当前位置:文档之家› ansys隧道荷载结构法命令流及设计师对隧道设计的经验总结

ansys隧道荷载结构法命令流及设计师对隧道设计的经验总结

ansys隧道荷载结构法命令流及设计师对隧道设计的经验总结
ansys隧道荷载结构法命令流及设计师对隧道设计的经验总结

/prep7

*set,shuxiang,276170 !竖向荷载

*set,zuoce,125500 !水平荷载

*set,youce,-125500

*set,jizhongli,-100000 !地震集中力

*set,uxishu,136.966e6*0.5 !水平弹性抗力系数*set,vxishu,87.4348e6*0.5 !竖向弹性抗力系数

!定义单元类型、实常数及材料性质

et,1,beam3

r,1,0.3,0.00225,0.3

mp,ex,1,3.1e10 !弹性模量

mp,dens,1,2500 !密度

mp,prxy,1,0.167 !泊松比

!创建几何模型画点

k,1,0,2.55

k,2,-2.04,1.53

k,3,-2.6,-0.15

k,4,-2.319721,-2.023237

k,5,-1.648852,-2.71152

k,6,0,-2.98

k,7,1.648852,-2.71152

k,8,2.319721,-2.023237

k,9,2.6,-0.15

k,10,2.04,1.53

k,1000,0,0 !中心点

!画隧道轮廓线

larc,1,2,1000,2.55

larc,2,3,1000,2.8

larc,3,4,1000,6.4

larc,4,5,1000,1.04969

larc,5,6,1000,5.2

larc,6,7,1000,5.2

larc,7,8,1000,1.04969

larc,8,9,1000,6.4

larc,9,10,1000,2.8

larc,10,1,1000,2.55

!选择左边的所有线

allsel !选择所有的实体

lsel,s,loc,x,0,-5 !选择左边的所有线:x从0到-5 lcomb,all !合并所选的线

lesize,all,,,30 !把上面合并的线等分30段

!选择右边的所有线

allsel

lsel,s,loc,x,0,5

lcomb,all

lesize,all,,,30

allsel !全选

!划分单元

lmesh,all

nplot !显示节点

!加弹簧

!y方向

*do,i,23,40

PSPRNG,i,TRAN,vxishu,,-0.3,, , !tran-直线的

*enddo

PSPRNG,2,TRAN,vxishu,,-0.3,, , !固定结构用的

!x方向

*do,i,15,26

PSPRNG,i,TRAN,uxishu,-0.3,,, ,

*enddo

*do,i,37,48

PSPRNG,i,TRAN,uxishu,0.3,,, ,

*enddo

allsel

finish

!进入求解层,施加荷载,定义荷载步等

/solu

!施加约束

nsel,s,,,2 !选择约束的节点

nsel,s,loc,x,0d

nsel,r,loc,y,-2.98

d,all,ux !施加水平方向的约束

allsel

fcum,add,, !一定要,使荷载能叠加

!竖向荷载

*do,i,3,15

a=-shuxiang*0.5*abs(nx(i)-nx(i+1)) f,i+1,fy,a

f,i,fy,a

*enddo

*do,i,47,59

a=-shuxiang*0.5*abs(nx(i)-nx(i+1)) f,i+1,fy,a

f,i,fy,a

*enddo

!对未循环的节点施加竖向荷载

a=-shuxiang*0.5*abs(nx(1)-nx(3)) f,3,fy,a

f,1,fy,2*a

f,60,fy,a

!水平荷载

*do,i,3,30

a=zuoce*0.5*abs(ny(i)-ny(i+1))

f,i+1,fx,a

f,i,fx,a

*enddo

*do,i,32,59

a=youce*0.5*abs(ny(i)-ny(i+1))

f,i+1,fx,a

f,i,fx,a

*enddo

f,1,fx,jizhongli !加集中力

!对未循环的节点施加水平荷载

a=youce*0.5*abs(ny(31)-ny(2))

f,31,fx,-a

f,32,fx,a

!施加重力

acel,,9.8

solve !求解

finish

!进入后处理,定义荷载工况并组合,输出图片和文本文件

/post1

!显示弯矩图

etable,mi,smisc,6

etable,mj,smisc,12

plls,mi,mj,-1

!显示轴力图

etable,fi,smisc,1

etable,fj,smisc,7

plls,fi,fj,1

!显示变形图

pldisp,1

综合该讨论的各家建议:

隧道设计流程各家观点:

1、我们做设计的时候也是这样做的,先用同济曙光采用地层结构法模拟开挖过程,对喷锚支护及开挖方法进行分析,选择一个合适的开挖顺序,然后用荷载结构法计算初衬的变形, 和二衬的承载能力和裂缝宽度。在予设计阶段也就计算这么多了,地层结构法计算时也是根据规范取的参数,由于地质勘察报告比较简略没法参考,荷栽结构法计算时依据规范的荷载计算方法,然后根据围岩类别初衬和二衬分别承担一部分计算。

2、隧道的设计计算过程:首先根据地质报告和地质纵断面以及平面图,确定隧道的路线走向,拟定洞门桩号,其次根据具体地质情况划分围岩级别,长隧道还要考虑通风等情况,对于不良地质的特殊设计计算处理;隧道衬砌结构的类型和强度虽然大部分采用经验类比法确定,个人认为仅限于Ⅲ、Ⅳ级以上的围岩,对于隧道的Ⅴ、Ⅵ级别围岩,应根据具体情况计算确定设计支护参数是否合理,浅埋情况应采用荷载结构法计算,对于深埋情况,建议采用地层结构法计算,对于黄土隧道,由于大部分采用矿山法施工,因而其计算中应充分考虑开挖施工过程的顺序,两次衬砌的施作;对于荷载的释放情况(地层结构法),应与施工开挖设计方案配合进行,尤其是前后开挖面的距离等,主要涉及到开挖释放荷载的比例分配。

3、(1 地质专业提供进出口横断面图,主要用于确定隧道的进出口里程,是否浅埋偏压等;(2 按照地质专业提供的隧道纵断面图划分的围岩级别,套用相应级别的衬砌类型;在特殊地质段落,根据不同的地质情况,考虑一些特殊的工程措施,如进出口一般采用一段大管棚,水量大的地段可以考虑注浆措施,断层破碎带考虑小导管超前支护等等;

(3 按照线路专业确定的线路纵曲线,确定一些关键点的内轨顶标高,再考虑一下隧道内综合洞室的布置等,对于铁路隧道,还要考虑四电、综合接地等(这些主要是附属设施,与隧道结构设计关系不大)。

(4 对于长大隧道,要做施工辅助通道的设计,如斜井、竖井、横洞、平导等。还需考虑施工运营通风,防火救灾救援等。这些就是设计隧道的主体了。

4、对于做隧道设计的,我觉得有一点是要有比较清晰的认识的:围岩特性曲线(围岩荷载特性分析)分为:弹性区、屈服区、松动区就设计的经济性来讲:应将支护时间控制在围岩有屈服向松动开始的时间内,此时,支护围岩所需要的支撑力为维护开挖面稳定的最小压力。全断面开挖又比部分断面开挖对支护结构产生的荷载要大。

5、我设想,隧道设计最开始肯定只能用工程类比法,你不可能假设衬砌厚度,通过有限元试算来确定衬砌厚度吧。光用工程类比法,当然不可靠,心里没底,要靠计算来校核。置于荷载结构法也好,有限元法也好,能否计算得到衬砌的真实的力学行为,当然要看计算条件模拟的够不够精确,本构模型简化到不到位。一个是荷载情况,一个围岩衬砌的材料情况,都是相当复杂的东西,不能轻易确定,只能是跟据工程经验,尽量将对结构影响最大的因素反应出来。有限元法虽然很先进,但就像前面提到的,参数的取值是个大问题,对于每个工程都用有限元计算是不现实的。只有在遇到特殊地质问题,工程技术问题,以前的工程中没有遇到的过的问题,可用有限元计算的结果进行参考。

6、隧道的计算目前还没有十分系统的理论,这主要是指岩体和在无法准确获得目前的一些关于隧道设计的软件,包括什么曙光、3d西格玛,FLac3d、ANSYS等等,都是纯理论的东西,复杂岩体条件下时,其可信度不高

7、对于地下工程,计算永远不可能与实际相符,因为计算工程本身就是一个虚拟的,首先对地层和结构做了很多理想假定条件,计算中很多参数的取值又大多是根据经验来确定,不同的人取值大都不一样,计算结果有很大的随机性。对于地下工程计算我的观点是对于重要的结构一定要进行计算,最好能用几种方法比较,虽然不能准确定量,但至少可以定性分析,做到心中有数。但也不能完全相信计算结果,还要结合实际类似工程类比,最终确定方案。

8、关于隧道计算之所以会出现理论计算与工程实际有脱节的现象我认为,虽然根本原因是计算理论、计算方法、计算手段无法真实反映极为复杂的围岩稳定与开挖状态,但是长期出现以工程类比法为主,甚至将工程类比法退化为照搬照抄的设计手段,重要的我国现行的建设管理体制严重制约的新奥法设计、施工理论在工程实际中的推广!!请问各位从事设计的同行,贵单位是否只是重视施工图文件设计、审查,轻视施工现场配合与变更?请问在隧道

工程施工过程中的,监控量测是否真正的反馈到设计人员手中?设计人员是否能够按照监控量测结果,对原计算模型、计算参数进行修正与反分析?过程控制才是新奥法设计与施工精髓,可是工程实际中我们经历的是勘察、设计、施工的相互脱节,这之中涉及到利益、责任、工作量的认可问题,我想在各个设计单位同样是,设计人员不愿意进行现场配合施工,因为配合施工没有做施工图见效益!风险高、任务繁琐、条件艰苦。所以,目前我国隧道设计的普遍状态是,设计以基于围岩分级的工程类比法为主,注重采用数值分析、施工过程模拟的设计文件审查,注重施组设计的文本厚度与详细,忽视工程实际根据具体围岩状态的优化与调整。这一切在一切顺利的情况下,相安无事,一旦出现工程事故,谁也跑不了,至少把你折腾一个够!

