当前位置:文档之家› 生物机器人综述

生物机器人综述

生物机器人综述
生物机器人综述

科技写作

学院(系):医疗器械与食品学院

年级专业:生物医学工程

学生姓名:朱安阳

学号: 152631974 指导教师:袁敏

摘要

20世纪60年代以来,随着仿生技术、控制技术和制造技术进一步发展,现代仿生学和机器人科学相结合,在机器人的结构仿生、材料仿生、功能仿生、控制仿生以及群体仿生等多个方面取得了大量可喜成果和积极进展。然而,伴随着人类医疗诊断、探索太空、建设航天站、开发海洋、军事作战与反恐侦察等任务和需求的增加,人们对机器人的性能也提出了更高的要求,于是生物机器人应运而生。

生物机器人就是完完全全和我们人类一样,用有生命的材料构成的而不是用金属材料构成的机器人。它们是利用自然界中的动物作为运动本体的机器人,通过把微电极植入与动物运动相关的脑核团或者方向感受区,并施加人工模拟的神经电信号,从而达到控制动物运动,利用动物特长代替人类完成人所不能和人所不敢的特殊任务。

与传统的仿生机器人相比,生物机器人在能源供给、运动灵活性、隐蔽性、机动性和适应性方面具有更明显的优势,可以广泛应用在海洋开发、探索太空、反恐侦查、危险环境搜救以及狭小空间检测等各方面。近年来对生物运动规律和动物机器人的研究受到更多的重视。本文主要对对国内外生物机器人的研制工作做了综述,并介绍其应用前景及对其未来发展进行了展望。

关键词:生物机器人;运动诱导;神经控制;研究现状;发展方向

1.课题的研究现状

自20世纪90年代开始,生物机器人的研究历史仅有短短的10年,然而这短短十年又是生物机器人研究成果丰硕的十年,各国科研人员都相继开展了动物机器人的研究工作,尤其是美国,日本等科技发达国家,它们的研究成果代表着这一领域的最高水平,国在这一领域的研究尚在起步阶段,但也已有了不俗的进展。

1.1 国外的研究现状

在国外,美国、日本以及欧盟较早地开始了纳米生物机器人的研究。纳米生物机器人的组件可以是单个的原子或分子,但利用自然界存在的、具有一定结构和功能的原子团或分子的集合分子功能器件组装纳米机器人,更加高效和现实可行,即按照分子仿生学原理,利用大量存在的天然分子功能器件设计、组装纳米生物机器人。美国 2000年开始了国家纳米技术计划,国家卫生研究院(NIH)和国家癌症研究所(NIC)于2002年开展了DNA分子马达的研究。NASA高级概念研究院(NIAC)和Rutgers大学在2002年提出了纳米生物机器人研究50年发展规划;2002年日本Osaka大学启动了生命科学前沿研究计划,其中包括 ATP马达的研究;欧盟2002年正式推出了研究纳米技术的第6框架计划,其中纳米生物技术的研究重点为生物分子或复合物的处理、操纵和探测。

图 1-1 昆虫机器人

2007年,美国国防部高级研究计划局(DARPA)启动了昆虫—微机电系统整合计划,旨在将微机电系统植入处于变态发育阶段的昆虫体内,从而将昆虫改造成为可以远程控制的“昆虫侦察兵”(图1-1)。其目标是造出至少能飞离控制器100m,在追踪目标5m范围内停留的半机器昆虫。2008年,康奈尔大学和的研究人员运用昆虫变态发育早期植入技术,首次将MEMS件植入烟草天蛾的蛹体内破茧7天前,待其发育成健康的成体飞蛾后,研究人员通过植入飞蛾体内的MEMS芯片[6]对控制飞行的肌肉发放刺激信号,成功实现了飞蛾翅膀扇动及飞行方向的控制。另外由加利福尼亚大学科学家主持的科研小组已成功把电极分别植入六月鳃角绿金龟控制飞行的神经中枢和肌肉内对神经进行刺激,负脉冲使它不断拍动翅膀飞离原地;而正刺激脉冲则使它短时间内停止飞行,通过迅速变换信号控制昆虫起落。09年初美国加州大学伯克利分校的研究人员成功进行了对犀牛甲虫的遥控实验,并在意大利索伦托举行的“MEMS2009”学会上公开了犀牛甲虫的遥控视频。研究人员将微型神经和肌肉刺激系统植入犀牛甲虫,在遥控状态下成功的控制了甲虫起飞、飞翔、转向和降落。

图 1-2 鲨鱼机器人

美国国防部高级研究计划局 (DARPA)正在进行将各种动物变成遥控间谍的“机器生命计划”。2006年,中国国防报报道,美国罗得岛州纽波特

市美国海军海战中心(Naval Undersea Warfare Center,NUWC)在DARPA的资助下,正进行“鲨鱼特工”(图1-2)的研究计划:通过植入鲨鱼大脑的微电极对鲨鱼中枢神经系统的某些特定部位进行刺激来遥控鲨鱼的行为,将鲨鱼变成动物机器人,以远距离指挥鲨鱼秘密跟踪刺探敌方船只的运动,完成各种危险的间谍任务。目前,美国海军水下作战中心已开发出一种目的在于通过神经植入进行动物行为控制的电子标签。这种电子标签包含一个多通道神经记录和刺激装置,可用于遥控鲨鱼的研究,由于无线电信号不能在水下传播,科研人员计划采用声呐进行控制。控制者从海军声波信号塔发射出定向声呐,对鲨鱼行动进行控制。

