当前位置:文档之家› 光电子材料 第2章固体激光材料及典型固体激光器

光电子材料 第2章固体激光材料及典型固体激光器

固体激光器原理固体激光器

固体激光器原理-固体激光器 固体激光器发展历程 固体激光器发展历程 固体激光器用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。 这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子;(2)大多数镧系金属离子;(3)锕系金属离子。这些掺杂到固体基质中的金属离子的主要特点是:

具有比较宽的有效吸收光谱带,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉 、钇铝石榴石、钨酸钙、氟化钙等,以及铝酸钇、铍酸镧等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;http://具有良好的光谱特性、光学透射率特性和高度的光学均匀性;具有适于长期激光运转的物理和化学特性。晶体激光器以红宝石和掺钕钇铝石榴石为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。

工作物质 固体激光器的工作物质,由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。这种工作物质一般应具有良好的物理-化学性质、窄的荧光谱线、强而宽的吸收带和高的荧光量子效率。 玻璃激光工作物质容易制成均匀的大尺寸材料,可用于高能量或高峰值功率激光器。但其荧光谱线较宽,热性能较差,不适于高平均功率下工作。常见的钕玻璃有硅酸盐、磷酸盐和氟磷酸盐玻璃。80年代初期,研制成功折射率温度系数为负值的钕玻璃,可用于高重复频率的中、小能量激光器。 晶体激光工作物质一般具有良好的热性能和机械性能,窄的荧光谱线,但获得优质大尺寸材料的晶体生长技术复杂。60年代以来已有300种以上掺入各种稀土金属或过渡金属离子氧化物和氟化物晶体实现了激光振荡。常用的激光晶体有红宝石(Cr:Al2O3,波长6943

固体激光器腔体设计软件ASLD 功能介绍

ASLD 功能介绍 1 热透镜分析 1.1小泵浦源的网格细化 在某些激光器中,泵浦光源的光束尺寸相对于激光晶体而言非常小。在对这样结构的系统进行模拟分析时需要使用到局部自适应的网格划分方法来准确反映系统参数。或者通过加大整体的网格数量来进行模拟计算,但是这样的方法不仅需要更多的计算时间,而且计算结果的准确性也很难保证。ASLD所使用的是第一种方法,在激光晶体的中心部分加入一个进行更精细划分的网格区域来准确包含模拟小泵浦源的激光系统。 1.2快速有限元分析(FEA) ASLD借鉴并使用了有限元分析的现代概念和算法。其中包含初始分析的计算方法和半粗化多重网格算法。初始分析及其相对应使用的算法能够保证ASLD在系统包含实时动态FEA仿真并且包含大量的有限元时依然能够快速计算出仿真结果。半粗化多重网格算法能够保证ASLD在对包含超长激光晶体的系统仿真任务中更快的计算出所需的结果。

1.3实时动态热透镜效应分析 实时动态热透镜效应分析在对包含闪光灯泵浦和脉冲泵浦的激光器进行仿真时具有明显的优势。该功能能够仿真出闪光灯泵浦光源每次打开和关闭的过程中晶体内部的温度和结构变化以及使用脉冲泵浦时不同的脉冲周期对系统的影响。 1.4FEA边界条件 ASLD包含的图形化用户界面能够帮助用户快速的设置FEA分析的边界条件该功能允许用户对激光晶体进行多个部分的划分并设置相应的条件。例如下图中所展示的就是利用该功能对激光晶体进行不同部分的冷却设置界面。 1.5自动抛物线拟合 在进行高斯模式分析的过程中通常需要对结构和温度数据进行多次抛物线拟合。通常这样的工作需要设计人员手工完成,该逆过程较为繁琐也容易出错。在ASLD中我们提供了针对结构和温度数据进行自动拟合的功能,该功能简便易用,并且能够在实时动态有限元分析过程中起到重要的作用。