9、地下结构按构造形式分为拱形结构、圆形和矩形管状结构、框架结构、薄壳结构、异形结构。

地下结构所承受的荷载,按照作用特点及使用中可能出现的情况分为以下三类:即永久(主要)荷载、可变(附加)荷载和偶然(特殊)荷载。

1、永久(主要)荷载包括结构自重、回填土重量、围岩压力、弹性抗力、静水压力、砼收缩和徐变影响力、预加应力和设备自重等。围岩压力和结构自重是衬砌承受的主要静荷载。围岩压力分为:围岩垂直压力,围岩水平压力和底部压力,它的确定方法有现场实测,理论计算,工程类比法。我国多采用工程类比法确定围岩压力,并采用现场实测和理论计算方法进行验算。由于围岩压力的计算有不同的模式,所以要确定围岩压力,首先要区分是深埋还是浅埋地下结构。

(1)深埋地下结构围岩压力的计算

用我国公(铁)路隧道推荐围岩压力计算方法竖向均布压力计算公式:

q=0.45×z^6-s rw

s—围岩类别

w—宽度影响系数

r—围岩容重

水平均布压力则按设计规范(TB10003—2001,J117—2001)查得。

(2)浅埋地下结构围岩压力的计算

a、埋深小于或等于等效荷载高度(hq)时,垂直荷载视为均布压力。

q=rH

q—均布垂直力

r—坑道上覆围岩容重

H—坑道埋深

水平侧向力e按均布考虑其值为

e=r(H-1/2Ht)tan2(45°-φ/2)

e—水平侧向均布压力

r—隧道上覆围岩容重

H—隧道埋深

Ht—隧道高度

Φ—围岩计算摩擦角

b、埋深大于等效荷载高度(hq)小于深埋浅埋隧道分界深度(Hp)时

q浅=rH(1-H/Btλtanθ)

作用在支护结构两侧的水平侧压力在隧洞顶底处之值为:

e1=rHλe2=rhλ

当侧向力视为均布压力时

e=1/2(e1+e2)

(3)空间洞室围岩压力确定

圆形或矩形的空间洞室的围岩压力,一般按平面洞室的围岩压力乘以考虑空间作用的降低系数来确定。其计算跨度取圆形直径或矩形短边。降低系数β一般对平面为正方形的拱顶或圆形穹顶β=0.828。对于矩形拱顶由

β=1-2/3ξ其中ξ= 宽度

1-1/2ξ长度

2、可变(附加)荷载包括吊车荷载、设备重量、地下储油库的油压力、车辆、人群的荷载。

3、偶然(特殊)荷载包括地震作用和战时发生的武器爆炸冲击动荷载。

当我们设计某一地下结构,上述几种荷载不一定同时存在。设计中应根据荷载实际可能出现的情况进行组合,取其最不利的组合作为设计荷载,以最危险截面中最大内力作为设计依据。

地下结构设计模型

1、荷载结构模型,它采用荷载结构法计算衬砌内力,并据以进行构件截面设计。

2、地层结构模型,它的计算理论是地层结构法。

3、经验类比模型,是完全依靠经验设计地下结构的设计模型。

4、收敛限制模型,它的计算理论是地层结构法。

地下结构的计算方法为两类:荷载结构法和地层结构法

一般来说,地层岩性较差,洞室跨度较大宜采用荷载结构法。地层构造较完善,围岩的支承能力较好时宜采用地层结构法。目前,我国在地下工程的结构计算中,采用较多的仍是以散体压力理论为基础的荷载结构法。

一、荷载结构法的计算方法

地层对于地下结构作用只是产生作用在结构上的荷载(包括主动的地层土压力和被动弹性地层抗力),一般可用结构力学的方法计算衬砌在荷载作用下产生内力和变形。下面就拱形、圆形、矩形结构在简单荷载作用下的内力和变形计算作如下介绍。

(一)拱形结构

1、曲墙拱结构—采用假定抗力图形法

该结构被简化为主动荷载(垂直荷载大于侧向荷载)及弹性抗力共同作用下,支承在弹性地基上的无铰高拱。拱两侧弹性抗力按二次抛物线分布,最大抗力点为h 点,值为σh。为了便于计算,可将基本结构分解为在主动外荷载和单位抗力(被动荷载)作用下的两个基本图式,分别计算出相应的截面内力和位移值,接着用迭加原理求出衬砌截面的总内力。具体步骤如下:

(1)求出在主动荷载作用下衬砌截面的内力。

(2)求在单位被动荷载(单位抗力)作用下截面i所产生的内力。

(3)求最大抗力σh值。

(4)求衬砌截面的总内力。

2、直墙拱结构

该方法将拱圈和边墙分开计算,将拱圈处理为弹性固定在边墙上的无铰平拱,边墙处理为搁置在弹性地基上的直梁,在拱脚和墙顶连接处应满足力的平衡条件和变形连续条件。拱圈的弹性抗力的分布按“假定抗力图形法”计算最大抗力点发生在墙顶。其值为σh。拱脚处抗力为σd,当Φ=75-90°时可把σd当作抗力最大值。边墙底部视为弹性地基上的刚性梁,侧面按其换算长度来确定为长梁(≥2.75),短梁(1—2.75),刚性梁(<1)。然后按初参数

方程来计算墙顶截面位移及边墙各截面的内力。拱圈衬砌截面的内力计算方法及步骤与曲墙式衬砌相同。

(二)圆形结构

1、当整体式圆管结构修建在松软的地层中,地层对结构的弹性抗力很小,故假定结构可自由变形。采用自由变形圆环法。

首先是荷载计算。包括环自重,竖向地层(单位宽)压力,地层水平力(单位宽),静水压,地基反力等。其次是内力计算,采用弹性中心法。由于结构及荷载对称,拱顶切口处剪力为零,根据力的平衡及变形协同条件采用力法方程,可得圆环中任意截面的内力。

3、假定抗力法

4、衬砌结构在竖向荷载作用下,产生向地层方向的变形,从而引起弹性力。先假定圆管结构弹性抗力分布,然后通过竖向均布地层力作用下,圆环自重作用下,内水压力作用下,外部静水压力作用下任意截面弯矩与轴力的计算公式。按查系数表法求得相应内力。

(三)框架结构

框架结构是平面变形问题,沿纵向取单位宽度,按闭合框架计算其结构内力。首先确定顶板上荷载,底板上荷载及侧壁的荷载。然后采用力矩分配法,迭代法或位移法求框架内力。

二、地层结构法把地下结构与地层作为一个受力变形的整体,按照连续介质力学原理来计算地下结构以及周围地层的变形。不仅计算出衬砌结构的内力和变形,而且计算出周围地层的应力。充分体现了周围地层与地下结构的相互作用,但是由于周围地层以及地层与结构相互作用模拟的复杂性,地层结构法目前尚处于发展阶段。它包括如下内容:地层合理化模拟,结构模拟,施工过程模拟,以及施工过程中结构与周围地层的相互作用,地层与结构相互作用的模拟等。

总之,地下结构的设计受到各种复杂因素的影响,经验往往占据一定的位置。即使内力分析采用了比较严密的理论,其计算结果往往需要用经验类比加以判断和补充。我们在设计地下结构时只有同时进行多种设计方法的比较,才能做出较经济合理的设计。

10、隧道确实很难用数值模拟方法来准确计算,人们不断寻求多种方法来更好的解决这个问题,除有限元之外的其他方法,如离散元、ADD等等,但始终没有一套放之四海而皆准的计算理论,就像是隧道围岩分级一样,公说公有理、婆说婆有理,世界各国的方法均有差异,归根结底是由于岩体的不明确性决定的。因此我们不能只用一种方法来概括,建议学隧道的同志们多多学习,接触多种理论与计算方法。

11、隧道设计首先主要的:1 工程类比法

2 结构力学模型,它将支护结构和围岩分开来考虑,支护结构是承载主体,围岩作为荷载的来源和支护结构的弹性支承, 即故又可称为荷载一结构模型。在这类模型中隧道支护结构与围岩的相互作用是通过弹性支承对支护结构施加约束来体现的,而围岩的承载能力则在确定围岩压力和弹性支承的约束能力时间接地考虑。围岩的承载能力越高,它给予支护结构的压力越小,弹性支承约束支护结构变形的抗力越大,相对来说,支护结构所起的作用就变小了。这一类计算模型主要适用于围岩因过分变形而发生松弛和崩塌,支护结构主动承担围岩“松动”压力的情况。属于这一类模型的计算方法有:弹性连续框架(含拱形)法、假定抗力法和弹性地基梁(含曲梁和圆环)法等都可归属于荷载结构法。

3 岩体力学模型。它是将支护结构与围岩视为一体,作为共同承载的隧道结构体系,故又称为围岩—结构模型或复合整体模型。在这个模型中围岩是直接的承载单元,支护结构只是用来约束和限制围岩的变形,这一点正好和上述模型相反。复合整体模型是目

