当前位置:文档之家› 《流体力学》教学大纲

《流体力学》教学大纲

《流体力学》教学大纲
《流体力学》教学大纲

《流体力学》教学大纲

一、基本信息

二、教学目标及任务

“流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。

本课程支撑环境工程专业毕业要求、、、、和。

三、学时分配

教学课时分配

四、教学内容及教学要求

绪论

第一节流体力学的任务和发展简史

第二节连续介质假定与流体的主要物理性质

. 连续介质假设

.流体的主要物理性质

习题要点:牛顿内摩擦定律的理解与应用

第三节作用在流体上的力

习题要点:质量力与表面力的概念

第四节流体力学的研究方法

本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。

本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。

第一章流体静力学

第一节流体静压强特性

第二节流体平衡微分方程

. 流体平衡微分方程

. 流体平衡微分方程的积分

. 等压面

习题要点:流体平衡微分方程的推导

第三节流体静力学基本方程

. 流体静力学基本方程

. 压强的表示方法

3.测压计

习题要点:流体静力学基本方程的应用,压强表示与计算

第四节液体的相对平衡

. 液体的相对平衡

. 液体的相对平衡在生产中的应用

习题要点:等压面方程,压强分布规律

第五节作用在平面上的液体总压力

. 图解法

. 解析法

习题要点:平面静水总压力的计算

第六节作用在曲面上的液体总压力

习题要点:曲面静水总压力的计算

本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。

本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。

第二章流体动力学基础

第一节描述流体运动的二种方法

. 拉格朗日法

. 欧拉法

.流线迹线脉线

习题要点:流线与迹线方程求解

第二节描述流体运动的概念

习题要点:掌握流体运动的概念

第三节流体运动的类型

习题要点:掌握流体运动类型及其特性

第四节流体运动的连续性方程

. 流体运动的连续性微分方程

. 总流的连续性方程

. 流体流量的测量

习题要点:连续性方程推导与应用;流量计的类型及原理第五节流体微元运动的基本形式

. 流体微元运动形式的分析

. 速度分解定理

习题要点:流动线变率、角变率、角转速计算

第六节无涡流和有涡流

习题要点:流动无涡与有涡的判别

第七节理想流体运动微分方程

. 欧拉运动微分方程

. 葛罗米柯(兰姆)运动微分方程

习题要点:运动微分方程的推导

第八节理想流体元流能量方程

. 理想流体运动微分方程的积分. 元流的伯努利方程

. 功能原理推导理想流体元流伯努利方程

. 理想流体元流伯努利方程的物理意义和几何意义

. 皮托管

习题要点:皮托管的应用

第九节实际流体的运动微分方程

. 以应力表示的实际流体的运动微分方程

. 流体质点的应力状态

. 实际流体的运动微分方程纳维斯托克斯方程

习题要点:运动微分方程的推导

第十节实际流体总流的伯努利方程

. 渐变流过水断面上动水压强的分布规律

. 恒定总流能量方程

. 总流能量方程的应用条件和应用方法

. 文丘里管

习题要点:总流能量方程的应用

第十一节总流的动量方程

. 总流的动量方程

. 总流动量方程的应用条件和应用方法

习题要点:总流动量方程的应用

本章重点、难点:迹线与流线,流体流动的基本概念,无旋流与有旋流,连续性方程、伯努利方程、动量方程及其应用。

本章教学要求:了解描述流体运动的两种方法,建立以流场为对象的描述流体运动的概念;了解流体微团运动的基本形式,理解有势流动和有旋流动,能判别有涡流与无涡流;了解流体运动的微元分析法;掌握理想流体运动微分方程及其伯努利积分;了解纳维—斯托克斯方程及其各项的物理意义;掌握流体运动的总流分析法,能综合运用连续性方程、总流能量方程和动量方程计算总流问题。

第三章量纲分析与相似原理

第一节量纲分析

. 量纲和单位

. 量纲和谐原理

. 瑞利法

. π定理

习题要点:π定理的应用

第二节流动相似的概念

. 几何相似

. 运动相似

. 动力相似

. 初始条件与边界条件相似

. 牛顿一般相似原理

习题要点:相似概念的理解

第三节相似准则

. 重力相似准则

. 粘滞力相似准则

. 压力相似准则

. 相似准则

. 表面张力相似准则

习题要点:相似准则的应用

第四节准数方程

习题要点:准数方程概念理解

第五节模型试验

. 雷诺模型

. 弗劳德模型

习题要点:原型与模型的转换

本章重点、难点:量纲分析法,相似原理,相似准则。

本章教学要求:理解相似的概念、相似准则和对实验的指导意义;掌握量纲分析方法及其初步运用;了解模型实验方法及内容。

第四章流动阻力和能量损失

第一节流动的种流动形态—层流和湍流

. 雷诺实验—层流和湍流

. 流态的判别准则—临界雷诺数

习题要点:流态的判别

第二节恒定均匀流基本方程—沿程损失的表示式

. 均匀流基本方程

. 沿程损失的普遍表示式

习题要点:均匀流基本方程推导,切应力分布

第三节层流沿程损失的分析和计算

习题要点:沿程阻力损失的计算

第四节湍流理论基础

. 层流向湍流的转变

. 湍流的脉动与时均法

. 湍流的基本方程—雷诺方程

. 湍流的半经验理论

. 粘性底层.光滑壁面.粗糙壁面

习题要点:湍流理论理解

第五节湍流沿程损失的分析和计算

. 尼古拉兹实验

. 湍流光滑区沿程阻力系数的确定

. 湍流粗糙区沿程阻力系数的确定

. 实用管道沿程阻力系数的确定

. 非圆形管道沿程损失的计算

. 计算沿程损失的经验公式

习题要点:沿程损失的计算

第六节局部损失的分析和计算

. 局部损失的分析

. 局部损失的计算

习题要点:局部损失的计算

本章重点、难点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。

本章教学要求:了解流动阻力和水头损失的分类;雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;了解沿程水头损失与切应力的关系;掌握圆管过流断面上的流速分布、水头损失与平均流速的关系,沿程阻力系数与雷诺数的关系;了解紊流脉动与时均化,紊动附加切应力,混合长度理论;掌握阻力系数的确定方法;掌握管路沿程损失和局部损失的计算;了解边界层概念,边界层的分离,绕流阻力。