动物运动过程中除接受肌梭、腱器官等运动觉传入进行反馈性调节,还需要综合其它包括视觉、听觉和触觉等感受器的传入信息来进行调控。常见的蟑螂和苍蝇头部的触须、老鼠和猫嘴角两侧的胡须都是它们重要的触觉感受器,决定着这些动物的运动方向。日本东京大学Isao Shimoyama教授领导的研究团队在 1997年研制出蟑螂机器人,实现了蟑螂直线前进的人工控制(图1-3)。首先利用轨迹球—计算机装置(图1-4),获得了电刺激蟑螂触角传入神经进行运动诱导的合适刺激参数;然后,实验人员去除蟑螂翅膀和头上的触须,在触角(触觉感受器)处植入金属微电极,通过遥控刺激器并结合光学传感器的反馈,进行运动诱导,初步实现了控制蟑螂沿直线前进。此后,研究人员又进一步减轻遥控刺激器的重量,基本可以实现蟑螂的左右转,前移或者后退等运动的人工控制。

图1-3 蟑螂机器人图1-4 轨迹球装置

1.2 国内研究现状

在国内,上海交通大学 DNA 计算机交叉团队是目前国内唯一从事纳米生物机器人研究的交叉科研团体,并提出了基于病毒的纳米生物机。上海交通大学DNA计算机交叉团队(BDCC)纳米生物机器人小组,利用自然界广泛存在的生物分子部件及其特性,结合机器人概念和特点,首次提出了通过直接改造病毒来构造纳米生物机器人的设想,从而开展以下方面的研究:通过改造病毒基因组及对病毒表面糖蛋白进行修饰,使基于病毒的纳米生物机器人可以对病变细胞进行识别和治疗,并通过内部修饰使基于病毒的机器人有条件地进行复制繁殖;通过控制病毒周围生理环境,如PH值、温度、离子浓度等,利用病毒的门控呼吸模型机制将病毒改造为定点给药机器人系统(DDS),杀死病变细胞;通过对病毒复制过程进行研究和描述,综合相关环境变量、条件变量和状态变量,建立纳米生物机器人的自复制模型;对病毒结构和机械特性进行分析,对基于病毒的纳米生物机器人在微流体环境下的动力学和运动学进行研究,同时进行病毒侵染宿主细胞时蛋白质构象变化的动力学研究;另外,利用生物分子部件的生物兼容性及DNA的互补装配特性,开展DNA计算机与纳米生物机器人接口的研究,目标是将BDCC研制的DNA 计算机移植到基于病毒的纳米生物机器人中,对人体细胞内生理信号进行监

测,实现真正具有控制芯片的纳米生物机器人系统。

基底神经节是大脑皮层下一些神经核团的总称,是大脑皮层下的一个运动调节中枢,其主要结构是纹状体。鸟类的纹状体高度发达,是其最高级的运动中枢。2007年,山东科技大学完成了鸽子机器人(图1-5)的研制。他们用计算机产生具有一定规律的电信号编码,通过植入家鸽丘脑的腹后外侧核和古纹状体内的数根微电极,施加人工干预控制指令,使家鸽在人工诱导下实现了起飞、盘旋、左转、右转、前进等特定动作。

图1-5 鸽子机器人

脑干的许多核团和脑区具有重要的运动调控功能。电刺激脑干不同区域可以诱发动物的攻击,防卫,转圈和逃跑等运动行为。南京航空航天大学仿生结构与材料防护研究所作为国内较早开展动物机器人研究的单位之一。研究人员以大壁虎为研究对象,利用自制大壁虎的脑立体定位仪系统,发现电刺激中脑可以诱导大壁虎的转向运动 (图1-6),进一步的实验表明,通过刺激中脑内相关的核团可以实现对大壁虎转向运动的诱导。以此为基础,近期研究人员还在通道中成功实现了大壁虎八字形运动诱导。

图 1-6 植入电极的大壁

2.生物机器人的前景

21世纪将是一个生物机器人迅猛发展的世纪。生物机器人不但可以提高工人的生产效率,还可以代替人类从事乏味、劳累和危险的工作,甚至完成人类所不能胜任的工作,因而日益受到人们的重视。随着人类探索太空、建设航天站、开发海洋、军事作战与反恐侦察等任务和需求的增加,人们对机器人的性能提出了更高的要求。

安全保卫方面的需求。目前针对非常重要人员的安全保卫,需要对其活动的场所及其周边的各种可能通道做出检查。其中狭小空间的检测多数选用身材瘦小的侦察员来完成。这种方法对人员素质要求高、而且工作环境恶劣、效率低。而生物器人体形小,速度快,可以方便地代替人类完成狭小空间(如大楼管道系统、中央空调的管道系统等)侦查任务。

传统的运动功能障碍的康复手段,都需要病人有一定程度的自主运动控制能力,因此,对那些完全瘫痪的病人是不适用的。现在如果采用脑机接口技术,即利用人脑信号直接控制外部设备,就可以帮助神经肌肉系统瘫痪的病人实现与外界的交流(如环境控制、轮椅控制、操作计算机等)。这种技术还可以用于控制康复机器人,帮助运动障碍患者进行康复训练。另外,对复杂危险环境(如倒塌建筑物内)的搜救,目前广泛使用搜救狗、机器蛇