前隧道结构体系设计中力求采用的并正在发展的模型,因为它符合当前的施工技术水平。在围岩—结构模型中可以考虑各种几何形状,围岩和支护材料的非线性特性,开挖面空间效应所形成的三维状态,以及地质中不连续面等等。在这个模型中有些问题是可以用解析法求解,或用收敛—约束法图解,但绝大部分问题,因数学上的困难必须依赖数值方法,尤其是有限单元法。利用这个模型进行隧道结构体系设计的关键问题,是如何确定围岩的初始应力场,以及表示材料非线性特性的各种参数及其变化情况。一旦这些问题解决了,原则上任何场合都可用有限单元法围岩和支护结构应力和位移状态。

各国参考用法

│盾构开挖的│喷锚钢支撑的│中硬石质深埋隧道│

││软土质隧道│软土质隧道││

├───┼──────────────┼───────────────┼──────────┼

│奥地利│弹性地基圆环│弹性地基圆环、有限元法、收敛│经验法│

│││一约束法││

├───┼──────────────┼───────────────┼──────────┤

││覆盖层厚<2D,顶部无约束的│覆盖层厚<2D ,顶部无约束的│全支永弹性地基圆环│

│ 德国│弹性地基圆环;覆盖层厚>3D,│弹性地基圆环;覆盖层厚>3D,全│、有限元法、连续介质│

││全支承弹性地基圆环、有限元法│全支承弹性地基圆环、有限元法│或收敛—约束法│

├───┼──────────────┴───────────────┼──────────┤

│法国││有限元法、作用-反作用模型、经│连续介质模型、收敛│

││弹性地基圆环有限元法│验法│一约束法、经验法│

├───┼──────────────┬───────────────┼──────────┤

│日本│局部支承弹性地基圆环│ 局部支承弹性地基圆环、经验加│弹性地基框架、有限│

│││测试有限元法│元法、特性曲线法│

├───┼──────────────┼───────────────┼──────────┤

│││初期支护:有限元法、│初期支护:经验法│

│中国│自由变形或弹性地基圆环│收敛一约束法│永久支护:作用和反│

│││二期支护;弹性地基圆环│作用模型│

││││大型洞室:有限元法│

├───┼──────────────┼───────────────┼──────────┤

│瑞士││作用一反作用模型│有限元法,有时用│

││││收敛-约束法│

├───┼──────────────┼───────────────┴──────────┤

│英国│弹性地基圆环缪尔伍德法│收敛—约束法、│有限元法、收敛-约束│

│││经验法│法、经验法│

├───┼──────────────┼───────────────┬──────────┤

│美国│弹性地基圆环│弹性地基圆环、│弹性地基圆环、│

│││作用一反作用模型│有限元法、锚杆经验法│

└───┴──────────────┴───────────────┴──────────┘

12、对于有限元,最近也一直在了解,地层结构法确实能起到一定的知道作用,

但是如何界定初始条件,比如说一条破碎带,纵向,横向,斜向对整个结构影响差别是非常大的,既然是地下结构,那么首先,我们应该对岩土要有一定的认识,岩石的成因,岩浆岩、沉积岩、变质岩的成因,以及各种下面的岩石类型,我们都应该了解,然后再针对各种岩石的特性,选用合理的工法。监控量测,给了我们一些现场数据,我们可以通过此结合一些计算来检验。现场施工的水平也直接影响到最后的工程质量,各种岩石状况下放炮时药量的控制等,系统锚杆其实也不一定要按切线打,我们都应该结合实际情况,各种工法的主要作用,再结合理论分析,控制我们材料的用量是否合理。最后就是材料,材料的质量,比如说普通锚杆,一般,8-15年左右基本就失效了,这些都是必须考虑的因数。总之,个人浅见,隧道就是多看,多了解,多分析,多实践,多总结。最后一点,技术都是交流出来的,闭门造车是很难出好成果的。

13、现在还是半经验半理论的计算方法~~关键是对围岩进行分级,这个确定以后就基本是套公式,进行验算,并不断调整衬砌的尺寸,使计算结果满足要求~~最后还得现场量测,对变形进行监测,确定设计符合要求~~ 所以,围岩分级最重要,还是经验为主,监测辅助~~

14、(1.计算隧道的时候,应先判断隧道是浅埋还是深埋,这可以通过铁路隧道规范和公路隧道规范确定,不过我就喜欢用重庆大学编的小程序计算。当定好隧道类型,之后就是选择荷载组合。

(2.现在我们搞的隧道计算主要是地铁隧道那方面的,技术内力一般都是用ansys分析的!ansys可以模拟那些铰。但是初步设计一般都是用excel表来初步计算。等到施工设计时候可以采用ansys比较精确分析。我想在这里指出,用理正岩土软件都可以分析隧道的,但是它分析的模型跟我们实际有些差别,同样做圆形隧道,理正分析的是整个隧道断面是一个整体的,无铰的!分析出的的结果是没有怎么考虑到铰的位置的应力集中情况的!

(3.我们计算衬砌的时候可以考日本隧道的设计规范!

15、地铁车站的计算一般用MIDIAS计算,区间一般是工程类比和以往经验+ANSYS 模拟参考。

16、隧道设计要根据实际情况确定设计参数,无论是计算或是工程类比

以现在最常见的复合式衬砌为例其一:二次衬砌设计现阶段已有明确的设计依据--铁规或是公路隧道规范,但是深浅埋界定?采用建规荷载组合或是极限状态、容许应力法等等,均应有统一考虑。其二:对于岩质隧道初期支护,采用荷载-结构模型计算初期支护过于保守,但是由于有限元模型的不确定性(其计算值要远小于实际值,即使选取岩土参数时进行大幅折减),因此其计算结果仅作为参考,初期支护厚度一般采用工程类比法,亦或是按铁规选定,并考虑配套的辅助措施的要求。重点是应根据地质条件的不同,采取不同的辅助措施,比如分部开挖,小导管,自近式锚杆,中空注浆锚杆,管棚,钢拱架,钢格栅等等,而这些措施除了分部开挖外采用有限元是无法模拟的。其三:对于土质隧道初期支护,由于其自稳能力差,因此基本采用荷载-结构模型计算(容许应力法或是极限状态法,建规过于保守不易算过所以放弃),并配以密排钢格栅及小导管等辅助措施。

17、目前隧道工程设计计算主要分为两个大类:

(1)市政隧道、地铁隧道等,这类隧道埋深一般较浅,且很多采用明挖法施工,故多采用荷载结构法计算,且用混凝土设计规范(极限状态理论)进行配筋计算。

(2)铁路隧道、公路隧道中的山岭隧道,这类隧道多根据围岩分级参照规范确定支护及衬砌参数,一般不需要计算。特殊情况下计算一下,但只要以经验类比为主,且结构配筋也不按照《混规》计算,而是按照隧道设计规范配筋。

18、正好最近在做两座公路隧道,谈点个人的看法,欢迎大家批评指正。个人认为隧道设计过程中初支和二衬的设计侧重点应有所不同。初支因其自身组成结构的复杂性(锚杆、喷砼、预加固岩体等共同组成的复合结构),若采用有限元进行地层结构法计算,一方面难以模拟实际的岩体材料,另一方面也难以准确模拟锚杆与岩体之间的相互作用(目前主要采用节点耦合算法),最终计算出来的结果只能来进行定性分析,正如前面几位朋友提到的,可以用作为隧道的开挖方法提供一定的参考。因此个人认为初支的设计还是要以工程类比为主,最好多与有经验的专家沟通,合理确定初支参数。二衬为模筑结构,其受力相对比较明确,可采用荷载结构法来计算结构的受力和配筋。

19、隧道的设计计算过程:首先根据地质报告和地质纵断面以及平面图,确定隧道的路线走向,拟定洞门桩号,其次根据具体地质情况划分围岩级别,长隧道还要考虑通风等情况,对于不良地质的特殊设计计算处理;隧道衬砌结构的类型和强度虽然大部分采用经验类比法确定,个人认为仅限于Ⅲ、Ⅳ级以上的围岩,对于隧道的Ⅴ、Ⅵ级别围岩,应根据具体情况计算确定设计支护参数是否合理,浅埋情况应采用荷载结构法计算,对于深埋情况,建议采用地层结构法计算,对于黄土隧道,由于大部分采用矿山法施工,因而其计算中应充分考虑开挖施工过程的顺序,两次衬砌的施作;对于荷载的释放情况(地层结构法),应与施工开挖设计方案配合进行,尤其是前后开挖面的距离等,主要涉及到开挖释放荷载的比例分配。

20、本人从事国内公路隧道和铁路隧道的研究与设计6年,接触到很多隧道方面的院士和设计大师,以及许多老师。从工程设计的角度来讲,荷载-结构法足矣。如果要考虑施工过程,最好采用一些专用的软件,如flac等比较好,而midas这些尽管操作界面好看,但效果是比较差的,建议不采用。在有限元模拟时,岩体的参数取值非常重要,这需要地勘资料并结合各地区实际经验选取,另外还需要考虑实际施工过程和岩体条件,如排水还是不排水,其指标参数取值均不一样。这方面可能需要更多的经验。

21、目前,我们国家的地下工程普遍存在规范不够明确,而且关于地下工程的书自习研究就会发现漏洞百出,我最近设计一区间隧道,一个公式我看了三本书,出现了三种公式,另外,再举一例,一个简单的地层的弹性抗力系数,我们的规范上竟然只分了四种情况,粗糙程度可想而知。总而言之,地下工程目前最不好的一个问题就是规范不够全。

另外,就楼上所言,数值模拟的问题,存在模型与现场耦合度不够,而且,数值模拟往往需要来自现场的数据,而不只简单的呆在办公室就了能敲定的,对此,我们存在这样一个问题,如何使现场更可能的吻合模拟情况,这就需要一系类地层参数,而我们目前的测试技术还不够。稀里糊涂乱弹一气!!!