第五章有压管流

第一节简单短管中的恒定有压流

. 自由出流

. 淹没出流

. 简单短管中有压流计算的基本问题和方法

习题要点:简单短管恒定有压流的计算

第二节简单长管中的恒定有压流

习题要点:简单长管恒定有压流的计算

第三节复杂长管中的恒定有压流

. 串联管道

. 并联管道

习题要点:复杂长管恒定有压流的计算

第四节沿程均匀泄流管道中的恒定有压流

. 沿程连续均匀泄流

. 沿程多孔口等间距等流量出流

习题要点:沿程均匀泄流管道计算

第五节管网中的恒定有压流计算基础

. 枝状管网

. 环状管网

习题要点:枝状管网计算、环状管网平差计算

本章重点、难点:重点:短管、长管水力计算。

本章教学要求:掌握短管(虹吸管、水泵吸水管、有压涵管等)的水力计算、简单长管、串联并联长管、沿程泄流、枝状管网的水力计算,理解环状管网的水力计算的原理与方法,了解有压管路中水击产生的原因及危害预防。

第六章孔口、管嘴、闸孔出流和堰流

第一节恒定薄壁孔口出流

. 孔口出流分类

. 薄壁小孔口自由出流

. 薄壁大孔口自由出流

. 薄壁孔口淹没出流

习题要点:孔口出流计算

第二节管嘴出流

. 圆柱形外管嘴出流

. 其他类型管嘴的出流

习题要点:管嘴出流流量计算

第三节闸孔出流

. 无底坎闸孔出流流动现象的分析

. 无底坎闸孔自由出流的基本公式

. 无底坎闸孔淹没出流的基本公式

习题要点:闸孔流量的计算

第四节堰流

. 薄壁堰溢流

. 实用堰溢流

. 宽顶堰溢流

习题要点:堰流流量计算

第五节水工建筑物下游的水流衔接与消能

. 底流衔接的形式

. 底流衔接的基本关系式

. 消力池简介

习题要点:衔接方式的判别

第六节小桥孔径的水力计算

习题要点:小桥孔径的水力计算

本章重点、难点:实际流体三大方程的应用与各种流动情况下的边界条件。

本章教学要求:掌握孔口、管嘴的基本公式及其应用;掌握闸孔出流、堰流的基本计算方法。第七章明渠流

第一节恒定明渠均匀流

. 明渠均匀流的特性与其发生条件

. 明渠均匀流基本公式

. 明渠的水力最优断面和允许流速

. 明渠均匀流水力计算的基本问题和方法

习题要点:明渠均匀流水力计算

第二节恒定明渠流的流动型态和若干基本概念

. 缓流和急流

. 微波的波速.弗劳德数

. 断面单位能量.临界水深.临界底坡

习题要点:流动形态的判别,概念理解

第三节恒定明渠流流态转换时的局部水力现象—水跃和跌水

. 水跃

. 跌水

习题要点:水跃能量损失和水跃长度计算

本章重点、难点:明渠的分类,水力计算的内容与方法,均匀流特征,水力最优断面。

本章教学要求:了解明渠流动的特点;掌握水力最优断面和允许流速的概念,掌握明渠均匀流各类问题的水力计算方法及复式断面、无压圆管的水力计算;了解明渠流动状态;了解水跃和跌水。

第八章渗流

第一节渗流模型

习题要点:渗流模型概念理解

第二节渗流基本定律—达西定律

. 达西定律

. 达西定律的适用范围

. 渗透系数及其确定方法

习题要点:达西定律的应用

本章重点、难点:达西定律、恒定渐变渗流的裘皮依公式。

本章教学要求:了解渗流现象、渗流模型,理解渗流达西定律;理解均匀渐变渗流断面流速均匀分布,了解渐变渗流基本微分方程及浸润面的概念;掌握地下水渐变渗流的裘皮依公式;掌握井的渗流计算;了解渗流对建筑物安全稳定的影响。

五、考核方式及要求

期末闭卷考试()、与平时考核()相结合。平时成绩包括课后作业、课堂讨论、出勤等。作业内容以教材中的课后习题为主,通过习题练习,逐步加深对课程中各种概念的理解、

熟悉分析和计算方法,达到掌握课程主要内容的目的。期末闭卷考试题型以计算题为主,均为各章应知应会的基本知识点。

六、推荐教材及教学参考书

教材:《工程流体力学》,闻德荪等编著,高等教育出版社,年第版,标准书号:。参考书:《流体力学》,刘鹤年主编,中国建筑工业出版社,年第版,标准书号:。

《水力学》,吴持恭编著,高等教育出版社,年第版,标准书号:。

《工程流体力学》,禹华谦、莫乃榕编著,高等教育出版社,年,标准书号:。

大纲修订人:杨新萍

大纲审定人:李荣

修订日期:2015年4月30日

流体力学复习大纲

流体力学复习大纲 第1章绪论 一、概念 1、什么是流体?(所谓流体,是易于流动的物体,是液体和气体的总称,相对于固 2、 3 4 5 6 7 8 9 10;牛 公式;粘性、粘性系数同温度的关系;理想流体的定义及数学表达;牛顿流体的定义; 11、压缩性和热胀性的定义;体积压缩系数和热胀系数的定义及表达式;体积弹性模量的定义、物理意义及公式;气体等温过程、等熵过程的体积弹性模量;不可压缩流体的定义。

二、计算 1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。 第2章流体静力学 一、概念 1、流体静压强的定义及特性;理想流体压强的特点(无论运动还是静止); 2 3 4 5 6 7 1、U 2 3; 4 第3章一元流体动力学基础 一、概念 1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数); 2、流场的概念,定常场与非定常场(即恒定流动与非恒定流动)、均匀场与非均匀场的概念及数学描述;