固体激光器材料

一.固体激光器简介 激光是二十世纪最伟大的发明之一。自1958年肖洛(A. Schawlow)和汤斯(C. Townes)首篇光频下激光作用的论文以及1960年梅曼(T. Maiman)实现红宝石激光器以来,激光科学与激光技术的发展日新月异。激光高技术对传统学科和技术的发展产生巨大影响,以激光高技术为核心的相关产业已成为知识经济时代和信息时代的重要驱动力量,并带动了10倍以上高技术产业发展。激光高技术将在国民经济建设、军事和科学研究中发挥不可取代的关键作用,是一项具有战略性,全局性和带动性的战略高技术。 激光器按其工作物质来说,可分为固体、气体、液体、化学和自由电子激光器几大类。其中,固体激光器由于具有体积小,储能高、激发方案简单和可靠性高等优点,一直处在激光研究的中心地位。大多数激光应用领域不仅仅需要激光的输出功率高,而且要求激光光束质量好,表1-1给出了主要大功率激光器特性比较一览表。从表1-1我们可以看出,基于半导体激光器和固体激光技术发展起来的半导体激光泵浦固体激光器(DPL)是固体激光器发展历程上的巨大革新,它摒弃了半导体激光器光束质量差的缺点,继承了固体激光器光束质量好的优点;继承了半导体激光器效率高、寿命长的优点并摒弃了闪光灯泵浦的固体激光器效率低、寿命短的缺点,集半导体激光器、固体激光器的优势于一身,与传统闪光灯泵浦固体激光器和气体放电激光器相比可实现更高光束质量激光输出,且体积小10倍,效率和寿命均提高10倍,可靠性提高100倍;与化学激光器相比,具有效率高(电光效率约为17%)、波长短、能流密度高、体积小而紧凑(全固化)、寿命长(万小时)、易操作、运转灵便(连续/重复率/长/短脉冲)、易智能化、无污染等,再加上DPL输出功率动态范围极大(从mW到TW),又便于模块化和电激励,其应用遍及工业生产、国防建设、科学研究等众多领域。DPL实用化十年来的发展表明,DPL已成为固体激光发展的主要方向,并呈现出旺盛的生命力,其应用领域渗透到工业生产、国防建设、居家娱乐、科学研究等众多领域,将导致现有的器件更新换代,开拓重大新领域,成为国防和民用工业的新一代激光源。未来10~20年将发展成为高技术产业、国防建设重大的、不可取代的关键技术。 在某种意义上说,DPL不仅仅是泵浦源由闪光灯向半导体激光器转换的

半导体激光器的恒流源

半导体激光器的恒流源 摘要本文主要介绍恒流源,并分析一种半导体激光器较高稳定度恒流源驱动系统的电路。恒流源驱动器的电路主要是由电压基准电路,电压电流转换电路和调整电路组成的。它的整体设计思路是利用高性能斩波稳零运算放大器,运用负反馈原理,使整个闭环反馈系统处于动态的平衡中,从而达到稳定输出电流的目的。 关键字半导体激光器;恒流源;高稳定度;闭环负反馈 Abstract: This paper focuses on the analysis of a semiconductor laser to a higher stability constant current source driver circuit. The constant current source drive circuit is mainly composed of the voltage reference circuit, the voltage-current converter circuit and adjust the circuit. It's overall design concept of high-performance chopper-stabilized op amps, the use of the principle of negative feedback, so that the whole closed-loop feedback system is in dynamic equilibrium, so as to achieve stable output current. Keywords:semiconductor laser;constant current source;with high stability;closed-loopnegative feedback 1、引言 半导体激光器是以直接带隙半导体材料构成的 PN 结为工作物质的一种小型化激光器,是依靠载流子注入而工作的,注入的电流的稳定性对半导体激光器的输出有直接且明显的影响。在正常条件下使用的半导体激光器有很长的工作寿命。但是,不适当的工作条件会造成半导体激光器性能的急剧恶化乃至失效(就是PN 结被击穿或用作谐振腔面的解理面遭到破坏,视其击穿或破坏程度而表现为输出光功率减小或无光功率输出)。它是有极高量子效率的器件,但是对电冲击的承受能力很弱,微小的电流变化都可能会导致器件的参数的变化,这些变化又将会危及半导体激光器的安全使用。因此要求半导体激光器的电源是个恒流源,