和光纤软管。与之对比,生物机器人能够在各种几何表面和更加狭小的空间实现无障碍运动,速度快,成效显著。

3.总结

从国内外的研究现状可以看出,动物机器人的研究对象正不断增加:从无脊椎动物(各种昆虫,如蟑螂) 到脊椎动物,从低等脊椎动物(如软骨鱼类:白斑,角鲨)到两栖类(海龟)和爬行动物(大壁虎),从鸟类(鸽子)到高等哺乳动物(小白鼠、大白鼠),其研究对象几乎遍布生物进化的各个不同阶段。同时,控制生物的方法、手段也不尽相同,并伴随不同学科、技术的融合而不断发展。控制从有线到无线,从单纯的神经肌肉刺激诱导,到利用奖赏机制结合脑内电刺激进行的刺激诱导;以及利用黑箱原理,通过对动物在某一特定行为中相关控制中枢的神经信号提取,经分析、解码,然后用计算机模拟重构神经电信号,再通过适当接口(脑机接口)引入动物的神经系统进行的运动诱导。动物机器人正由起初的基本可控向着更可靠、更精细的方向不断前进,并进一步深化人们对动物脑部运动等行为控制的认识,促进脑功能研究的发展。

近年来,随着神经科学、分子生物学、计算机科学、微电子技术等的迅猛发展,这些看似毫不相关的学科,已经并正在迅猛地发生着交叉融合,极大地推动了以自然为基础的生物机器人的发展。但是这些仿生机器人跟真正的动物相比还有较大的差距,其在运动平稳性、灵活性、健壮性、环境适应性及能源利用率等方面远远落后于动物,电源容量成为限制机器人工作时间的瓶颈,且难于在短时间内获得大幅度改善。

生物机器人与一般的工业机器人,生物机器人相比有许多突出的优点和它们无法比拟的优越性,但是由于受到生物学,神经学,控制技术,通讯技术,传感技术以及数学方法等相关学科发展的制约,至今基本上仍处于实验室研制的阶段。尤其是在克服生物疲劳性,适应性以及可靠实现预期运动行为等方面还不是十分理想,离实际应用还有相当长的一段距离。此外生物机器人也不应仅局限于控制生物的运动行为,还应该研究如何通过生物的视觉,触觉和听觉来为人类服务。

4.参考文献

[1] Arabi K Sawan M ,. Implantable multiprogrammable microstimulator dedicated to bladder control.[J]. Medical & Biological Engineering & Computing, 1996, 34(34):9-12. [2] Dillard JP, Weber K M, Vail R G.The Relationship Between the Perceived and Actual Effectiveness of Persuasive Messages: A Meta‐Analysis With Implications for Formative Campaign Research[J].Journal of Communication, 2007, 57(4):613-631. [3] Holzer R,Shimoyama I. Locomotion control of a bio-robotic system via electric stimulation[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems, Iros. 1997:1514-1519 vol.3.

[4] Kuwana Y, Shimoyama I, Miura H. Steering control of a mobile robot using insect antennae[C]//Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots', Proceedings. 1995 IEEE/RSJ International Conference on. IEEE, 1995:530-535 vol.2.

[5] Elmorshidy A. BRAIN CHIP IMPLANTS: CONTROLLING MOVEMENTS WITH THOUGHT ALONE: THE IMPOSSIBLE BECOMES REALITY[J]. Review of Business Research, 2011, :11(:1).

[6] 蒋怀伟,贺林.纳米生物机器人研究与进展.机器人,2005,27(05).

[7] 王文波,戴振东.动物机器人的研究现状与发展. 机械制造与自动化,2010.

[8] 张秀丽.机器人仿生学研究综述[ J ].机器人,2002,24(02):188—192. 汤大同.生理学与自动化科学的联姻—谈目前对智能动物研究的悄然兴起. 辽宁大学学报(自然科学版),2004.

[9]刘力.果蝇:基因、脑和行为.世界科技研究与发展,2000, 22(6):46-49.

[10] 王勇,苏学成.动物机器人的实验研究.生物物理学报,2005.

[11] 王裕清. 生物机械工程研究进展.中国工程科学,2005,07(11).

[12] 王田苗,孟德,裴葆青.仿壁虎机器人研究综述[[J].机器人,2007, 29(3).