3、流线、迹线的定义、特点和区别,流线方程、迹线方程,什么时候两线重合; 4、一元、二元、三元流动的概念;流管的概念;元流和总流的概念;一元流动模型; 5、连续性方程:公式、意义;当流量沿程改变即有流体分出或流入时的连续性方程; 6、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对流导数(迁移导数、对流导数)的物理意义、数学描述;流体质点加速度的公式; 7、 8、 h轴的9 10 1 2、流线、迹线方程的计算。 3、连续方程、动量方程同伯努利方程的综合应用(注意伯努利方程的应用,注意坐标系、控制体的选取、受力分析时尤其要注意表压力是否存在); 第4章流体阻力和能量损失 一、概念

教学大纲-流体力学

《流体力学》教学大纲 课程编号:081082A 课程类型:专业基础课 总学时:32 讲课学时:32 实验(上机)学时:0 学分:2 适用对象:安全工程 先修课程:高等数学、大学物理、工程力学 一、课程的教学目标 通过本课程的教学与实践,使学生具备下列能力: 目标1:掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法,并能在工程应用中熟练适用。 目标2:掌握流体静力学、流体动力学的基本原理和基本方程,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。 二、课程教学与毕业要求的对应关系 2、课程教学过程与毕业要求的对应关系

四、教学内容 第一章绪论(1.2、2.1) 1.1 概述 流体力学定义、任务、研究方法;学习流体力学的意义;流体力学的发展简史 1.2 流体的连续介质模型 1.3 流体的主要物理性质 惯性、重力特性、粘性、压缩性。 液体表面张力;表面张力系数,量纲,单位;毛细现象 1.4作用在液体上的力 课程的考核要求:了解流体力学研究任务、研究方法,理解连续介质假设,熟悉流体的主要物理属性,掌握流体力学对力的分类方法。 教学重点、难点:教学重点内容包括连续介质假设的内容,引入假设的优点;流体的粘性及牛顿内摩擦定律;作用于流体上的力。

第二章流体静力学(1.2、2.1) 2.1 静止流体的应力特征 压强定义;静止流体压强特性 2.2静止流体的平衡微分方程 欧拉平衡微分方程;欧拉平衡微分方程综合表达式;等压面 2.3重力作用下的液体的压强分布 水静力学基本方程;有关压强的基本概念 2.4作用于平面上的静水总压力 大小;方向;压力中心 2.5作用于曲面上的静水总压力 水平分力;铅垂分力,压力体;总压力;压力中心 课程的考核要求:熟悉静水压强的两个特征;熟悉相对压强、绝对压强、真空压强的定义与相互关系;熟悉等压面的概念及等压面的特性;灵活运用水静力学基本方程及等压面概念求解静止流体中任一点的压强;会画静水压强分布图及压力体图;掌握平面及曲面静水总压力的计算方法 教学重点、难点:静水压强分布图的绘制;平面上静水总压力的计算;曲面静水总压力的水平分力的压强分布图画法及其计算;曲面静水总压力的铅垂分力的压力体图画法及其计算。 第三章流体动力学基础(1.2、2.1) 3.1描述液体运动的两种方法 拉格朗日法;欧拉法;欧拉变数;时变加速度;位变加速度 3.2研究流体运动的若干基本概念 恒定流与非恒定流;迹线;流线:定义、微分方程、流线性质;质点与控制体概念;元流;总流;过水断面;流量与断面平均流速;均匀流与非均匀流,均匀流定义;均匀流过水断面动水压强特征 3.3流体的连续方程 元流连续方程;总流连续方程 3.4流体的运动微分方程 欧拉运动方程;欧拉运动方程与欧拉平衡方程比较;粘性流体运动微分方程 3.5元流的伯诺里方程 理想流体元流的伯诺里方程;实际流体元流的伯诺里方程;方程表示式的物理意义和几何意义; 3.6实际流体恒定总流的能量方程: 渐变流及其性质;总流的能量方程一般表示式;应用条件;几何意义和物理意义;

流体力学例题

第一章 流体的性质 例1:两平行平板间充满液体,平板移动速度0.25m/s ,单位面积上所受的作用力2Pa(N/m2>,试确定平板间液体的粘性系数μ。 例2 :一木板,重量为G ,底面积为 S 。此木板沿一个倾角为,表面涂有润滑油的斜壁下滑,如图所示。已测得润滑油的厚度为,木板匀速下滑的速度为u 。试求润滑油的动力粘度μ。 b5E2RGbCAP 例3:两圆筒,外筒固定,内筒旋转。已知:r1=0.1m ,r2=0.103m ,L=1m 。 。 求:施加在外筒的力矩M 。 例4:求旋转圆盘的力矩。如图,已知ω, r1,δ,μ。求阻力矩M 。 第二章 流体静力学

例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。已知:水面高程z0=3m, 压差计各水银面的高程分别为z1 = 0.03m, z2 = 0.18m, z3 = 0.04m, z4 = 0.20m,水银密度p1EanqFDPw ρ′=13600kg/m3,水的密度ρ=1000kg/m3 。试求水面的相对压强p0。 例2:用如图所示的倾斜微压计测量两条同高程水管的压差。该微压计是一个水平倾角为θ的Π形管。已知测压 计两侧斜液柱读数的差值为L=30mm ,倾角 θ=30°,试求压强差p1 –p2 。DXDiTa9E3d 例 3:用复式压差计测量两条气体管道的压差<如图所 示)。两个U 形管的工作液体为水银,密度为ρ2 ,其连接管充以酒精,密度为ρ1 。如果水银面的高度读数为z1 、 z2 、 z3、 z4 ,试求压强差pA –pB 。RTCrpUDGiT 例4:用离心铸造机铸造车轮。求A-A 面上的液体 总压力。 例5:已知:一块平板宽为 B ,长为L,倾角 ,顶端与水面平齐。求:总压力及作用点。 例7:坝的园形泄水孔,装一直径d = 1m 的 平板闸门,中心水深h = 3m ,闸门所在斜面与水平面成,闸门A 端设有铰链,B 端钢索