22、综合10楼和11楼的专家意见。有专家说,隧道是经验+理论;桥梁是理论+经验。所以隧道的设计要在充分勘察,探隧道前方地质情况,考虑埋深、地面建筑、地貌等,初步拟定施工方法,继而确定支护结构的类型,是拱形结构还是圆形结构或者是马蹄形结构或者矩形等,根据隧道穿越的地质条件和埋深,确定围岩荷载大小,拟定支护结构尺寸厚度,这个过程是一个试算过程。如果可能向有经验的人请教或咨询,也可以参考的同类型工程经验设计。当然,首先搞清楚是什么用途的隧道,是交通隧道(如铁路隧道、公路隧道、地铁区间隧道、人行隧道、水底隧道,航运隧道等),还是市政隧道(如城市地下收纳各种通讯、通信电线、电缆等,天然气等地共同沟。),或者矿山隧道(开采地下煤等资源的设施)。国际隧道协会对隧道的定义是:断面积大于2平米的狭长形孔洞。所以针对于不同的用途的隧道,其设计都有相应的规范。再就是向设计院的兄弟咨询请教。

钢结构设计原理复习总结

钢结构的特点: 1.钢材强度高、塑性和韧性好 2.钢结构的重量轻 3.材质均匀,和力学计算的假定比较符合 4.钢结构制作简便,施工工期短 5.钢结构密闭性好 6.钢结构耐腐蚀性差 7.钢材耐热但不耐火 8.钢结构可能发生脆性断裂 钢结构的破坏形式 钢材有两种性质完全不同的破坏形式,即塑性破坏和脆性破坏。钢结构所用材料虽然有较高的塑性和韧性,但一般也存在发生塑性破坏的可能,在一定条件下,也具有脆性破坏的可能。 塑性破坏是由于变形过大,超过了材料或构件可能的应变能力而产生的,而且仅在构件的应力达到了钢材的抗拉强度fu 后才发生。破坏前构件产生较大的塑性变形,断裂后的断口呈纤维状,色泽发暗。在塑性破坏前,构件发生较大的塑性变形,且变形持续的时间较长,容易及时被发现而采取补救措施,不致引起严重后果。另外,塑性变形后出现内里重分布,使结构中原先受力不等的部分应力趋于均匀,因而提高了结构的承载能力。 构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。常温及静态荷载作用下,一般为塑性破坏。破坏时构件有明显的颈缩现象。常为杯形,呈纤维状,色泽发暗。在破坏前有很明显的变形,并有较长的变形持续时间,便于发现和补救。 脆性破坏前塑性变形很小,甚至没有塑性变形,计算应力可能小于钢材的屈服点fy ,断裂从应力集中处开始。冶金和机械加工过程中产生的缺陷,特别是缺口和裂缝,常是断裂的发源地。破坏前没有任 何预兆,破坏时突然发生的,断口平直并呈有光泽的晶粒状。由于脆性破坏前没有明显的预兆,无法及时察觉和采取补救措施,而且个别构件的断裂常会引起整体结构塌毁,后果严重,损失较大,因此,在设计,施工和使用过程中,应特别注意防止钢结构的脆性破坏。 在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。局部高峰值应力可能使材料局部拉断形成裂纹;冲击振动荷载;低温状态等可导致脆性破坏。平直和呈有光泽的晶粒。突然发生的,危险性大,应尽量避免。 低碳钢的应力应变曲线: 1.弹性阶段:OA 段:纯弹性阶段εσE = A 点对应应力:p σ(比例极限) AB 段:有一定的塑性变形,但整个OB 段卸载时0=ε B 点对应应力:e σ(弹性极限) 2.屈服阶段:应力与应变不在呈正比关系,应变增加很快,应力应变曲线呈锯齿波动,出现应力不增加而应变仍在继续发展。其最高点和最低点分别称为上屈服点和下屈服点;下屈服点稳定,设计中以下屈服点为依据。 3.强化阶段:随荷载的增大,应力缓慢增大,但应变增加较快。当超过屈服台阶,材料出现应变硬化,曲线上升,至曲线最高处,这点应力fu 称为抗拉强度或极限强度。 4.颈缩阶段:截面出现了横向收缩,截面面积开始显著缩小,塑像变形迅速增大,应力不断降低,变形却延续发展,直至F 点试件断裂。 疲劳破坏:钢材的疲劳断裂是微观裂纹在连续反复荷载作用下不断扩展直至断裂的脆性破坏。 钢材的疲劳强度取决于构造状况(应力集中程度和残余应力)、作用的应力幅、反复荷载的虚幻次数,而和钢材的静力强度无明显关系。 钢结构的连接方法:焊接连接:不削弱构件截面,构造简单,节约钢材,焊缝处薄。弱铆钉连接:塑性和韧性极好,质量容易检查和保证,费材又费工。螺栓连接:操作简单便于拆卸。 焊接连接的优点:1.焊件间可以直接相连,构造简单,制作加工方便2.不削弱截面,节省材料3.连接的密闭性好,结构的刚度大4.可实现自动化操作,提高焊接结构的质量。 缺点:1.焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆2.焊接残余应力和残余变形使受压构件承载力降低3.焊接结构对裂纹很敏感,局部裂纹一旦发生,容易扩展至整个截面,低温冷脆问题也比较突出。 焊接连接通常采用的方法为电弧焊(包括手工电弧焊)自动(半自动)埋弧焊和气体保护焊。 侧面角焊缝主要承受剪力,塑性较好,应力沿焊缝长度方向的分布不均匀,呈两端打而中间小的状态。焊缝越长,应力分布不均匀性越显著,但临界塑性工作阶段时,产生应力重分布,可使应力分布的不均与现象渐趋缓和。 焊脚不能过小:否则焊接时产生的热量较小,而焊件厚度较大,致使施焊是冷却速度过快,产生淬硬组织,导致母材开裂。 焊脚不能过大:1.较薄焊件容易烧穿或过烧2.冷却时的收缩变形加大,增大焊接应力,焊件容易出现翘曲变形 计算长度不能过小:1.焊件的局部加热严重,焊缝起灭狐所引起的缺陷相距较近,及可能的其他缺陷使焊缝不够可

钢结构课程设计心得

钢结构课程设计心得 篇一:钢结构课程设计心得体会1 钢结构课程设计心得体会 两周的课程设计结束了,通过这次课程设计,我不仅巩固了以前所学到的知识,而且掌握了许多以前没有学懂的知识。在设计的过程中也遇到了不少的问题,不过经过一遍遍的思考以及和老师同学们的讨论都一一得到了解决,基本达到了再实践中检验所学知识的目的。古人有云:“过而能改,善莫大焉”。说的就是错误并不可怕,人类能不断的进化发展,靠的便是一个个错误,在错误面前不骄不躁,不断思考,不断改正,才能不断的获取新的知识。虽然改正错误的过程是冗长而艰辛的,但是在改正错误的过程中我也发现了成功的真谛,用汗水浇灌收获的果实才是最令人感觉幸福而满足的。遇到困难也需迎难而上,

披荆斩棘,诗云:“不经一番寒彻骨,那得梅花扑鼻香。”如果中途荒废,那样便永远不可能成功,以后步入社会仍然适用。课程设计是一门专业设计课,它不仅仅教会了我很多专业方面的知识,也教给了我很多运用知识的能力,曾经有一个马拉松运动员把具体很远的路程划分为一段段百米间隔,通过实现一个个小的目标,最终在不知不觉中实现了远大的目标。同时,课程设计让我感触很深。使我对以往所学的抽象的理论有了一个逐渐清晰的认识,包括整体稳定性计算,局部稳定性计算等,也发现了以前忽视的小细节,比如节点的设计要求和钢材之间的接法。 我认为这次课程设计不仅仅充实我的专业知识,更重要的是教给我很多学习的方法以及处事的道理。而这是以后最实用的。在步入社会以后,也要勇于接受社会的挑战,实践总结,再实践,再总结,在 这个循环的过程中不断的充实自

己,提高自身,实现个人的不断进步。 回顾这次课程设计,至今仍感受良多,从最初的一脸茫然,到最后的加班加点甚至通宵达旦,回忆起来,苦楚多多,不过回头看看一份洋洋洒洒的课程设计,心中仍是喜悦异常,痛并快乐着。。。。。。从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。 感谢在课程设计过程中老师给予的讲解和帮助以及和我讨论亦给予我很大帮助的同学们,谢谢你们的帮助和支持!