血管机器人研究现状与关键技术问题分析

Mechanical Engineering and Technology 机械工程与技术, 2018, 7(6), 462-472 Published Online December 2018 in Hans. https://www.doczj.com/doc/0b12475219.html,/journal/met https://https://www.doczj.com/doc/0b12475219.html,/10.12677/met.2018.76057 Research Status and Key Technology Analysis of Vascular Robots Zhijian Zeng1, Yabo Deng1, Yongcong Huang1, Juan Xiong2, Zhongwei Hu1,3 1College of Mechanical and Electrical Engineering, Huaqiao University, Xiamen Fujian 2Huaqiao University Hospital, Xiamen Fujian 3Institute of Manufacturing Engineering, Huaqiao University, Xiamen Fujian Received: Nov. 16th, 2018; accepted: Dec. 4th, 2018; published: Dec. 11th, 2018 Abstract In recent years, vascular robot technology has developed rapidly and gradually used in medical fields such as disease diagnosis, information collection, vascular dredge, drug delivery, etc. Ac-cording to different driving modes of vascular robots, the structure and driving modes of mi-cro-nano-scale and millimeter-scale vascular robots are analyzed in this paper. The principle and research status of different driving modes of vascular robots are summarized, including peristaltic driving, bionic swimming, bionic flagella driving, spiral driving and so on. The characteristics of various structures of current vascular robots are discussed, and the key technologies and devel-opment prospects of vascular robots are analyzed. Keywords Blood Vessel Robot, Driving Mode, Nano-Robot, MEMS Robot 血管机器人研究现状与关键技术问题分析 曾志坚1,邓亚博1,黄永聪1,熊娟2,胡中伟1,3 1华侨大学机电及自动化学院,福建厦门 2华侨大学校医院,福建厦门 3华侨大学制造工程研究院,福建厦门 收稿日期:2018年11月16日;录用日期:2018年12月4日;发布日期:2018年12月11日

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

(完整版)工业机器人文献综述

工业机器人文献综述 生产力在不断进步,推动养科技的进步与革新,以建立更加合理 的生产关系。自工业革命以来,人力劳动己经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步时至今天,机电一体化,机械智能化等技术应运而生并己经成为时代的主旋律。 1.工业机器人的发展: 1.1 机器人概念的诞生 机器人技术一词虽然出现的较晚,但这一概念在人类的想象中却早已出现。自古以来,有不少科学家和杰出工匠都曾制造出具有人类特点或具有动物特征的机器人雏形。我国西周时期的能工巧匠就研制出了能歌善舞的伶人,这是我国最早的涉及机器人概念的文章记录,此外春秋后期鲁班制造过一只木鸟,能在空中飞行,体现了我国劳动人民的智慧。机器人一词由捷克作家--卡雷尔.恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首次提出,剧中描述了一机器奴仆Robot。此次Robot被沿用下来,中文译成机器人。1942年美国科幻作家埃萨克.阿西莫夫在他的科幻小说《我.机器人》中提出了“机器人三大定律”,这三大定律后来成为学术界默认的研发原则。现代机器人出现于20世纪中期,当计算机技术出现,电子技术的进步,数控机床的出现及与机器人相关的控制技术和零件加工技术的成熟,为现代机器人的发展打下了基础。 1.2 国内机器人的发展史 在我国目前采用工业机器人的行业主要有汽车行业、摩托车、电 器、工程机械、石油化工等行业。我国作为亚洲第三大的工业机器人需求国,对于工业机器人的需求量在逐年增加,从而吸引了大批工业机器人的制造商,加快了我国工业机器人技术的发展第一阶段是20世纪80年代,我国为t跟踪国际机器人技术的道路,当时以原机械工业部为主,航天工业部等部门联合组织国内的相关研究单位开展了工业机器人的研究,先后推出了弧焊、点焊、喷漆等多种工业机器人。直到90年代,通过国家863计划等的K77,我国具备t独!)设计不}}生产工业机器人的能力,培养了一批高水平的研究生产队伍进入21世纪,中国的工业机器人发展进入t一个崭新的阶段,其中最大的特点是以企业为主体,以市场为导向、赢利为目标的机器人产业开发群体止在形成。尽管国外大的工业机器人公司为了占领中国不断扩大的市场,加大了其在中国的经销力度,但是中国的机器人企业以自己独有的市场信息优势、售前售后的服}}c势、针对中国企业的工艺特点的专门化设计优势努力争取自己的市场地位随养全球经济的一体化发展,世界制造中心向中国转移的趋势,中国工业机器人的产业会快速的发展起来,特别重要的是研制单位必须和需求紧密结合,让机器人走进工厂,实现真止的产业化。 经过20多年的探索,我国的工业机器人自动化技术取得t长足的发展,但是与世界发达国家相比,还有不小的差距;机器人应用工程起步也较晚,应用领域窄,生产线系统技术落后随养我国制造业-尤其是汽车行业的发展,对工业机器人的需求日益增长,工业机器人的拥有量远远不能满足需求量。尤其是基础零部件和元器件生产和制造、机器人可靠性以及成木等问题,都存在很多问题。尤其在大负载工业机器人方而,不仅产品长期大量依靠从国外引进,在维护、更新改造方而对国外的依赖也相当严重。 1.3国内外工业机器人的发展方向

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人的发展现状 1.1发展概述 我国的工业机器人研究开始于20世纪80年代中期.在国家的支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发的转变。促进了我国制造业、勘探等行业的发展。但随着我国门户的逐渐开放.国内的工业机器人产业面临着越来越大的竞争与冲击。虽然我国机器人的需求量逐年增加,但目前生产的机器人还很难达到所要求的质量.很多机器人的关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型的同家。 现在,我国从事机器人研发的单位有200多家,专业从事机器人产业开发的企业有50家以上。在众多专家的建议和规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所和大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程的开发研究。“九五”期间,在国家“863”高技术计划项目的支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产的特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1.2机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑按照工业机器人的关键技术发展过程其可分为三代:第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现的控制方法,可以完成直线和圆弧的连续轨迹运动,然而复杂曲线的运动则由多段圆弧和直线组合而成。由于操作的容易性、可视性强,所以在当前工业中应用最多。