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

流体力学期末复习资料

1、流体运动粘度的国际单位为m^2/s 。 2、流体流动中的机械能损失分为沿程损失和局部损失两大类。 3、当压力体与液体在曲面的同侧时,为实压力体。 4、静水压力的压力中心总是在受压平面形心的下方。 5、圆管层流流动中,其断面上切应力分布与管子半径 的关系为线性关系。 6、当流动处于紊流光滑区时,其沿程水头损失与断面 平均流速的1.75 次方成正比。 7、当流动处于湍流粗糙区时,其沿程水头损失 与断面平均流速的2 次方成正比。 8、圆管层流流动中,其断面平均流速与最大流速的比值为1/2 。 9、水击压强与管道内流动速度成正比关系。 10、减轻有压管路中水击危害的措施一般有:延长阀门关闭时间, 采用过载保护,可能时减低馆内流速。 11、圆管层流流动中,其断面上流速分布与管子半径的关系为二次抛物线。 12、采用欧拉法描述流体流动时,流体质点的加速度由当地加速度和迁移加速度组成。 13流体微团的运动可以分解为: 平移运动、线变形运动、角变形运动、旋转运动。 14、教材中介绍的基本平面势流分别为:点源、点汇、点涡、均匀直线流。 15、螺旋流是由点涡和点汇两种基本势流 所组成。 16、绕圆柱体无环量流动是由偶极流和 平面均匀流两种势流所组成。 17、流动阻力分为压差阻力和摩擦阻力。 18、层流底层的厚度与雷诺数成反比。 19、水击波分为直接水击波和间接水击波。 20、描述流体运动的两种方法为 欧拉法和拉格朗日法。 21、尼古拉兹试验曲线在对数坐标中的图像分为5个区域,它们依次为: 层流层、层流到紊流过渡区、紊流区、 紊流水力粗糙管过渡区、紊流水力粗糙管平方阻力区。 22、绕流物体的阻力由和两 部分组成。 二、名词解释 1、流体:在任何微小剪力的持续作用下能够连续不断变形的物质 2、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。 3、等压面:在流体中,压强相等的各点所组成的面称为等压面。 4、流线:流线是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体的速度方向都与该曲线相切。 5、流管:过流管横截面上各点作流线,则得到充满流管的医术流线簇 6、迹线:流场中某一质点的运动轨迹。

流体力学教学大纲

《流体力学》教学大纲 一、基本信息 二、教学目标及任务 “流体力学”作为环境工程专业的专业基础课,是连接前期基础课程和后续专业课程的桥梁。学生通过该课程的学习,掌握流体的基本性质,流体静止与运动的规律及流体与边界的相互作用、明渠流、管流、堰流等知识,具备流体计算(水力计算)的基本技能,为解决环境工程专业中的相关流体力学问题奠定基础。 本课程支撑环境工程专业毕业要求1、2、3、4、5和6。 三、学时分配 教学课时分配

四、教学内容及教学要求 绪论 第一节流体力学的任务和发展简史 第二节连续介质假定与流体的主要物理性质 1. 连续介质假设 2. 流体的主要物理性质 习题要点:牛顿内摩擦定律的理解与应用 第三节作用在流体上的力 习题要点:质量力与表面力的概念 第四节流体力学的研究方法 本章重点、难点:黏性、牛顿内摩擦定律、质量力、表面力、连续介质概念。 本章教学要求:了解流体力学的发展简史,了解本课程在专业及工程中的应用;掌握流体主要物理性质,特别是黏性和牛顿内摩擦定律;理解作用在流体上的力;掌握连续介质、不可压缩流体及理想流体的概念;了解研究流体运动规律的一般方法。 第一章流体静力学 第一节流体静压强特性 第二节流体平衡微分方程 1. 流体平衡微分方程 2. 流体平衡微分方程的积分 3. 等压面 习题要点:流体平衡微分方程的推导 第三节流体静力学基本方程 1. 流体静力学基本方程

2. 压强的表示方法 3.测压计 习题要点:流体静力学基本方程的应用,压强表示与计算 第四节液体的相对平衡 1. 液体的相对平衡 2. 液体的相对平衡在生产中的应用 习题要点:等压面方程,压强分布规律 第五节作用在平面上的液体总压力 1. 图解法 2. 解析法 习题要点:平面静水总压力的计算 第六节作用在曲面上的液体总压力 习题要点:曲面静水总压力的计算 本章重点、难点:静压强及其特性,点压强的计算,静压强分布图,压力体图,作用于平面壁和曲面壁上的液体总压力,流体平衡微分方程的建立与应用。 本章教学要求:理解流体静压强的概念;掌握静水压强的特性,压强的表示方法及计量单位;掌握流体微分方程及其物理意义;掌握液柱式测压仪的基本原理;熟练掌握平衡流体静压强的分布规律及点压强的计算方法;掌握作用于平面壁和曲面壁上的液体总压力的计算。 第二章流体动力学基础 第一节描述流体运动的二种方法 1. 拉格朗日法 2. 欧拉法 3. 流线迹线脉线 习题要点:流线与迹线方程求解 第二节描述流体运动的概念 习题要点:掌握流体运动的概念 第三节流体运动的类型 习题要点:掌握流体运动类型及其特性 第四节流体运动的连续性方程

流体力学复习题一及答案

流体力学复习题一 一、单项选择题(本大题共 10小题,每小题2分,共20分) 1.流体在静止时( )。 A .既可以承受压力,也可以承受剪切力 B .既不能承受压力,也不能承受剪切力 C .不能承受压力,可以承受剪切力 D .可以承受压力,不能承受剪切力 2.如图所示,密闭容器上装有U 型水银测压计。在同一水平面上1、2、3点上的压强关系为( )。 A .p 1=p 2=p 3 B .p 1<p 2<p 3 C .p 1>p 2>p 3 D .p 1>p 2=p 3 3.恒定流一定是( )。 A .当地加速度为零 B .迁移加速度为零 C .向心加速度为零 D .质点加速度为零 4.在总流伯努利方程中,压强P 是渐变流过流断面上的( )。 A .某点压强 B .平均压强 C .最大压强 D .最小压强 5.圆管均匀流过流断面上切应力符合( )。 A .均匀分布 B .抛物线分布 C .管轴处为零、管壁处最大的线性分布 D .管壁处为零、管轴处最大的线性分布 6.如图所示,安装高度不同、其他条件完全相同的三根长管道的流量关系为( )。 A .Q 1=Q 2=Q 3 B .Q l <Q 2<Q 3 C .Q l >Q 2>Q 3 D .Q l <Q 2=Q 3 7.有压管流中,阀门瞬时完全关闭,最大水击压强?p 的计算公式为( )。 A .g cv 0 B .z gT l v 02 C .z T T cv 0ρ D .0cv ρ 8.只适用于明渠均匀流流动状态的判别标准是( )。 A .微波波速 B .临界底坡 C .弗劳德数 D .临界水深 9.矩形修圆进口宽顶堰在>H p 3.0的条件下,其流量系数( )。 A .m <0.32 B .m=0.32 C .m=0.36 D .m >0.36 10.用裘皮依公式分析普通完全井浸润线方程时的变量是( )。 A .含水层厚度 B .浸润面高度 C .井的半径 D .渗透系数