浅谈钢结构工业厂房的抗震设计

浅谈钢结构工业厂房的抗震设计 陈将奇 昊华工程有限公司,北京,100143 【摘要】钢结构抗震设计工作不是单纯的依靠建筑工程,还需要对土地地基以及钢结构做好性能着手工作,考虑好构件的特点性能以及部件的深度要求,只有做好地基的设计、构件的处理,才可以有效的提高钢结构抗震性能。 【关键词】钢结构工业厂房抗震设计 前言 钢结构具有强度高、塑性韧性好、自重小、制作简便、施工工期短、节能环保等优点。随着经济的发展,单层钢结构厂房在工业建筑中得到广泛应用。采用单层工业厂房,生产工艺流程相对简洁,地面上可以放置较重的机器设备和产品,内部生产运输容易组织。但是在强烈地震作用下厂房有局部破坏、甚至倒塌现象的事故发生。 一、做好钢结构地形设计 1、选择好钢结构的场地 为了有效的提高建筑场地的质量,做好地基抗击地震能量,需要在钢结构厂房设计方面做好以下几个方面: (1)选择薄的场地覆盖层 钢结构厂房由于其自身具有良好的刚柔性特点,而根据世界上多次地震,数次实验可知,在厚土地层上,地震对钢结构危害较重,而薄的场地覆盖层对钢结构的影响较小,因此,在进行场地选择时,优先选择薄的场地覆盖层。 (2)选择坚实的场地土壤 在建设钢结构厂房方面,场地土壤的刚度大的话,抵抗地震性能要比场地土壤刚度小的好,即场地刚强度小,震害指数大,因此,为了减少钢结构的厂房土地破坏程度,在建设中,应选择场地土壤坚实,土地广阔平坦,并且具有较大的剪切波速的坚实坚硬场地,有利于提高钢结构厂房抵抗地震的性能。 (3)避免产生共振现象 发生地震现象时,如果地震震动周期与建筑物一致或者建筑物的震动周期与地震周期接近,很容易导致地震发生时,产生共振现象。因此,在钢结构厂房设

钢结构学习心得1

钢结构学习心得1 《钢结构设计原理》学习总结与体会 掌握钢结构的特点和钢结构的应用范围;理解钢结构按极限状态的设计方法,掌握其设计表达式的应用;初步了解钢结构的主要结构形式;了解钢结构在我国的发展趋势;为进一步深入学习钢结构知识打下基础。 了解钢结构采用的焊缝连接和螺栓连接两种常用的连接方法及其特点;理解对接焊缝及角焊缝的工作性能,掌握各种内力作用下,焊接连接的构造和计算方法;了解焊接应力和焊接变形的种类、产生原因、影响以及减小和消除的方法;理解普通螺栓和高强螺栓的工作性能和破坏形式,掌握螺栓连接在传递各种内力时连接的构造和计算方法,熟悉螺栓排列方式和构造要求。理解受弯构件的工作性能,掌握受弯构件的强度和刚度的计算方法;了解受弯构件整体定和局部稳定的基本概念,理解梁整体稳定的计算原理以及提高整体稳定性的措施;熟悉局部稳定的验算方法及有关规定。 下面谈谈我在学习过程中的一点体会。 一、学习要有明确的目标。在学习这门课之前,我就了解到,《钢结构设计原理》是多么重要的一门课,特别在毕业设计时,你现在不熟悉,以后设计会带来很多麻烦,而我不是那种只满足及格的学生。但想起那计算题,我就气,本身正在学结构力学,而且还学得不错,谁知把一些题给弄糊涂了. 二、学习要有兴趣。在我看来,学那一门课都一样,有兴趣才能学得好,一旦失去兴趣,那是不可能学好,不牢固。而我对钢结构设 计原理的兴趣来于它存在于我们生活周围,学到那部分,我都会联系实际.

三、抓住重点,抓住主线。这门课无非就讲了几个构件:受弯构件、受压构件、受拉构件、受扭构件。抓住它们的本质联系,我们清楚知道在推导公式时,在做抗弯、剪、压、拉、扭计算时,它们原理是一样或相似的。 四、多煤体上课,有助于我们接受更多的信息。甚至能够把一些现象或实验演示出来,加强我们的感性认识。 五、多思考,多讨论,多提问,独立完成作业。这是很重要一点,也许你上课听不明,但你通过作业,你就可以把一些问题搞懂。平时多思考,多讨论也有助于我们学习。如果不懂,应找老师答疑。这学期给我最大的感触就是我多找老师答疑,还从老师那里学到一些课本没有的知识。 对我来说,知识真正得到巩固的是通过课程设计。可以说,课程设计的内容贯穿整本书的内容。同时设计也能体现你个人的能力和创新。所以我一向很热衷于课程设计,通过设计,你才真正地学会知识。在做设计遇到的难题要及时找老师解决,问题千万年别积压。这样才真正把知识学牢。希望以后可以把所学的应用于实践中,为自己加油吧。 陈昭 a,b Y,12c

浅谈钢结构工程存在的问题及相应解决措施

浅谈钢结构工程存在的问题及相应解决措 施 摘要:钢结构材料以强度高、质量轻、抗震性能好、塑性好、施工效率高等优点在工业厂房、高层住宅建筑、商务写字楼等项目得到广泛应用。钢结构工程从设计到制作、安装过程存在的很多现实问题需要引起足够的重视,否则将给工程留下质量隐患和安全隐患。现结合自己近几年钢结构施工经验,对钢结构施工过程中可能存在的问题进行讨论,并提出相应的解决措施,目的是优化钢结构设计并提高钢结构安装质量。 关键词:钢结构设计施工问题解决措施 1 钢结构工程在设计过程存在的问题及相应解决措施 1.1 钢结构设计图纸中经常出现以下问题: 1.1.1设计图纸参考的设计规范不正确、不齐全。比如有的设计说明使用了过时的、已经废止的标准;有的材料牌号、等级不全、高强螺栓、普通螺栓和焊接连接点的标记不明确或未显示;有的设计图纸中对各类高强螺栓、普通螺栓、栓钉、拉铆钉及其垫圈的规格、型号、性能没有具体标明。而这些均已列入了最新的钢结构施工验收规范中,并作为强制性条文要求予以执行。如果现场施工人员缺少对相关规范的了解,仅仅凭借以往施工经验进行施工,监理按照规范进行检查时就未必能通过,从而影响施工进度。 1.1.2设计总说明中对工程的安全等级未写明或者描述比较含糊。工程的安全等级不同,对焊接等施工检查要求也有所不同。比如安全等级为一级的,一、二级焊缝的焊接材料必须复试;安全等级为二级的,一级焊缝的焊接材料必须复试,二级焊缝的焊接材料就不一定需要复试。 1.1.3 钢材的材质等级,高强度螺栓的摩擦测试要求不明确。有的设计图纸只写Q235或Q345,不写A等级或B等级;有的图纸不提高强螺栓摩擦面试验要求,施工单位此时便会无所适从。于是有的施工单位在采购材料后,才让设计院确认,这是明显违背了非设计人员决定材料等级的原则,对工程质量及安全造成了一定隐患。 1.1.4 施工图未注明焊接的坡口形式,焊缝间隙、钝边坡口角度、是否为单面焊等。还有的施工图,对不同板厚钢构的拼接焊未按规范要求开斜坡,造成局部应力线过分集中,质量验收往往通不过,这些缺陷有的已经没有办法修复只能更换部分材料,因此对工程成本及进度产生一定影响。 1.1.5设计总说明对除锈等级及防腐材料未作明确要求。除锈等级不明确导致施工单位即使购买了材料也无法进行除锈工作,对工序衔接产生影响。有的图纸只是明确对油漆漆膜厚度的要求,对油漆的性能及名称未作任何说明,这样施工单位就不知道如何采购油漆材料。 1.2 设计阶段问题相应解决措施 对施工单位而言,在拿到钢结构施工图以后,应立即安排有经验的技术人员进行图纸会审,审核图纸参考的规范有没有问题;节点图有没有表述不清楚或者遗漏;相关规范要求的内容在设计总说明中有无体现;各种材料的规格型号、性能、等级、施工的质量要求和工程的安全等级有没有明确;局部节点设计是否合理;按照现有图纸施工中会不会出现

[单层门式刚架轻型钢结构设计浅谈]轻型单层工业厂房钢结构设计

[单层门式刚架轻型钢结构设计浅谈]轻型单层工业厂房钢 结构设计 [提要]门式刚架轻型结构体系是近年来在钢结构建筑中应用相当广泛的一种结构形式。介绍门式刚架轻型结构体系存在的问题;论述屋面荷载、山墙结构体系、柱脚设计的设计特点。 [关键词]门式刚架荷载山墙柱脚 :TU2:A:1671-7597(xx)1110119-01 一、前言 门式刚架轻型结构体系是用等截面或变截面的H型钢作为梁柱,以冷弯薄壁型钢作为檩条、墙梁,以彩钢板作为屋面板及墙板,现场用螺栓或焊接拼接的门式刚架为主要承重结构,再配以零件、扣件、门窗等形成的比较完善的建筑体系。这种体系可以在工厂批量生产,现场按要求拼装而成。能有效地利用材料,构件尺寸小,自重轻,抗震性能好,安装方便,施工周期短,能够形成大空间、大跨度,具有外表美观,适应性强,造价低,易维护等特点。

二、门式刚架轻型结构体系存在的问题 尽管门式刚架轻型结构体系具有造价低、重量轻、安装方便、施工周期短等优点,但是由于我国在该方面起步较晚,在设计水平等 方面与西方发达国家相比都有着较大的差距,符合我国规范的相应的构造措施研究不够,如节点的连接、支撑的布置、结构变形的限制与控制等。因此,采用恰当的简便易行的优化设计方法,编制相应的结构设计软件,降低我国的门式刚架生产成本,是当前研究的主要课题。 我国在结构领域广泛应用的热轧H型和T型钢的生产方面落后于国外。冷弯薄壁型钢和压型钢板的防腐涂层材料及工艺方面更为明显。在耐候钢的开发方面,国内产品成本高,且在具备同等耐候能力的焊材和焊接工艺,国外的焊接工字钢生产上已普遍采用单面焊接工艺,国内仍以双面焊为主,这对于腹板较薄的构件将很困难。

