传动方案的设计: 机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。 图二 图三 机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。 任务的实现主要是利用单片机来控制机器人的四条腿以及几个传感器的共同工作,并通过它们的协调工作来完成的。如图一中所示,让机器人爬过了斜坡之后,就先进行扫描,如果发现有目标出现在它的视野之内,它就会寻着目标前进。如果没有发现目标,机器人会原地转弯并搜寻在它视野之外的目标。由于目标物有可能正好被障碍物遮住,此时我们会设计相应的程序告诉机器人现在先向右行走一定的距离再进行扫描。又由于尽管已经扫描到了目标物,当机器人走向

舞蹈机器人

说说我们的基地 ——记自己在舞蹈机器人基地半智能机器人组的一年 随着新生军训的口号声,一个新的学年又不知不觉地开始了,而自己也已经进入了大四。回想自己已经过去的三年大学时光,如果真的有从头再来的机会的话,我一定会这样做的。我从小热爱计算机,不过在加入基地前我几乎没有认真地学过一项计算机方面的技术,说到底还是自己太浮躁,不踏实,没有充分利用好时间,更重要的是,自己一个人也没有足够的实验条件。 加入基地之后,我结识了许多技术十分出色的朋友。是他们和他们在基地的工作使我认识到了自己与许多人的许多差距,无论是技术上,还是做事上。尤其是看着09级那些干劲十足的学弟们,我真的为自己在一年前的半堕落状态感到惭愧。基地浓厚的学习气氛极大地鞭策了我去继续学习、实践计算机的知识与技术。从之前对硬件与底层软件基本一窍不通,到现在能够明白一整套软件&硬件&机械系统的工作原理,能够通过看电路自己焊飞线来实现想要的功能,知道如何编写程序来操作硬件,懂得了课本上讲得很虚幻的工作原理是怎样真真切切地表现在机器人的电路板和软件上的,我感谢基地给我带来的变化。 如果让我举出我这三年最幸运的事情,那应该是加入了舞蹈机器人基地; 如果让我举出我这三年最遗憾的事情,那一定是没有早一年,甚至早两年加入舞蹈机器人基地。 在这篇文章中,我愿意把我在基地这短短一年的经历与大家分享,同时向大家介绍一下我们基地的半智能机器人项目。希望更多的人能够更多地了解我们这个充满热情,崇尚技术的团队,并加入到我们中间。—————————————————————————————————————————— 我是在去年这个时候加入的舞蹈机器人基地,说起来应该算是基地里资历比较浅的队员了。我接触编程很早,可是我对硬件方面的设计从来都不怎么懂。在加入的第一个学期里,我对基地的满桌子满地的器件那是各种好奇啊,什么模拟舵机、数字舵机、各种芯片、单片机、传感器,还有一堆堆的焊好的与没焊好的PCB电路板。我时常拿起一个器件,问问旁边的同学“这是什么”,而他们总会耐心地给我讲。 记得当时组长给我们演示机器人做动作时,他的笔记本的USB口上插着一个模块,这个模块又通过几根线与机器人上的电路板相连,机器人通过一个直流电源箱供电。他在笔记本上操作一个看起来很专业的机器人调试软件,机器人居然就随着他的指令做动作。我心里的好奇之火一下子熊熊燃烧起来了,心里的感觉一直是:好神奇,好神奇…… 后来又了解到机器人上的电路板是我们基地电路组的同学自己设计并焊接的,而笔记本上的上位机调试软件同样是我们基地软件组的同学自己编写的,电脑与机器人之间的通讯协议也是我们自己定义的,机器人身上的各部分零件也都是基地机械组的同学设计的。 于是当时的我一下子对这帮人充满了佩服和羡慕,佩服的是他们的技术,羡慕是因为不知道自己啥时候才能学懂这些东西。后来通过学习和请教,我逐渐明白了这套系统的工作原

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

相关主题
文本预览
相关文档 最新文档