流体力学典型例题及答案

1.若流体的密度仅随( )变化而变化,则该流体称为正压性流体。 A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数( )时的流动。 A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( ) A.增加 B.减小 C.不变 D.增加或减小 4.混合气体的密度可按各种气体( )的百分数来计算。 A.总体积 B.总质量 C.总比容 D.总压强 7.流体流动时,流场各空间点的参数不随时间变化,仅随空间位置而变,这种流动称为( ) A.定常流 B.非定常流 C.非均匀流 D.均匀流 8.流体在流动时,根据流体微团( )来判断流动是有旋流动还是无旋流动。 A.运动轨迹是水平的 B.运动轨迹是曲线 C.运动轨迹是直线 D.是否绕自身轴旋转 9.在同一瞬时,流线上各个流体质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行 10.图示三个油动机的油缸的内径D相等,油压P也相等,而三缸所配的活塞结构不同,三个油动机的出力F1,F2,F3的大小关系是(忽略活塞重量)( ) A.F 1=F2=F3 B.F1>F2>F3 C.F1F2 12.下列说法中,正确的说法是( ) A.理想不可压均质重力流体作定常或非定常流动时,沿流线总机械能守恒 B.理想不可压均质重力流体作定常流动时,沿流线总机械能守恒 C.理想不可压均质重力流体作非定常流动时,沿流线总机械能守恒 D.理想可压缩重力流体作非定常流动时,沿流线总机械能守恒 13.在缓变流的同一有效截面中,流体的压强分布满足( ) A.p gρ +Z=C B.p=C C. p gρ + v g C 2 2 = D. p gρ +Z+ v g C 2 2 = 14.当圆管中流体作层流流动时,动能修正系数α等于( )

流体力学复习题

流体力学复习题 绪论 2.流体的压缩性与热胀性用什么表示?他们对液体的密度和容重有何影响? 答:流体的压缩性用压缩系数表示. 流体的热胀性用热胀系数表示 影响:①流体在压力作用下,体积减小,密度增大,容重增大,由于液体的压缩系数很小,故工程上一般液体视为不可压缩的,但是在瞬间压强变化很大的特殊场合,则必须考虑其压缩性②温度升高,流体体积增大,密度减小,容重减小,液体热胀性非常小,一般工程中也不考虑液体的热胀性。但是在热水采暖工程中或其他特殊情况下,需考虑热胀性。 3.当气体远离液相状态时,可以近似看成理想气体,写出理想气体状态方程。当压强与温度改变时,对气体的密度有何影响? 答:(1)理想气体状态方程: (2)理想气体从一个状态到另一个状态下的压强,温度,密度间的关系为: ①压强不变时,即则。气体密度与温度成反比,温度升高密度减小;温度降低,密度增大;但温度降低到液化温度时不成立。②温度不变时,即则 气体密度与压强成正比关系,压强增加,密度增大。压强达到极限压强后不再适用。 4.什么是流体的粘滞性?它对流体的运动有何影响?动力粘滞系数与运动粘滞系数有何区别于联系?液体与其体的粘滞性随温度的变化相同吗?为什么? 答:(1)在流体内部产生内摩擦力以阻抗流体运动的性质称为流体的粘滞性。(2)粘滞性阻碍了流体的相对运动。(3)①联系:都是反映流体粘滞性的参数,表明流体的粘滞性越强。②区别:工程中大多数流体的动力粘滞系数与压力变化无关。但是对气体而言,压力变化,密度变化,故运动粘度随压力变化。(4)①变化不相同。温度升高时,所有液体粘滞性是下降的。而所有其体的粘滞性是上升的。②粘性取决于分子间的引力和分子间的动量交换,液体的粘滞性主要取决于分子间的引力,其体的黏性取决于分子间的动量交换。温度升高,分子间的引力减小而动量交换加剧,故变化规律不相同。 5.液体气化压强的大小与液体的温度和外界压强有无关系?根据液体气化压强的特性,流体在什么情况下会产生不利因素/ 答:①分子的活动能力随温度升高而升高,随压力的升高而减小,气化压强也随温度的升高而增大,随外界的压强的增大而减小。②流体在流动过程中,液体与固体的接触面处于低压区,并低于气化压强时液体气化,在固体产生气泡;随液体流动进入高压区,气泡中的气体便液化,液化产生的液体将冲击固体表面。若运动为周期性的,将造成固体表面疲劳并使其剥落产生气蚀。