生物机器人综述

科技写作 学院(系):医疗器械与食品学院 年级专业:生物医学工程 学生姓名:朱安阳 学号: 152631974 指导教师:袁敏

摘要 20世纪60年代以来,随着仿生技术、控制技术和制造技术进一步发展,现代仿生学和机器人科学相结合,在机器人的结构仿生、材料仿生、功能仿生、控制仿生以及群体仿生等多个方面取得了大量可喜成果和积极进展。然而,伴随着人类医疗诊断、探索太空、建设航天站、开发海洋、军事作战与反恐侦察等任务和需求的增加,人们对机器人的性能也提出了更高的要求,于是生物机器人应运而生。 生物机器人就是完完全全和我们人类一样,用有生命的材料构成的而不是用金属材料构成的机器人。它们是利用自然界中的动物作为运动本体的机器人,通过把微电极植入与动物运动相关的脑核团或者方向感受区,并施加人工模拟的神经电信号,从而达到控制动物运动,利用动物特长代替人类完成人所不能和人所不敢的特殊任务。 与传统的仿生机器人相比,生物机器人在能源供给、运动灵活性、隐蔽性、机动性和适应性方面具有更明显的优势,可以广泛应用在海洋开发、探索太空、反恐侦查、危险环境搜救以及狭小空间检测等各方面。近年来对生物运动规律和动物机器人的研究受到更多的重视。本文主要对对国内外生物机器人的研制工作做了综述,并介绍其应用前景及对其未来发展进行了展望。 关键词:生物机器人;运动诱导;神经控制;研究现状;发展方向

1.课题的研究现状 自20世纪90年代开始,生物机器人的研究历史仅有短短的10年,然而这短短十年又是生物机器人研究成果丰硕的十年,各国科研人员都相继开展了动物机器人的研究工作,尤其是美国,日本等科技发达国家,它们的研究成果代表着这一领域的最高水平,国在这一领域的研究尚在起步阶段,但也已有了不俗的进展。 1.1 国外的研究现状 在国外,美国、日本以及欧盟较早地开始了纳米生物机器人的研究。纳米生物机器人的组件可以是单个的原子或分子,但利用自然界存在的、具有一定结构和功能的原子团或分子的集合分子功能器件组装纳米机器人,更加高效和现实可行,即按照分子仿生学原理,利用大量存在的天然分子功能器件设计、组装纳米生物机器人。美国 2000年开始了国家纳米技术计划,国家卫生研究院(NIH)和国家癌症研究所(NIC)于2002年开展了DNA分子马达的研究。NASA高级概念研究院(NIAC)和Rutgers大学在2002年提出了纳米生物机器人研究50年发展规划;2002年日本Osaka大学启动了生命科学前沿研究计划,其中包括 ATP马达的研究;欧盟2002年正式推出了研究纳米技术的第6框架计划,其中纳米生物技术的研究重点为生物分子或复合物的处理、操纵和探测。 图 1-1 昆虫机器人

工业机器人发展现状与趋势

工业机器人发展现状与趋势 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人技术现状及国内外发展的趋势 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。进入20世纪90年代,机器人产品发展速度加快,年增长率平均在10%左右。2004年增长率达到创记录的20%。其中,亚洲机器人增长幅度最为突出,高达43%,如图1所示。

各区域用户工业机器人定购指数(以1996年作为100) 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可*性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可*性、易操作性和可维修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

工业机器人的发展史

郑州领航机器人有限公司 工业机器人发展史 工业机器人最早产生于美国,从发展上来看,大至可以分为三代:第一代机器人,也称作示教再现型机器人,它是通过一个计算机,来控制一个多自由度的机械。它通过示教存储程序和信息,工作时再将信息重现,并发出指令,这样机器人就可以重复示教时的结果,再现出示教时的动作。例如:汽车的点焊机器人,只要把点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道。因此,示教再现型机器人也就存在着很多的缺陷。为解决上述问题,在 20 世纪 70 年代后期,人们开始第二代机器人的研究。 第二代机器人,也称作带感觉的机器人,这种带感觉的机器人是模拟人某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比。有了各种各样的感觉,那么在机器人进行实际工作时,它可以通过感觉功能去感知环境与自身的状况,也形成了机器人本身与环境的协调。尤其是 20 世纪 60 年代末,传感器技术得到了飞速的发展与成熟,这就为带感觉机器人发展和应用带来了契机。在此基础上,第二代机器人的发展与成熟也为第三代机器人的发展打下了基础。 第三代机器人,也是我们机器人学中所追求的一个理想的最高级阶段,叫智能机器人。从理论上来说,智能机器人是一种带有思维能