第一台激光器——红宝石固体激光器

第一台激光器——红宝石固体激光器摘要:本文主要回顾了第一台激光器的研制历程,介绍了红宝石激光器的工作原理和它的发明者梅曼先生。 一、发展历程 1917年,爱因斯坦(Einstein)在气体平衡计算的工作中,发现在自然界存在着两种发光形式:一种是自发辐射,一种是受激辐射。前者指的是自然光的发光形式,而第二种正是产生激光的基础理论。激光的定义就是:“利用辐射的受激辐射实现的光放大”( Light amplification by the stimulated emission of radiation )。爱因斯坦的观点被当时的第一次世界大战的枪炮声所淹没,对于受激辐射这一重妥概念的意义没有被人们及时认识到. 1921年,发明磁控管,从此开始了微波的研究。 1927年,狄拉克(Dirac)根据感应辐射的属性提出创制星子书瞬浮的建议。 1934年,克赖克汤和威廉}i} i}i}于振荡器发现了电磁波和分a:.的相互作用。这是最旱期的电磁波谱学实验。 30年代,一些科学家建立的量子力学理论,使爱因斯坦的这两种发光形式的物理内容得到更为深刻的阐明。同时,近代光谱学的发展,也为激光光的出现奠定了的理论基础. 1944年,扎沃依斯基发现了电子的顺磁共振,打下了对微波波段电子顺磁能级研究的基础. 1945年第二次世界大战结束以后,大扰物理学家问到大学工作,在大学里建起了强大的新设备.他们开始着手进行微波波谱学山研究。当时,韦伯(Webber )、法布里肯特、巴索夫(tacos)和普罗霍洛夫(11po1。二。。)以及汤斯("l}ow'nes)等科学家分别提出了用受激辐射获得放大的设想。这是激光理论发展的重要起点. 1946年在美、英两国几乎同时发现氨谱线中的精细结构和超精细结构。 关于波谱学最显著的成果是发现氢原子谱-的兰姆位移。这是哥伦比亚大学的兰姆( Larnb)和另一同事的共同成果。他们曾具休地论述了观测净受激发射(负吸收)的可能性,明确指出了粒子数反转能够在何种状态实现,并针对一定的入射波,粗略计算了它的增益。 作为激光的物理基础—受激辐射早在1917年就为人所知.可是,从1917年到1950年30多年来,在实验上却一直没有人去证明这个过程的存在.人们以为,要想在小于一亿分之一秒的时间里进行原子受激发射的宏观观察是难于做到的。但在后来激光器制成后.实验工作并不象人们最初所设想的那样艰难。从1940年观察到离子数反转到激光器,这中间仅仅一步之差,可是这“一步”却一直走了20年. 人类对电磁波的利用和无线电技术的发展,使社会和生产急需把这种利用由无线电波段向微波波段扩展,这就导致了微波放大理论及其器件的产生. 1951年,美国的汤斯提出了利用受激辐射获得放大的原理首先获得微波放大的设想.同年,普塞耳(I'urcell)和庞德(Pound)用核磁共振所进行的一次实验,造成了粒子数反转,进一步确认了受激辐射过程,给微波放大器的产生带来了希望。其后,汤斯进行了两年半的艰苦工作,干1953年末和果尔登(Gordon )、

四川大学光电子学与激光技术期末复习资料

四川大学光电子学与激光技术期末复习资料 光电子学是以光频波段电磁波的电子学效应基本理论和应用原理为研究对象,并由近代光学与电子学相互交叉与渗透而形成的一门新兴学科。 光电子技术——研究光与物质中的电子相互作用及其能量相互转换的相关技术特点:1、角分辨率高2、距离分辨率高3、频带宽,通信容量大4、光谱分辨率高5、非线性光学效应强21世纪光电子技术发展?以智能化超高速计算机系统和全光网为代表的超高速、超大容量信息处理和传输将成为未来信息科学发展的两个重大方向 微电子技术受分布电容影响,难以突破纳秒的门槛,在实现超高速、超大容量、超低功耗的集成系统方面遇到了根本的困难 21世纪的信息化社会依赖光电子技术 什么叫光辐射?以电磁波形式或粒子(光子)形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射。 在辐射度单位体系中,基本量是辐通量或者辐射能,它是只与辐射客体有关的量。其基本单位是瓦特(W)或者焦耳(J)。辐射度学适用于整个电磁波段。 光度单位体系,是一套反映视觉亮暗特性的光辐射计量单位,被选作基本量的不是光通量而是发光强度,其基本单位是坎德拉。光度学只适用于可见光波段。 任何0K以上温度的物体都会发射各种波长的电磁波,这种由于物体中的分子、原子受到热激发而发射电磁波的现象称为热辐射。热辐射具有连续的辐射谱,波长自远红外区到紫外区,并且辐射能按波长的分布主要决定于物体的温度。 在同样的温度下,各种不同物体对相同波长的单色辐射出射度与单色吸收比之比值都相等,并等于该温度下黑体对同一波长的单色辐射出射度。基尔霍夫辐射定律 为了表示一个热辐射光源所发出光的光色性质,常用到色温度这个量,单位为K。色温度是指在规定两波长处具有与热辐射光源的辐射比率相同的黑体的温度。 如果将光也看做粒子(一种特殊的粒子)——我们称之为光量子,则光辐射场与物质相互作用,就产生粒子的跃迁过程,包括自发辐射、受激吸收与受激辐射三种类型的跃迁。爱因斯坦关系 由于各种因素影响,自发辐射并非单色的,而是分布在中心频率 0附近一个有限的频率范围内,这一现象称为光谱线展宽。 在热平衡状态下,处于高能级的粒子数总是小于处于低能级的粒子数,因此入射光强总是不断的减少。为使入射光得以放大,必须激活入射介质,使其高能级的粒子数多于处于低能级的粒子数,即实现粒子数反转。 必要条件 粒子数反转分布、减少振荡模式数(得到方向性很好、单色性很好) 充分条件 阈值条件、稳定振荡条件 光在介质中的放大增益能超过谐振腔内能量损失(吸收、反射、散射等)的总和时,光波才能真正被放大,从而在腔内振荡起来,激光器必须满足这个条件才能“起振”,我们就称这个条件为激光振荡的阈值条件。当入射光强度足够弱时,增益系数与光强无关,是一个常量;而当入射光强增加到一定程度时,增益系数将随光强的增大而减小,这种增益系数