《流体力学》复习提纲Ⅰ

《流体力学与流体机械》(上)复习提纲 第一章流体及其物理性质 1.流体如何定义?流体为什么具有流动性?流体与固体有何本质区别?液体与气体的特点有何不同? 2.何谓流体微团和流体质点?把流体作为连续性介质假设有何实际意义?分析该假设的合理性。 3.理解和熟练掌握流体的密度、重度、比重和比容等重要物性参数的概念,特别需要注意比重和重度的区别,均匀流体和非均匀流体,以及混合流体的密度、重度等物性参数的应如何计算?重度与密度之间的关系,熟练掌握等压条件下气体密度的简化计算式(1-13)。 4.何谓流体的压缩性和膨胀性?流体压缩性和膨胀性的大小如何度量?流体的体积压缩系数βp、体积弹性系数E及体积膨胀系数β 的单位是什么?如何用这三个系数的大小来判别流体压 T 缩性的大小? 5.理解和熟练掌握理想气体状态方程的形式和物理意义,以及方程中各物理量的单位。 6.可压缩流体和不可压缩流体是如何定义的?液体就是不可压缩流体、而气体就是可压缩流体吗?不可压缩流体是真是存在的流体吗?引入不可压缩流体的概念有何实际意义?在什么情况下可以认为流体是不可压缩的? 7.理解和掌握马赫数M的概念及其物理意义,为什么说当M<0.3时,流体的可压缩性可以忽略不计? 8.何谓流体的粘性和粘性力(内摩擦力)?为什么流体会具有粘性?重点掌握流体的粘性是怎样产生的?流体与固体壁面间的粘性和粘性力是如何构成的?流体的内摩擦力与固体壁面间的摩擦力有何区别?它们所遵循的规律相同吗? 9.深入理解和熟练掌握牛顿内摩擦定律的内容、数学表达式的形式及其物理含义和工程应用。何谓速度梯度? 10.深入理解和熟练掌握流体的动力粘度和运动粘度的物理本质及含义、二者之间的区别与联系,分析影响流体的粘性的两大主要因素——压力和温度对流体的粘性的影响。 11.处于静止状态或等速运动状态下的流体是没有粘性的吗?何谓流体的粘性切应力?12.了解流体粘度的常用测量方法及恩氏粘度的概念,以及恩氏粘度如何转换成运动粘度和动力粘度。 13.何谓粘性流体?何谓理想流体?理想流体是真是存在的流体吗?把实际流体假设成为理想流体有何实际意义?何谓完全气体?何谓牛顿流体?何谓非牛顿流体?非牛顿流体又可分为哪几类? 14.何谓表面张力?表面张力是怎样产生的?表面张力的大小如何表示?它的单位是什么?影响表面张力的主要因素有哪些?表面张力所引起的附加法向压力应如何计算? 15.何谓毛细现象?产生毛细现象的根本原因是什么?毛细现象在工程上会造成什么影响?液体在毛细管内上升或下降的高度应如何计算?

流体力学教学大纲

《流体力学》教学大纲 课程编号:081073A 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□专业选修课 □√学科基础课 总学时:48讲课学时:40实验(上机)学时:8 学分:3 适用对象:环境工程 先修课程:高等数学、大学物理、理论力学 一、教学目标(黑体,小四号字) 流体力学是环境工程专业的一门主要技术基础课,其任务是使学生掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法和一定的实验技能;培养学生分析问题和解决问题的能力。为学习专业课,从事专业工作和进行科学研究打基础。 目标1:掌握流体力学的基本概念、基本理论、基本方法,并具有一定的流体力学实验技能(具有测量水位、压强、流量的操作技能和编写报告能力)。 目标2:掌握掌握流体力学的分析方法、计算方法,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。 目标3:为该课程在《水污染控制工程》、《大气污染控制I(防尘)》、《大气污染控制II(防毒)》、《排水管道系统》等课程中的应用奠定良好的基础。 二、教学内容及其与毕业要求的对应关系 本课程的重点内容包括平面上静水总压力的计算、曲面上静水总压力的计算、连续性方程、伯努利方程、动量方程的联合应用与计算,这些内容将细讲、精讲。对这部分内容,除了理论讲授课外,专门拿出一定时间作为习题课,带领学生精

讲精练。粗讲的内容包括:液体的相对静止、潜体和浮体的平衡及稳定、流体微团运动分析、理想流体无旋流动、相似理论等。 为实现上述教学目标,教学过程将采用多媒体教学手段,课堂讲授为主、实验课、自习、练习为辅的教学方式。习题课讲解流体力学的解题思路、方法、步骤、注意的问题;分析习题中的错误、问题,在授课老师的引导下进行课堂讨论,并解决有关疑难问题。 实践教学环节主要是流体力学实验技能的训练,要求学生具有测量水位、压强、流量的操作技能和编写报告能力。 为巩固和加深学生对所学的基本概念、理论的理解,培养学生用流体力学的理论分析和解决问题的能力、培养计算技能,课后将布置作业30道左右题目,由学生独立完成,并针对性的进行作业题目讲解。通过课后作业提高学生对于重点、难点内容的掌握。 该课程可支撑一下两方面毕业要求的实现: (1)掌握环境工程通识教育类、学科基础类、专业基础类、专业类知识及相关学科知识,并能将所学知识用于解释本专业领域及相关领域的现象和问题,了解本学科发展前沿,具有国际视野; (2)能够应用环境工程基本原理、方法对本专业领域及相关领域问题进行判断、分析和研究,提出相应对策和建议,并形成解决方案; 考核方式 闭卷。平时成绩占30%,期末考试成绩占70% 三、各教学环节学时分配(黑体,小四号字) 教学课时分配

流体力学例题

第一章 流体及其主要物理性质 例1: 已知油品的相对密度为0.85,求其重度。 解: 例2: 当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解: 例3: 已知:A =1200cm 2,V =0.5m/s μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图 及应力分布图 解:(前提条件:牛顿流体、层流运 动) 因为 τ1=τ2 所以 3 /980085.085.0m N ?=?=γδ0=+=?=dV Vd dM V M ρρρρρ d dV V -=Pa dp d dp V dV E p 84105.2105% 02.01111?=??==-==ρρβdy du μ τ=??????? -=-=?2221110 h u h u V μτμτs m h h V h u h u h u V /23.02 112212 2 11 =+= ?=-μμμμμN h u V A F 6.41 1=-==μ τ

第二章 流体静力学 例1: 如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。 解: 分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合 等压面与x 轴方向之间的夹角 例2: (1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变: 利用边界条件:r =0,z =0时,p =0 作用于顶盖上的压强: (表压) (2)装满液体容器在顶盖边缘处开口的相对平衡 压强分布规律: =+s gz ax g a tg = θPa L tg H h p A A 177552=??? ?? ?+==θγγPa L tg H h p B B 57602=??? ?? ?-==θγγC z g r p +-?=)2( 2 2ωγg r p 22 2ωγ =C z g r p +-?=)2( 2 2ω γ

流体力学

()⊥ -++ +φφφ φφ1 4210 .01 Re 3 1Re 161 Re 8= 2 .0log 4.03 4 ∥ D C 其中,面积 颗粒在迎流方向上投影 计算颗粒表面积 等体积球横截面积 -2=∥φ 向上投影面积 计算颗粒在垂直迎流方 等体积球横截面积 =⊥φ The sphericity (Φ) represents the ratio between the surface area of the volume equivalent sphere and that of the considered particle, the cross-wise sphericity (Φ⊥) is the ratio between the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area of the considered particle and the lengthwise sphericity (Φ||) is the ratio between the cross-sectional area of the volume equivalent sphere and the difference between half the surface area and the mean projected longitudinal cross-sectional area of the considered particle.