轻钢结构设计总结

轻钢结构设计总结(有用的着的下载) 轻钢结构总结 第一章、轻钢结构的特点及分类 一、门式刚架特点(在设计时需注意的事项) 1、主要承重结构为单跨或多跨实腹式门式刚架; 2、屋盖采用压型钢板屋面和冷弯薄壁型钢檩条,有时采用轧制槽钢或工字钢 檩条(现在很少采用)。 3、外墙面采用压型钢板屋面和冷弯薄壁型钢墙梁,在外墙板接近地面处,为 防止其锈蚀,可从地面砌筑1米高度左右的墙体(此做法不一定经济,尤其在软土地区)。 4、屋面和墙体可采用轻质保温隔热层。 5、建筑物内一般无桥式吊车或有不超过20t的A1~A5工作级别的桥式吊车或 是3t悬挂式吊车。 6、屋面水平支撑系统的交叉拉杆和柱间支撑可采用圆钢,但应带拉紧装置。 二、门式刚架的分类(简略) 1、按跨度数量分类: 单跨、双跨、多跨 第二章、轻型钢结构房屋材料选择 第一节、建筑常用钢种简述 土木工程常用金属材料主要是建筑钢材和铝合金。建筑钢材分为钢结构用钢和钢筋混凝土用钢。前者主要是型钢和钢板;后者主要是钢筋、钢丝、钢绞线等。建筑钢材的原料刚多为碳素刚和低合金钢。 1、碳素结构钢的牌号、表示方法 参考规范《碳素结构钢》GB/T 700,牌号由代表屈服点的字母、屈服点的数值、质量等级符号、脱氧方法四部分组成。 屈服点(共五种):195MPa、215MPa、235MPa、255MPa、275MPa。 质量等级:A、B、C、D。(以硫、磷等杂质含量由高到底排列) 脱氧方法:F(沸腾钢)、b(半镇静钢)、Z(镇静钢)、TZ(特殊镇静钢)。其中b(半镇静钢)在新规范中已经取消。 例如:Q235-A·F表示屈服点为235MPa的A级沸腾钢。 随着牌号的增大,其含碳量增加,强度提高,塑性和韧性下降,冷弯性能逐渐变差。同一牌号内的质量等级越高,钢材质量越好,例如 Q235C级优于Q235A级。 2、优质碳素结构钢 (轻钢结构主要构件不采用此钢种,故略述) 优质碳素结构钢大部分为镇静钢,对有害杂质含量控制严格,质量稳定综合性能好,但成本较高。优质碳素钢分为普通含锰量(0.35~0.80%)和较高含锰量(0.70~1.20%)两大组。

钢结构大作业

高层和大跨度钢结构的应用和发展 (12011***) (******大学) 摘要:本文首先分析了我国钢结构发展的潜力,指出高层和大跨度为钢结构未来发展的主要方向,然后对高层和大跨度钢结构的特点、应用、以及发展特点做了综述,并且对钢结构的现代施工技术状况做了相关分析,最后展望了我国未来钢结构发展的广阔前景。 关键词:高层,大跨度,特点,施工技术 中文图书分类号:TU375.4 文献标识码:A 引言 由于钢结构体系具有自重轻,安装容易,施工周期短,抗震性能好,投资回收快,环境污染少,工程受损或报废后,钢材可再生利用等优点,所以钢结构的发展与应用从一定的程度上反映了一个国家的建筑发展水平,也反映了一个国家的综合经济实力。世界各国都在大力发展钢结构,原建设部总工程师姚兵同志曾指出:21世纪的建筑结构是金属结构的世纪。 我们国家钢产量已经连续5年超过亿吨,居世界领先地位,形成了供大于求的局面,这为钢结构的发展奠定了物质基础。国家为了适应经济建设的发展需要,对钢结构应用的政策也由原来的限制采用改为鼓励使用,这就为钢结构的应用创造了良好的政策氛围。同时钢结构的设计、施工技术也在不断革新,具备了大力发展钢结构的技术条件。业主也对建筑的功能和建造工期提出了更高的要求,钢结构是能够很好满足业主这种需求的一种结构形式,这说明钢结构有很大的市场和发展空间。从上述分析中看出,我国家已经具备了大规模发展钢结构的条件,所以我们国家做出了大力发展钢结构的规划,将高层钢结构、空间大跨钢结构、轻型钢结构、住宅钢结构和钢—混凝土结构作为钢结构的主要发展方向。 随着社会经济的飞速发展以及人民生活水平提高,大跨度结构是经济和社会发展的中的重要需求。近二十年来结构工程所取得的巨大成就下,各国纷纷筹划建造更大、更高、更长的各种超大型复杂结构物,其中高层和大跨度钢结构是钢结构发展的重要方向,本文就高层和大跨度钢结构的应用和发展做一概述。 1.高层和大跨度钢结构的应用 钢结构本身具有自重轻、强度高、施工快捷等突出优点,高层、大跨度,尤其是超高层、超大跨度建筑,采用钢结构尤为理想。 1.1高层与超高层钢结构的应用 高层钢结构是钢结构应用的重要领域[1],高层钢结构与混凝土高层结构相比具有如下特点:(1)自重轻,截面小,可降低基础造价,室内有效面积大,与玻璃幕墙结合,建成现代感很强的建筑外形;(2)施工速度快、工业化程度高,可降低人工费用,增加建筑的投资回报率抗震性能较好,利于向高层、超高层发展;(3)绿色环保、可持续发展; (4)12~18层的高层钢结构造价基本与混凝土结构持平,综合造价可望低于混凝土结构。 高层钢结构主要应用在以下几个方面:(1)现代高层、超高层公共建筑,标志性建筑,商业中心;(2)星级饭店,旅馆;如:北京香格里拉饭店、长富宫饭店;(3)商用写字楼、综合楼、办公楼;(4)民用住宅、高层公寓。

钢结构年终工作总结

工作总结 自从参加工作以来,一直从事钢结构设计预算,至今已有10年之余,在工作中,我不断 地学习文化知识和专业知识,进一步完善和充实自己的知识结构,努力提高自己的学识水平 和专业素质,经验越多,实践越多,感觉越要严谨,设计要严谨,预算要准确!对于钢结构 我总结了一下几点: 一. 预算工作: 对于规则的厂房来说,不论重钢还是轻钢,工程量的计算也很规则,可分为以下几个系统 进行计算,不会漏项的: 1)刚架系统:包括刚架柱,刚架梁,梁柱间、梁梁间、柱撑十字花、剪刀撑、水平刚性 连系杆及与刚架柱连接处的连接板工程量的计算。 2)屋面支撑系统:包括屋面水平支撑,水平刚性系杆以及与刚架梁连接处的连接板工程 量的计算。 3)屋面维护系统:包括屋面c型钢(根据设计不同材料的规格型号不同)、屋面檩条拉 杆、屋面檩条刚性拉杆、隅撑、屋面檩托、隅撑与屋面梁连接处接点板、屋面彩瓦工程量的 计算。 4)墙面维护系统:包括墙面c型钢(根据设计不同材料的规格型号不同)、墙面檩条拉 杆、墙面檩条刚性拉杆、墙面檩托、山墙柱、山墙柱与刚架梁连接节点、窗框、门框、门窗 框与墙梁的连接节点、墙面彩瓦工程量的计算。 5)吊车梁系统:包括吊车梁、车挡、吊车梁与刚架柱的连接节点、制动梁、轨道、轨道 压件工程量的计算。 6)雨蓬系统:包括雨蓬悬挑型钢梁(主次梁)、彩瓦工程量的计算。 二 . 设计工作 对于设计工作,主要要掌握钢材的各种特点 1、钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足 要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性;承重结构 的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。。 2、钢材的机械性能指标有哪些?分别代表钢材哪些方面的性能? (1)屈服强度:代表钢材强度指标,是钢材可达到的最大应力 (2)抗拉强度:代表材料的强度储备 (3)伸长率:代表材料在单向拉伸时的塑性应变能力 (4)冷弯性能:代表钢材的塑性应变能力和钢材质量的综合指标 (5)冲击韧性:代表钢材抵抗冲击荷载的能力,是钢材强度和塑性的综合指标 3.强度与厚度的关系,厚度越大,强度越低,因为随着钢材厚度的增加,金属内部缺陷 就会增多,就会削弱钢材的强度了。 4、冲击韧性:采用带缺口的标准试件进行冲击试验,根据试件破坏时消耗的冲击功,即 截面断裂吸收的能量来衡量材料抗冲击的能力,称为冲击韧性。 5、残余应力及其影响:焊接构件在施焊过程中,由于受到不均匀的电弧高温作用,在焊 件中将产生变形和应力冷却后,焊件中将产生反向的应力和变形称为残余应力和残余 变形。残余应力的存在对构件承受静力荷载的强度没有影响,但它将使构件提前进入弹塑性 工作阶段而降低构件的刚度,当构件受压时,还会降低构件的稳定性。 6、轴心受压构件的稳定承载力与哪些因素有关? 构件的几何形状与尺寸;杆端约束程度;钢材的强度;焊接残余应力;初弯曲;初偏心 7、疲劳的概念:钢结构构件和其连接在多次重复加载和卸载的作用下,在其强度还低于