力的机器人,能根据给定的任务去自主的设定完成工作的流程,并不需要人在实现其过程中进行干预。由于受到技术和其它方面的约束,智能机器人目前的发展还是相对的,只是局部的符合这种智能的概念和含义,真正完整意义的这种智能机器人实际上并不存在。 在工业机器人的发展过程中有以下一些里程碑,它们在机器人的发展史上具有重大的意义: 1959 年德沃尔与美国发明家约瑟夫.英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂—Unimation 公司。 1962 年美国 AMF 公司生产出“VERSTRAN”(万能搬运 ),与unimation 公司生产的 Unimate 一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人的研究热潮。 1962 一 1963 年传感器的应用提高了机器人的可操作性。人们试着在机器上安装各种各样的传感器,包括 1961 年恩斯特采用的触觉传感器,托莫维奇和博尼 1962 年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡 1963 年则开始在机器人中加入视觉传感系统,并在 1965 年帮助 MIT 推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。 1965 年约翰.霍普金斯大学应用物理实验室研制出 Beast 机器人。 Beast 已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20 世纪 60 年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第

机器人发展现状及未来趋势

机器人发展现状及未来趋势

一、机器人现状及国内外发展趋势 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可靠性、便 于操作和维修),而单机价格不断下降,平均单机价格从91年 的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服 电机、减速机、检测系统三位一体化;由关节模块、连杆模块 用重组方式构造机器人整机;国外已有模块化装配机器人产品 问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且 采用模块化结构;大大提高了系统的可靠性、易操作性和可维 修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等 传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传 感器的融合技术来进行环境建模及决策控制;多传感器融合配 置技术在产品化系统中已有成熟应用。 5.虚拟现实技术在机器人中的作用已从仿真、预演发展到用于 过程控制,如使遥控机器人操作者产生置身于远端作业环境中 的感觉来操纵机器人。

6.当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最著名实例。 7.机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一探索开拓其实际应用的领域。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国已安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可

机械手文献综述

燕山大学 本科毕业设计(论文)文献综述 课题名称:顺序动作机械手 学院(系):机械工程学院 年级专业:机电控制 学生姓名:杨忠合 指导教师:郑晓军 完成日期: 2014.03.25

一、课题国内外现状 目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。 国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定成绩。目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG的产品系统总重已突破100KG。更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。 二、研究主要成果 机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。 搬运机械手仿真设计和制作,机械手的机械结构主要包括由两个电磁阀控制的气缸来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的进退运动,并利用ADAMS 软件对搬运机械手进行建模,对其进行运动学及动力学仿真,

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

机器人发展历史及未来发展趋势

机器人的发展历史及未来发展趋势 【摘要】随着科技的发展,机器人在越来越多的领域发挥着越来越重要的作用。机器人也已不是仅仅在科幻小说和科幻电影里出现,在很多领域里我们都可以看到机器人 的身影。我们相信,随着科学技术的不断发展,在不远的将来,机器人会变得更加普遍。同时,它们所具有的功能也会越来越多。 接下来,本文将具体介绍机器人的发展历史,同时也会根据科技的最新发展分析 机器人未来的发展趋势。 【关键词】机器人发展历史发展趋势 一、机器人的定义 机器人是在怎样的情况下产生的? 机器人形象和机器人一词,最早出现在科幻和文学作品中。1920年,一名捷克作家发表了一部名为《罗萨姆的万能机器人》的剧本,剧中叙述了一个叫罗萨姆的公司 把机器人作为人类生产的工业品推向市场,让它充当劳动力代替人类劳动的故事。作 者根据小说中Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。 那机器人的定义到底是什么呢? 在科技界,科学家会给每一个科技术语一个明确的定义,机器人问世已有几十年,但对机器人的定义仍然仁者见仁,智者见智,没有一个统一的意见。原因之一是机器 人还在发展,新的机型,新的功能不断涌现。根本原因主要是因为机器人涉及到了人 的概念,成为一个难以回答的哲学问题。就像机器人一词最早诞生于科幻小说之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的 想像和创造空间。 在1967年日本召开的第一届机器人学术会议上,人们提出了两个有代表性的定义。一是森政弘与合田周平提出的:“机器人是一种具有移动性、个体性、智能性、通用性、半机械半人性、自动性、奴隶性等7个特征的柔性机器”。从这一定义出发,森政弘又提出了用自动性、智能性、个体性、半机械半人性、作业性、通用性、信息性、柔性、有限性、移动性等10个特性来表示机器人的形象;另一个是加藤一郎提出的具有如下3个条件的机器称为机器人: 1.具有脑、手、脚等三要素的个体; 2.具有非接触传感器(用眼、耳接受远方信息)和接触传感器;

机器人发展现状及趋势分析

机器人发展现状及趋势分析 一、机器人创新发展概述 机器人是集机械、电子、控制、传感、人工智能等多学科先进技术于一体的自动化装备。自1956年机器人产业诞生后,经过近60年发展,机器人已经被广泛应用在装备制造、新材料、生物医药、智慧新能源等高新产业。机器人与人工智能技术、先进制造技术和移动互联网技术的融合发展,推动了人类社会生活方式的变革。 当前,我国机器人市场进入高速增长期,工业机器人连续五年成为全球第一大应用市场,服务机器人需求潜力巨大,核心零部件国产化进程不断加快,创新型企业大量涌现,部分技术已可形成规模化产品,并在某些领域具有明显优势。下面一起随着云里物里科技来看下。 (一)机器人创新发展进程 图1机器人创新发展进程 第一阶段,发展萌芽期。1954年,第一台可编程的机器人在美国诞生。1958年,美国发明家恩格尔伯格建立了Unimation公司,并于1959年研制出了世界上第一台工业机器人。这一阶段,随着机构理论和伺服理论的发展,机器人进入了实用阶段。 第二阶段,产业孕育期。1962年,美国AMF公司生产出第一台圆柱坐标型机器人。1969年,日本研发出第一台以双臂走路的机器人。同时日本、德国等国家面临劳动力短缺等问题,因而投入巨资研发机器人,技术迅速发展,成为机器人强国。这一阶段,随着计算机技术、现代控制技术、传感技术、人工智能技术的发展,机器人也得到了迅速的发展。这一时期的机器人属于“示教再现”(Teach-in/Playback)型机器人,只具有记忆、存储能力,按相应程序重复作业,对周围环境基本没有感知与反馈控制能力。