流体力学资料复习整理

流体复习整理资料 第一章 流体及其物理性质 1.流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。也可以说能够流动的物质即为流体。 流体在静止时不能承受剪切力,不能抵抗剪切变形。 流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。 只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。 运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。 2.流体的重度:单位体积的流体所的受的重力,用γ表示。 g 一般计算中取9.8m /s 2 3.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/800 3. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。 4.压缩系数: 弹性模数:21d /d p p E N m ρβρ== 膨胀系数:)(K /1d d 1d /d T V V T V V t ==β 5.流体的粘性:运动流体存在摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。 6.牛顿摩擦定律: 单位面积上的摩擦力为: 摩擦力为: 此式即为牛顿摩擦定律公式。其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘 3 /g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m N V p p ρβρ=-=h U μτ=dy du A h U A A T μμτ===ρ μ ν=

流体力学教学大纲

《流体力学》教学大纲 一、课程名称 1. 中文名:流体力学 2. 英文名:Fluid Mechanics 二、课程管理院(系) 三、大纲说明 1.适用专业、层次 环境工程专业,本科。 2.学时与学分数 总学时为64学时,总学分为3学分。 3.课程的性质、目的与任务 流体力学是环境工程专业及其相近专业的一门学科基础课程,属工程科学,是用自然科学的原理考察、解释和处理工程实际问题。研究方法主要是因次论指导下的实验研究法、数学模型法、参数归并和过程分解与组合。本课程强调工程观点、定量运算、实验技能、设计能力和模拟优化能力的训练,强调在理论和实际的结合中,提高分析问题、解决问题的能力。 本课程理论教学主要研究连续性方程、能量方程和动量方程的基础理论及具体的工程应用。通过本课程的学习,使学生熟悉流体力学的基本概念和基本方程,掌握在环境工程和科学领域中的应用途径和处理方法,具备解决环境工程中流体力学问题的能力。 4. 先行、后续课程 本课程是学生在具备了必要的高等数学、物理、理论力学等基础知识之后必修的技术基础课,是水污染控制工程、大气污染控制工程、给排水工程、水控课程设计、毕业设计的基础。 5.考试方式与成绩评定 考试方式:笔试(闭卷)。 成绩评定:笔试70%,平时成绩30%。 四、纲目 (上册) 1绪论(3学时) [教学目的] 了解流体力学的研究内容及发展简史,掌握流体的主要物理性质和流体的连续介质模型,掌握流体的主要物理性质和作用在流体上的力。 [教学重点与难点] 流体的物理性质;流体的连续介质模型。 [教学时数] 3学时 [教学方法与手段] 在多媒体教室采用电子课件进行课堂讲授。本章内容是学生学习流体力学这门课的基础,是流体力学的“门槛”。因此,必须联系生产及生活实际,使学生首先在思想上明确认识,对这门课产生兴趣,使学生认识到流体力学理论在生产和生活实际中的应用是无所不在的。[教学内容] 1.1工程流体力学的任务及其发展简史 1.2连续介质假设,流体的主要物理性质 连续介质假设;流体的主要物理性质 1.3作用在流体上的力

《流体力学》典型例题

《例题力学》典型例题 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。已知平板与斜面之间的油层厚度 δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。求油的动力粘性系数。 解:由牛顿摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律:0m ==∑F a ,即: gsin 0m S θτ-?= ()3 24 gsin 59.8sin 301100.1021N s m 1406010 m U S θδμ--?????==≈????? 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 解:由牛顿摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?= 克服油的粘性阻力所消耗的功率: ()()3 223 22 3 230230603.140.360.732001600.231050938.83(W) d d n d n n l P M F dl πππμωτπδ -==??=??= ???= ? ?= 例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下

盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。 解:根据牛顿黏性定律 d d 2d r r F A r r ω ωμ μ πδ δ== 2d d 2d r T F r r r ω μπδ =?= 4 2 420 d d 232d d d T T r r πμωπμωδδ===? 4 32d T πμωδ= 例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。 水 解:根据等压面的性质,采用相对压强可得: ()()()123243g g g h h h h h h ρρρ---=-水水 1234 32 h h h h h h ρρ-+-= -水

流体力学

第十一讲流体力学 我们通常所说的流体包括了气体和液体。流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。 一、理想流体 无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。 液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。 如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。理想流体是不可压缩又无粘性的流体。 二、静止流体内的压强 1.静止流体内一点的压强 首先,我们可以证明:在重力场中,过静止流体内一点的各不同方位无穷小的截面上的压强的大小都是相等的。这是流体内压强的一条重要的性质。基于这一点,我们对静止流体内的一点的压强作如下的定义:静止流体内的压强等于过此点任意一假想的微小截面上的压力与该截面的面积之比。 2.静止流体内压强的分布 a.在重力场中,静止流体内各等高点的压强相等。 b.沿直方向的压强的分布 在重力作用下,静止流体内的压强随流体高度的增加而减小。如果液体具有自由的表面,且自由表面处的压强为p0,则液体内部深度为h处的压强为 p=p0+ρgh (式中ρ为液体的密度) 对于气体来说,因密度很小,若高度范围不是很大,则可认为气体内各部分的压强