固体激光器设计步骤

固体激光器设计步骤 1。如何选择激光介质?(就是你做一台激光器选择怎样的介质,比如是Nd:YAG还是Nd:YLF或者是Nd:YVO4,如果你要求单脉冲能量高重复频率较低的话就选择Nd:YLF为好,如果需要选择单脉冲能量高而重复频率低的话最好选择Nd:YVO4,当然Nd:YAG虽然两者都能,但是他也有其局限性;同时也还要考虑现在这些介质实验室和产品分别能做到多大功率); 2。泵浦结构如何选择?(泵浦结构主要包括端泵、侧泵、面泵等等,那么选择这些结构的理由又分别是什么呢?考虑那些因素呢?) 3。冷却方式如何选择?(这个问题需要结合泵浦结构进行讨论,因为他限制了泵浦结构,是水冷还是风冷,是空气自然冷却还是用TEC进行冷却或者用热管进行冷却,你见过那些冷却方式,最好能提供参考文献) 3。腔结构如何选择?(腔大体上分稳定腔和非稳定腔,那么选择何种腔结构的原因分别是什么呢?每一种腔结构又包括具体很多结构,比如稳定腔又包括很多中,比如共焦、共心、平凹等等,选择的理由又是什么呢?对腔设计还要考虑热透镜效用的补偿,那么如何进行热透镜补偿呢?) 4。如何进行选模?(模式的选择我们大体可以分为两类,一类是横模的选择,另一类是纵模的选择,那么选择横模就设计到如何方式光阑,光阑放置在什么位置,这两者又与腔结构和腔长有关系,因为选择横模是依靠不同的模式具有不同的衍射损耗而实现的;而单纵模的选择就包括插入布鲁斯特片、光栅、棱镜、双折射波片、标准具等方法;那么这些方法各有什么有缺点呢?我们如何来选取这些方法呢?) 5。整体结构如何选择?(这儿的整体结构主要指就仅仅一个振荡器还是利用MOPA结构,如果使用MOPA结构,那么要使用多少级,级间效用怎么消除) 以上讨论的事实上还限制在实验室的阶段,要进行工程化不仅需要进行市场分析,还需要对器件进行合理的安排和包装,还要考虑到客户使用方便,系统功能稳定等等。我们目前先考虑上面的这几个问题。

固体激光器原理及应用

固体激光器原理及应用 摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。本论文先从基本原理和结构介绍固体激光器,最后介绍其在监测,检测,制造业,医学,航天等五个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1激光与激光器 1.1激光 1.1.1激光(LASER) 激光是在 1960 年正式问世的。但是,激光的历史却已有 100多年。确切地说,远在 1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。 1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。激光的英文全名已完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。 1.1.2产生激光的条件 产生激光有三个必要的条件: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分 子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产 生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择 被放大的受激辐射光频率以提高单色性。 1.1.3激光的特点 与普通意义上的光源相比较,激光主要有四个显著的特点:方向性好、亮度极高、单色性好、相干性好。