第三阶段,快速发展期。1984年,美国推出医疗服务机器人Help Mate,可在医院里为病人送饭、送药、送邮件。1999年,日本索尼公司推出大型机器人爱宝(AIBO)。这一阶段,随着传感技术,包括视觉传感器、非视觉传感器(力觉、触觉、接近觉等)以及信息处理技术的发展,出现了有感觉的机器人。焊接、喷涂、搬运等机器人被广泛应用于工业行业。2002年,丹麦iRobot公司推出了吸尘器机器人,是目前世界上销量最大的家用机器人。2006年起,机器人模块化、平台统一化的趋势越来越明显。近五年来,全球工业机器人销量年均增速超过17%,与此同时,服务机器人发展迅速,应用范围日趋广泛,以手术机器人为代表的医疗康复机器人形成了较大产业规模,空间机器人、仿生机器人和反恐防暴机器人等特种作业机器人实现了应用。 第四阶段,智能应用期。这一阶段,随着感知、计算、控制等技术的迭代升级和图像识别、自然语音处理、深度认知学习等人工智能技术在机器人领域的深入应用,机器人领域的服务化趋势日益明显,逐渐渗透到社会生产生活的每一个角落。 (二)机器人产业规模加速增长 根据IDC预测,在全球机器人区域分布中,亚太市场处于绝对领先地位,预计其2020年支出将达1330亿美元,全球占比达71%;欧洲、中东和非洲为第二大区域;美洲是第三大市场。 图22020年全球机器人市场占比 近年来,中国各地发展机器人积极性较高,行业应用得到快速推广,市场规模增速明显。2017年,我国机器人市场规模达到62.8亿美元,2020年,预计超过100亿美元。

工业机器人的发展历史

1.1.工业机器人发展史 1.1.1.1959-1978 机器人技术发展阶段 1956年,美国发明家乔治? 德沃尔(George Devol)和 物理学家约瑟?英格柏格 (Joe Engelberger)成立了 一家名为Unimation的公 司。公司名字来自于两个单 词“Universal”和 “Animation”的缩写。 1959年,乔治·德沃尔和约 瑟·英格柏格发明了世界上 第一台工业机器人,命名为 Unimate(尤尼梅特),意思 是“万能自动”。英格伯格负 责设计机器人的“手”、“脚”、 “身体”,即机器人的机械部 分和完成操作部分;由德沃 尔设计机器人的“头脑”、“神 经系统”、“肌肉系统”,即机 器人的控制装置和驱动装 置。Unimate重达两吨,通 过磁鼓上的一个程序来控 制。它采用液压执行机构驱 动,基座上有一个大机械臂, 大臂可绕轴在基座上转动, 大臂上又伸出一个小机械 臂,它相对大臂可以伸出或 缩回。小臂顶有一个腕子, 可绕小臂转动,进行俯仰和 侧摇。腕子前头是手,即操 作器。这个机器人的功能和 人手臂功能相似。Unimate 的精确率达1/10000英寸。

1971年,日本机器人协会(Japanese Robot Association)成立。这是世界上第一个国家机器人协会。日本机器人协会最初是一个非官方的自发组织,以开展工业机器人座谈会的形式成立。1972年,工业机器人座谈会改名为日本工业机器人协会(Japan Industrial Robot Association ,JIRA),1973年正式注册成立。1994年改为现名――日本机器人协会(Japanese Robot Association,JARA)。日本工业机器人协会更名为日本机器人协会,是因为机器人领域的重大进展导致了对机器人需求的多样化,机器人由制造业扩展到非制造业,例如,核电站、医疗服务及福利事业,民用工程及建筑业以及海洋事业等方面。1974年,第一台弧焊机器人在日本投入运行。日本川崎Array 重工公司将用于制造川崎摩托车框架的Unimate点焊机器人改造成弧焊机器人。同年,川崎还开发了世界上首款带精密插入控制功能的机器人,命名为“Hi-T-Hand”,该机器人还具备触摸和力学感应功能。这款机器人手腕灵活并带有力反馈控制系统,因此它可以插入一个约 10微米间隙的机械零件。