流体力学复习提纲

第一早 流体的定义:流体是一种受任何微小的剪切力作用时,都会产生连续变形的物质。能够流动的物体称为流体,包括气体和液体。 流体的三个基本特征: 1、易流性:流动性是流体的主要特征。组成流体的各个微团之间的内聚力很小,任何微小的剪切力都会使它产生变形,(发生连续的剪切变形)一一流动。 2、形状不定性:流体没有固定的形状,取决于盛装它的容器的形状,只能被限定为其所在容器的形状。(液体有一定体积,且有自由表面。气体无固定体积,无自由表面,更易于压缩) 3、绵续性:流体能承受压力,但不能承受拉力,对切应力的抵抗较弱,只有在流体微团发生相对运动时,才显示其剪切力。因此,流体没有静摩擦力。 三个基本特性: 1.流体惯性涉及物理量:密度、比容(单位质量流体的体积)、容重、相对密度 (与4摄氏度的蒸馏水比较) 2.流体的压缩性与膨胀性 压缩性:流体体积随压力变化的特性成为流体的压缩性。用压缩系数衡量 K,表征温度不变情况下,单位压强变化所引起的流体的体积相对变化率。其倒数为弹 性模量E,表征压缩单位体积的流体所需要做的功。 膨胀性:流体的体积随温度变化的特性成为膨胀性。体胀系数a来衡量,它表征压强不变的情况下,单位温度变化所引起的流体体积的相对变化率。 3 .流体的粘性流体阻止自身发生剪切变形的一种特性,由流体分子的结构及分子间的相互作用力所引起的,流体的固有属性。 恩氏粘度计测量粘度的一般方法和经验公式,见课本的24页 牛顿内摩擦定律:当相邻两层流体发生相对运动时,各层流体之间因粘性而产生剪切力, 且大小为:(省略)实验证明,剪切力的大小与速度梯度(流体运动速度垂直方向上单位长 度速度的变化率)以及流体自身的粘度(粘性大小衡量指标)有关。 温度升高时,液体的粘性降低,气体的粘性增加。(原理,查课本24~25页) 三个力学模型 1?连续介质模型:便于对宏观机械运动的分析,可以认为流体是由无穷多个连续分布的流体微团组成的连续介质。这种流体微团虽小,但却包含着为数甚多的分子,并具有一定的体积和质量,一般将这种微团称为质点。连续介质中,质点间没有空 隙(但物理结构上的分子之间是有的),质点本身的几何尺寸,相对于流体空间或流体中的固体而言,可忽略不计,并设质点均质地分布在连续介质之中。 2、不可压缩流体模型:通常把液体视为不可压缩流体,把液体的密度视为常量。通常把气体作为可压缩流体来处理,特别是在流速较高、压强变化较大的场合,它们 的体积的变化是不容忽视的,必须把它们的密度视为变量。但在低压,低速情况下,也可以认为气体是不可压缩的。 3、理想流体模型: 理想流体就是完全没有粘性的流体。实际流体都具有粘性,称为粘性流体。 第二章、流体静力学 流体平衡:一种是流体相对于地球没有运动,称为静止状态;另一种是容器有运动而流体相对于容器静止,称为相对平衡状态。 作用于流体上的力: 质量力:作用在每个流体质点上的力,大小与流体质量成正比。

工程流体力学教学大纲

本教学大纲详细说明了在学习中的重点,以及从课时可以看出其的认知程度 《工程流体力学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Hydrodynamics 2、课程类别:专业基础课程 3、课程学时:总学时88,实验学时12 4、学分:5.5 5、先修课程:《高等数学》、《大学物理》、《工程力学》 6、适用专业:油气储运工程 7、大纲执笔:油气储运教研室云萍 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务 工程流体力学是油气储运工程专业的一门主要专业基础课程。它的主要任务是通过各个教学环节,使学生掌握流体运动的基本概念、基本理论、基本计算方法和基本实验技能,提高学生分析和解决实际问题的能力,为以后学习专业知识,从事专业技术工作和科研打下必要的流体力学基础。 三、课程的基本要求 通过本课程的学习,了解流体的物理性质,掌握流体的平衡规律、流体的运动规律、流体与其接触的固体壁面间的受力特点、压力管路中的水力计算、气体动力学基础知识及非牛顿流体运动规律等容。 四、教学容要求及学时分配 1. 流体及其主要物理性质(4学时) 1)具体容 工程流体力学的研究对象 流体的特性、连续介质的假说 流体的密度和重度 流体的压缩性、膨胀性和粘性 作用在流体上的力 2)重点:流体的物性及作用在流体上的力 3)难点:粘性 4)基本要求 正确理解流体的主要物理性质,特别是粘性和牛顿摩擦定律

正确理解流体连续介质、理想流体和实际流体、不可压缩流体和可压缩流体的概念2.流体静力学(10学时) 1)具体容流体静压强及特性 流体平衡微分方程式 流体静力学基本方程式 压力的基准和计量 流体相对平衡 静止流体作用在平面上的力 静止流体作用在曲面上的力 2)重点:流体静压强的特性,流体静力学基本方程式的应用,静止流体作用在平面、曲面上的力 3)难点:静止流体作用在平面、曲面上的力 4)基本要求 掌握流体静压强的概念及其性质 掌握流体平衡微分方程式及应用,能够熟练地进行点压强和总压力的计算 3. 流体运动学与动力学基础(14学时) 1)具体容 研究流体运动的拉格朗日法及欧拉法 流体运动的基本概念 恒定流动的连续性方程 理想流体运动微分方程式 理想流体伯努利方程式 实际流体伯努利方程式及其意义 伯努利方程式的应用 泵对液体能量的增加 系统与控制体 动量定理及其应用 2)重点:流体运动的基本概念,伯努利方程式的应用,泵对流体能量的增加,动量定理的应用 3)难点:实际流体伯努利方程式的推导,输运公式的推导,能量方程、动量方程的灵活应用 4)基本要求 了解描述流体运动的两种方法,建立以流场为对象描述流体运动的概念 掌握连续性方程式,流体微团运动的基本形式和理想流体运动微分方程式(欧拉运动方程式) 牢固掌握流体运动的总流分析法,能够比较灵活地综合运用连续方程式,能量方程式(伯

相关主题
文本预览
相关文档 最新文档