工业厂房钢结构设计体会

工业厂房钢结构设计体会 发表时间:2019-04-28T11:05:28.860Z 来源:《基层建设》2019年第6期作者:陈为凤 [导读] 摘要:随着工业在高速的发展,钢结构工业厂房以其较好的抗震性能、自重较轻以及较快的施工速度等特点,使得此项设计在建筑的工程中被普遍应用,因此,对工业厂房设计经验与体会的探讨有其必要性,本文就工业厂房钢结构设计为基本点,进行了分析。 山东丰威置业有限公司 250101 摘要:随着工业在高速的发展,钢结构工业厂房以其较好的抗震性能、自重较轻以及较快的施工速度等特点,使得此项设计在建筑的工程中被普遍应用,因此,对工业厂房设计经验与体会的探讨有其必要性,本文就工业厂房钢结构设计为基本点,进行了分析。 关键词:工业厂房;钢结构;设计; 工业厂房主要是为生产产品提供工作空间场所的建筑物,是为满足生产活动而设计和建造的建筑类型。在现代式业厂房设计中,对生产工艺和生产效益要求不断提高,对工业厂房设计的高度科技化发展也提出较高的要求。因此,要求设计人员根据需要,选择正确的生产工艺和资料,使得厂房设计更加经济合理,采用先进的生产技术和材料,保持厂房设计的先进性。 一、工业厂房特点要求 工业厂房设计要满足生产工艺要求一般而言,工业厂房设计主要的依据就是生产工艺,从某种程度上讲,生产工艺水平的提出就是使得工业厂房的设计有效满足建筑使用功能上的需求,为此,就需要在建筑的平面形状、建筑面积、厂房高度、剖面形式、构造措施以及结构方案等方面都要满足相关的要求,与此同时,在设计过程中,还要根据厂房的具体功能和实用要求,进行设备的采购以及安装,保证设备的正常运作,全面提升生产效率。 二、钢结构的应用优势 钢结构在一定程度上包含:轻钢和重钢,在判定标准上到现在为还不够完善,重钢的结构一般是厂房在行车起吊中以25t的重量为准。钢的结构常使用在石化厂房、电厂厂房等一些大跨度的工程中。然而钢会应用在站棚、货场、工业厂房以及轻型仓库等,轻钢结构以一年为位,需要600万以上的需求量,同时每一年都在增长。 (一)绿色环保、利用率较高。在钢结构网架结构中,所产生较大的屋面下部空间,在这空间中以设置不同的管道,例如:压缩空气管道、给水管道、采酸管道、消防道、空调令水管道以及避风管道等。所以,钢结构在设计的时候,能够建筑空间有效利用,可以将投资得到节约。并且,钢材属于高效能以及强度的材料,安装的过程中不会有粉尘和噪声的污染。钢结构在建成后,拆卸的时候会非常的容易,并且还能够进行回收再利用,再循环利)的价住颇高。 (二)布置灵活、自重较轻。钢结构拥有着较大的容量,可是在材料方面和其它的建筑相比较考县牵常润回粮森靠型验壁:解养架和锅筋混旋土屋架常格:酸方面都非常使利,下,运输的成本就会被减少。此外,工业厂房在建筑设计中,要求大跨度而钢结构是相对符合的,在跨度上最大能够达到50m左右。并且,若拥有相同的梁高,钢结构和换凝土结构的开间相差55%,钢结构占据着较的成分,可以灵活的布置柱网。 (三)施工速度快、装拆便利。金属构件厂所生产的构件,才可以应用在钢结构中,包含:柱染、架等,拥有着较高的机械化生产程度,并且在质量和精度方面都可以到保障。构件在制成之后,会在场内进行组装,在现场组装的过程中,省往只开展紧固件和螺栓的安装流程,在一定程度上,会将人力成本得至节约,那么较快的施工速度就会显现,建设周期也会减少,从而使得经济效益得到提升。 三、钢结构工业厂房的结构布置 (一)常用的结构体系 (1)框架一支撑体系。即横向设计成刚接框架,纵向设计成柱一支撑体系,用柱间支撑抵抗水平荷载。这种体系经济节约,但柱间支撑可能会影响使用。这种形式特别适用于纵向较长,横向较短的厂房。 (2)纯框架体系。把厂房纵横两个方向都设计成刚接柜架,不设置柱间支撑。其优点是使用空间不受影响,缺点是柱不宜采用工字型柱,而要采用两个方向惯性矩差别不大的截面形式(如箱形柱),使用钢量增加。 (3)钢架加支撑的混合体系。这种形式与第一种形式不同之处在把纵向设计成钢架和支撑混合的型式,靠两者共同抵抗水平力。这种形式可以有效地减少柱的纵向弯矩,但要求楼面刚度大,否则柱子间的变形不协调,无法充分发挥柱间支撑的作用。 四、钢结构在应用中应注意问题 (一)要确保建筑的使用年限。厂房的动荷载和静荷载都相对要求较高,一定要优化建筑的结构设计,对厂房的各个细节进行具体的计算与分析,明确各项参数要求,要严格遵守模数协调标准,控制好厂房建设的跨度、柱距、顶高和标高,以便于采取标准化的结构构件,使得厂房结构设计更加标准化,施工机械化和生产工业化。 (二)安装使用要规范。在建造过程中,工业厂房建筑物不沉降是建筑首要,宜采用螺旋钻孔泥浆护壁成孔灌注桩或人工挖孔桩,地质条件较差时基础应为桩加筏板,规范从桩基完成到筏板施工的施工工序,与此同时,在封闭后浇带之前,需要设计者针对具体的要求,优化设计内容,一方面,是为了保证其两侧的临时支护,保证整个建筑的稳定性,另一方面,是为了提高整个结构的支护质量,以防止在模板拆除的过程中,避免结构开裂。在工业厂房施工中,需要控制好后浇带浇筑施工。一般而言,其具体的时间,要根据工程上的后浇带的具体性质而确定,一般图纸上都有说明后浇带施工的时间,如果没有说明,按下列时间处理(施工):如果是沉降后浇带:需待主体结构完成(结构上不再继续加载)、沉降稳定后再进行施工如果是收缩(温度)后浇带:只需两侧的砼成型后60天就可以施工。通常情况下,没有硬性的规定,按结构施工图。后浇带的作用有很多,伸缩后浇带大概55m左右。 (三)工业厂房设计满足经济建设要求。在保证建筑室内环境、生产空间以及防火和卫生需要的基础上,将若干个车间结合起来,使其成为联合厂房,为现代化的连续生产奠定良好生产条件和基础。一般情况下,工业联合厂房有着很大的优势,即建筑占地面积少、管线网络结构相对简单、外墙面积较小、而且使用灵活,可以在很大程度上满足生产工艺水平的要求,而且可以有效地进行生产工艺的更新,提高生产工艺水平,从而实现厂房设计的经济效益。 (四)高度人性化。一个工厂的生产质量与效益,与人的关系密不可分。工业生产中,人作为主要的影响因素,必须要充分调动人的积极性与主观能动性,才能切实满足生产要求和发展,因此在设计时,要从人性化的角度出发,采用人本化的设计方法,突出和体现设计对人的关怀,将以建筑为中心的设计理念转移到以人本为中心的设计理念中,为人们生产营造良好的工作环境,让人们产生一种归属感与

钢结构作业

国内 二十世纪八十年代初到九十年代末,刚才用量约30万t,资金600亿元。代表作:上海金贸大厦世界第三高楼421m,国际领先水平的深圳赛格大厦;国产钢材,国内设计、制造施工高200m的大连世贸中心。但是,钢结构行业在产能与结构、行业标准与规范、企业管理水平与技术水平、从业人员素质以及整个产业链的衔接等许多方面还有不少问题,比如:产能与结构的缺陷,行业标准、规范不完善,行业管理跟不上发展的步伐,新技术、新工艺、新材料的推广应用尚有不足,从业人员素质要进一步提高。 国外 米钱,轻钢结构已成为发达国检的主要建筑架构形式。近年来,世界钢铁总量的增加和国际均需用钢量的下降,促使各国拓展改那个结构使用范围,各国建筑用钢量在刚才总小号量中的比例明显提高,一般在百分之三十左右。国外钢铁工业发展较早,给建筑用钢提供了丰富的物资基础。对钢结构本身的优越性有共识。政府对环保的严格要求和资源的充分利用,在客观上出事业主、建筑师和结构工程师选择钢结构。成熟配套的技术和铲平推动了钢结构行业的反战。包括各种设计软件、标准规范,各种高性能钢材、焊材、连接材料、防火材料及各种设备机具等。。 钢结构建筑在欧美国家及日本如此普及,除这些国家的钢铁工业都非常发达,在数量上为满足钢结构建筑的需求提供了保障外,钢铁企业通过不段开发信产平来满足现代建筑对钢铁材料品种和自量的要求,对推动改那个结构建筑的技术进步尤为重要。 总体来说:我国钢结构产业属于成长性朝阳行业,发展前景很好。 当前,我国建筑业发展的总目标是:提高建筑业的整体素质、生产工业与技术装备水平,达到在国际建筑市场中具有较强的竞争能力,并充分发挥建筑业在带动国民经济增长和结构调整中的先导产业作用,到2010年使建筑业成为名副其实的国民经济支柱产业。建筑业要带动相关产业发展,加快发展钢结构工程是一个很重要的方面。钢结构体系具有自重轻、安装容易、施工周期短、抗震性能好、投资回收快、环境污染少等综合优势,与钢筋混凝土结构相比,更具有在“高、大、轻”三个方面发展的独特优势。最近在我国建筑工程领域中已经出现了产品结构调整,长期以来混凝土和砌体结构一统天下的局面正在发生变化,钢结构以其自身的优越性引起业内关注,已经在工程中得到合理的、迅速的应用。高层建筑钢结构近年来雨后春笋般的拔地而起,发展很迅速。我国80年代建成的11幢高层建筑钢结构最高为208米,而90年代以来正在建造或设计的高层建筑钢结构共约32幢,最高的达420米(已建)和460米(设计)。最近在大连兴建的高度200米的远洋大厦钢结构,设计、制造、安装和材料全部是由国内承担和供应的,这说明完全由我国自己来建造超高层钢结构是可以做到的. 大跨度空间钢结构最先让人们了解的是网架工程,其发展的速度较快,计算也比较成熟,国内有许多专用网架计算和绘图程序,是其迅速发展的重要原因。网壳在我国已在应用,已建成的网壳工程以球面和柱面较多,还有双曲抛物面、双曲扁壳等形式。它比网架又有许多优点,特别是在超大跨度时。悬索及斜拉结构、膜和索膜结构在国内应用也较多,主要用于体育馆、车站等大空间公共建筑中。其他大跨度空间钢结构还包括立体桁架、预应力拱结构、弓式结构、悬吊结构、网格结构、索杆杂交结构、索穹顶结构等在全国各地均有实例。 轻钢结构是近十年来发展最快的领域,在美国采用轻型钢结构占非住宅建筑投资的50%以上。这种结构工业化、商品化程度高,施工快,综合效益高,市场需求量很大,已引起结构设计人员认识。轻钢住宅的研究开发已在各地试点,是轻钢发展的一个重要方向,目前已经有多种的低层、多层和高层的设计方案和实例。因其可做到大跨度、大空间,分隔使用灵