纳米机器人论文

纳米机器人在生物学上的应用 学号:34 姓名:100821234 学院:生命科学技术学院班级:10082 12 摘要:纳米技术与分子生物学的结合将开创分子仿生学新领域。分子仿生学模仿细胞生命过程的各个环节,以分子水平上的生物学原理为参照原型,设计制造各种各样的可对纳米空间进行操作的“功能分子器件”———纳米机器人。纳米机器人的研制和开发将成为21世纪科学发展的一个重要方向。关键字:纳米技术纳米机器人分子马达1前沿:纳米机器人的研究属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。合成生物学对细胞信号传导与基因调控网络重新设计,开发“在体” (in vivo)或“湿”的生物计算机或细胞机器人,从而产生了另种方式的纳米机器人技术。 2纳米生物学与纳米机器人 纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。涉及的内容可归纳为以下三个方面: ①在纳米尺度上了解生物大分子的精细结构及其与功能的联系。 ②在纳米尺度上获得生命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。 ③纳米机器人的研制。 纳米机器人是纳米生物学中最具有诱惑力的内容。 第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行[1]。 第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置。 第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。 3纳米机器人不久将进入我们的生活 用不了多久,个头只有分子大小的纳米机器人将源源不断地进入人类的日常生活。它们将为我们制造钻石、舰艇、鞋子、牛排和复制更多的机器人。要它们停止工作只需启动事先设定的程序。表面来看,上述想法近乎不可思议:一项单一的技术在应用初期就能治病、延缓衰老、清理有毒的废物、扩大世界的食物供应、筑路、造汽车和造楼房?这并非天方夜谭,也许在21世纪中叶前就可以实现。全世界的研究机构都在想方设法将这些设想变成现实。美国总统克林顿曾经宣布成立美国国家纳米研究机构,承诺提供50亿美元进行这方面的尝试。 其实,纳米技术一词由来已久。理查德·费恩曼是继爱因斯坦之后最有争议和最伟大的理论物理学家,1959年他在一次题目为《在物质底层有大量的空间》的演讲中提出:将来人类有可能建造一种分子大小的微型机器,可以把分子甚至单个的原子作为建筑构件在非常细小的空间构建物质,这意味着人类可以在最底层空间制造任何东西。从分子和原子着手改变和组织分子是化学家和生物学家意欲到达的目标。这将使生产程序变得非常简单,你只需将获取到的大量的分子进行重新组合就可形成有用的物体。事实上,每一个细胞都是一个活生生的纳米技术应用的实例:细胞不仅将燃料转化为能量,而且按照储存在DNA中的信息来建造和激活蛋白质和酶,通过对不同物种的DNA进行重组,基因工程家已经学会建造新的这类

国内外机器人发展现状及发展动向

一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达万台。2012年全球工业机器人销量为万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达%,销量达%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在

智能机器人简介

智能机器人简介 土木建筑学院工程管理1002班蔡建森 201048150224 智能机器人之所以叫智能机器人,这是因为它有相当发达的“大脑”。在脑中起作用的是中央计算机,这种计算机跟操作它的人有直接的联系。最主要的是,这样的计算机可以进行按目的安排的动作。正因为这样,我们才说这种机器人才是真正的机器人,尽管它们的外表可能有所不同。 基本解释 我们从广泛意义上理解所谓的智能机器人,它给人的最深刻的印象是一个独特的进行自我控制的“活物”。其实,这个自控“活物”的主要器官并没有像真正的人那样微妙而复杂。智能机器人具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这就是筋肉,或称自整步电动机,它们使手、脚、长鼻子、触角等动起来。我们称这种机器人为自控机器人,以便使它同前面谈到的机器人区分开来。它是控制论产生的结果,控制论主张这样的事实:生命和非生命有目的的行为在很多方面是一致的。正像一个智能机器人制造者所说的,机器人是一种系统的功能描述,这种系统过去只能从生命细胞生长的结果中得到,现在它们已经成了我们自己能够制造的东西了。智能机器人能够理解人类语言,用人类语言同操作者对话,在它自身的“意识”中单独形成了一种使它得以“生存”的外界环境——实际情况的详尽模式。它能分析出现的情况,能调整自己的动作以达到操作者所提出的全部要求,能拟定所希望的动作,并在信息不充分的情况下和环境迅速变化的条件下完成这些动作。当然,要它和我们人类思维一模一样,这是不可能办到的。不过,仍然有人试图建立计算机能够

智能机器人拉车 理解的某种“微观世界”。比如维诺格勒在麻省理工学院人工智能实验室里制作的机器人。这个机器试图完全学会玩积木:积木的排列、移动和几何图案结构,达到一个小孩子的程度。这个机器人能独自行走和拿起一定的物品,能“看到”东西并分析看到的东西,能服从指令并用人类语言回答问题。更重要的是它具有“理解”能力。为此,有人曾经在一次人工智能学术会议上说过,不到十年,我们把电子计算机的智力提高了10倍;如维诺格勒所指出的,计算机具有明显的人工智能成分。 按功能分类 综述 可分为一般机器人和智能机器人。一般机器人是指不具有智能,只具有一般编程能力和操作功能的机器人。到目前为止,在世界范围内还没有一个统一的智能机器人定义。大多数专家认为智能机器人至少要具备以下三个要素:一是感觉要素,用来认识周围环境状态;二是运动要素,对外界做出反应性动作;三是思考要素,根据感觉要素所得到的信息,思考出采用什么样的动作。感觉要素包括能感知视觉、接近、距离等的非接触型传感器和能感知力、压觉、触觉等的接触型传感器。这些要素实质上就是相当于人的眼、鼻、耳等五官,它们的功能可以利用诸如摄像机、图像传感器、超声波传成器、激光器、导电橡胶、压电元件、气动元件、行程开关等机电元器件来实现。对运动要素来说,智能机

相关主题
文本预览
相关文档 最新文档