2020年(工厂管理)单层轻钢结构工业厂房设计

(工厂管理)单层轻钢结构工 业厂房设计

中文题目:单层轻钢结构工业厂房设计 外文题目:DESIGN OF LIGHT STEEL CONSTRUCTION WITH SINGLE PAIR INTER-INDUSTRIAL BUILDING 毕业设计(论文)共89 页(其中:外文文献及译文25页)图纸共4张完成日期2011年6月答辩日期2011年6月

摘要 本设计结构形式为门式钢架的单层双跨厂房。设计中通过对厂房整体结构、建筑使用功能、防火等级要求、抗震等级要求及耐久年限要求的综合分析,本次毕业设计的最终的方案采用装配式预应力排架结构形式。根据建筑设计用途和设计依据,使构配件标准化、系列化、通用化的原则,设计时力求技术先进、经济合理、安全使用、施工方便。确定建筑设计方案设计的主要内容有:构件选型;柱子尺寸初定、结构平面布置和剖面设计;单项荷载作用下的结构内力计算;最不利内力组合;构件截面设计,主要包括最不利内力作用下上柱、下柱的配筋计算;柱下独立基础设计;完成用顶点位移法计算结构自振周期,完成用底部剪力法计算水平地震作用;施工阶段验算及施工图绘制。 关键词:门式钢架;单层双跨厂房;内力计算;配筋计算 I

ABSTRACT The course design was completed for the Single double cross workshop of gabled frame , The design of comprehensive consideration of overall structure、the functional requirements of building 、the fire code requirements、safety regulatory requirements and durability code. The final design used fabricated concrete simply supported. According to the purpose and basis for building design。The components and parts standardization, serialization, universal principles of design and strive to advanced technology, economical, safe, easy construction. Determine the architectural design of the main content:component selection; initially for column size, structure, layout and profile design; single loads Structures; complete with top displacement method to calculate natural period to complete the level with the bottom of the seismic shear method; the most unfavorable combination of internal forces; component cross-section design, including the most adverse effect of internal forces, the column, the next column and corbel of Reinforcement calculation; Checking the construction phase; he construction drawing. Keywords:gabled frame;Single double cross workshop;internal force calculation;reinforcement calculation II

钢结构二次深化设计-经验总结

钢结构二次设计 1.钢结构二次设计: 钢结构二次设计就是将施工图设计图纸转换为钢结构加工和安装的施工图纸。其主要内容包括如下: (1)构件布置图的绘制:按业主提供的施工图设计图纸,标识构件、节点编号,构件、节点所在图纸,加工和安装的技术要求。 (2)节点设计图:根据BINE提供的设计规范和构件型号确定构件之间的 连接详图,包括连接型式、螺栓规格、数量,定位,焊缝尺寸、型式、节点板尺寸。 (3)绘制车间加工图:按照构件布置图和节点设计图,以确定各组成件的型号、加工尺寸,孔规格及相互位置关系,焊缝尺寸,以便于车间加工。 (4)编制节点设计依据的计算书:根据概念设计图纸所给定的力或按设计规范确定的载荷,进行节点连接的强度计算,为连接设计提供计算依据。 上述二次设计的工作过程中,提供节点设计和计算书是二次设计工作的重要环节。 2. 钢结构连接设计 2.1 钢结构节点的连接型式: 按构件受力方式可分为单剪(铰接)连接、轴力连接、弯矩(刚接)连接,扭矩连接,组合连接等。 按构件的连接方式可分为单板连接,双板连接,单角钢连接,双角钢连接,端板连接。 按构件与构件间的连接可分为梁-梁连接,梁-柱连接及其分别带有水平支撑和垂直支撑的连接,柱拼接(包括大小柱的拼接)。 2.2 钢结构连接节点的设计要求 钢结构的节点设计应满足承载力的要求,还应具有必要的延展性,避免应力集中和过大的约束应力。同时,便于加工和安装,满足加工工艺性要求。应该注意节点的合理构造,符合经济性要求。此外还必须适应岭澳二期核电的钢结构施工要求。 岭澳二期核电工程对钢结构的加工和安装要求决定了钢构件的连接方式,由

于加工车间的焊接易于保证焊缝质量,而大批量的钢构件仅适于车间加工才能保证工程进度的要求,同时便于现场安装方便快速,因此决定了在钢结构的节点设计中,构件与构件间的连接要尽可能使用螺栓连接,除非在那些使用螺栓连接将使整个节点变得非常复杂或者被连接构件的尺寸较小、无足够的空间布置一定数量的螺栓,而采用现场焊接的连接设计。此外,对于和预埋件相连接的构件,为使其连接方便,并且便于处理预埋件定位偏差造成的影响,宜采用现场焊接。同时为便于钢构件和混凝土的固定或在浇筑混凝土时遗漏预埋件的情形下,采用HILTI膨胀螺栓连接。 2.3 钢结构连接节点的设计方法 钢结构连接中最基本的连接型式为铰接连接、刚性连接、支撑连接及柱拼接,以下就各连接型式的特点分别说明。 (1) 铰接连接 板板厚,可承受剪力和轴向力的组合荷载。同时,对于主次梁斜交连接的场合下,端板连接在加工工艺性上的优点比双角钢连接更好。

钢结构学习心得Word版

《钢结构设计原理》学习总结与体会钢结构是土木工程专业一门重要的专业课,为加强学生对钢结构基本理论的理解和对钢结构设计规范的应用,老师对我们进行为期1周左右的钢结构课程设计。通过这一实践教学活动,使我们掌握工程设计的思路方法和技术规范;提高我们工程设计计算、理论分析和图纸表达等解决实际工程问题的能力; 由钢板、热轧型钢或冷加工成型的薄壁型钢以及钢索为主材建造的工程结构,如房屋、桥梁等,称为钢结构。钢结构是土木工程的主要结构形式之一。 钢结构与钢筋混凝土结构、砌体结构等都属于按材料划分的工程结构的不同分支。 这学期主要学习了,轴心受力构件—拉杆、压杆受弯构件—梁偏心受力构件—拉弯杆(偏心受拉)压弯杆(偏心受压)材料、连接、基本构件结构设计 掌握钢结构的特点和钢结构的应用范围;理解钢结构按极限状态的设计方法,掌握其设计表达式的应用;初步了解钢结构的主要结构形式;了解钢结构在我国的发展趋势;为进一步深入学习钢结构知识打下基础。 钢结构的材料关系到钢结构的计算理论,同时对钢结构的制造、安装、使用、造价、安全等均有直接联系。本章简要介绍钢材的生产过程和组织构成,重点介绍钢材的主要性能以及各种因素对钢材性能的影响;钢材的种类、规格及选择原则。

1.了解钢结构的两种破坏形式; 2.掌握结构用钢材的主要性能及其机械性能指标; 3.掌握影响钢材性能的主要因素特别是导致钢材变脆的主要因素; 4.掌握钢材疲劳的概念和疲劳计算方法; 5.了解结构用钢材的种类、牌号、规格; 6.理解钢材选择的依据,做到正确选择钢材。 了解钢结构采用的焊缝连接和螺栓连接两种常用的连接方法及其特点;理解对接焊缝及角焊缝的工作性能,掌握各种内力作用下,焊接连接的构造和计算方法;了解焊接应力和焊接变形的种类、产生原因、影响以及减小和消除的方法;理解普通螺栓和高强螺栓的工作性能和破坏形式,掌握螺栓连接在传递各种内力时连接的构造和计算方法,熟悉螺栓排列方式和构造要求。理解受弯构件的工作性能,掌握受弯构件的强度和刚度的计算方法;了解受弯构件整体定和局部稳定的基本概念,理解梁整体稳定的计算原理以及提高整体稳定性的措施;熟悉局部稳定的验算方法及有关规定。 下面谈谈我在学习过程中的一点体会。 一、学习要有明确的目标。在学习这门课之前,我就了解到,《钢结构设计原理》是多么重要的一门课,特别在毕业设计时,你现在不熟悉,以后设计会带来很多麻烦,而我不是那种只满足及格的学生。但想起那计算题,我就气,本身正在学结构力学,而且还学得不错,谁知把一些题给弄糊涂了. 二、学习要有兴趣。在我看来,学那一门课都一样,有兴趣才能

相关主题
文本预览
相关文档 最新文档