全球十大半导体激光器产品进展

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广。由于以上诸多优势,半导体激光器在工业应用、照明、投影、通信、医疗以及科研等领域已经应用相当普遍。 新型太赫兹半导体激光器 加州大学洛杉矶分校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,还可以用于分析星体的形成和行星大气的组成。 目前使用可见光的垂直外腔表面发射激光器(VECSEL)已经被广泛用于生成高能束,但是这种技术此前并不适用于太赫兹频率范围。加州大学洛杉矶分校的电气工程副教授本杰明·威廉姆斯带领团队研制了首个可以在太赫兹频率范围使用的VECSEL。 为了使VECSEL在太赫兹频率范围发出高能束,威廉姆斯团队研制出带有一个叫做“反射阵超材料表面镜”装置的VECSEL。这种装置之所以如此命名,是因为它包含一个由大量微小天线耦合激光腔组成的阵列,这样当太赫兹波经过这个阵列时就“看”不到激光腔,反而会被反射回去,就像被普通的镜子反射回去一样。 “把超材料表面和激光器结合起来还是第一次。”威廉姆斯表示,这一方法既可以使激光器在太赫兹频率范围输出更大的功率,还可以形成高质量的激光束,而且超材料的使用可以让科研人员对激光束进行进一步的设计,以生成理想的极化度、形

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

半导体激光器

半导体激光器 半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的分类 (1)异质结构激光器(2)条形结构激光器(3)AIGaAs/GaAs激光器(4)InGaAsP/InP激光器(5)可见光激光器(6)远红外激光器(7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面发射激光器(11)微腔激光器 半导体激光器 半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。 仪器简介

Q-Line纤绿半导体激光器 半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器. 工作原理及特点 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器。 发光部分 半导体激光器的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高半导体激光器的内、外部量子效率。常规Φ5mm型半导体激光器封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

半导体激光器封装技术及封装形式

半导体激光器封装技术及封装形式 半导体激光器的概念半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的工作原理半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。 半导体激光器优点:体积小、重量轻、运转可靠、耗电少、效率高等。 半导体激光器的封装技术一般情况下,半导体激光器的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,半导体激光器的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数半导体激光器的驱动电流限制在20mA左右。 但是,半导体激光器的光输出会随电流的增大而增加,很多功率型半导体激光器的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的半导体激光器封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导

固体激光器的应用

固体激光器的应用 所谓固体激光器就是用固体激光材料作为工作物质的激光器。1960年,梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。距今已有整整五十年了,在这五十年固体激光的发展与应用研究有了极大的飞跃并且对人类社会产生了巨大的影响。固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。 固体激光器从其诞生开始至今一直是备受关注。其输出能量大峰值功率高结构紧凑牢固耐用因此在各方面都得到了广泛的用途其价值不言而喻。正是由于这些突出的特点其在工业、国防、医疗、科研等方面得到了广泛的应用给我们的现实生活带了许多便利。现在激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域它标志着新技术革命的发展。诚然如果将激光发展的历史与电子学及航空发展的历史相比我们不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 一、固体激光器的类别: 固体激光器的工作物质,主要由光学透明的晶体或玻璃作为基质材料,掺以激活离子或其他激活物质构成。常见的有红宝石(掺铬的刚玉,Cr:Al2O3)、掺钛的磷酸盐玻璃(简称钕玻璃)、掺钛的忆铝石榴石(Nd:YAG)、掺钛的铝酸忆(Nd:Y ALO)、掺钛的氟化忆锂(Nd:YLF)等多种。它们发出激光的波长主要取决于掺杂离子,如掺铬的红宝石,室温下的工作波长为694.3纳米,深红色;又如掺钕的多种晶体和玻璃,工作波长为1微米多,为近红外。 二、固体激光器的构造及原理: 在固体激光器中,能产生激光的晶体或玻璃被称为激光工作物质。激光工作物质由基质和激活离子两部分组成,基质材料为激活离子提供了一个合适的存在与工作环境,而由激活离子完成激光产生过程。常用的激活离子主要是过渡金属离子,如铬、钻、镍等离子以及稀土金属离子,如钕离子等。 固体激光器主要由闪光灯、激光工作物质(如红宝石激光晶体)和反射腔镜片组成,反射镜表面镀有介质膜,一片为全反射镜,另一片为部分反射镜。掺铬红宝石是一种最早发现和使用的激光工作物质。现在已研制成功了数十种可供应用的激光晶体。当采用不同的激活离子、不同的基质材料和不同波长的光激励,会发射出各种不同波长的激光。 早期的固体激光器都是用闪光灯或其他激光器,来完成激光工作物质内原子的受激辐射过程的,这基本上是由一种形式的光能转化为激光能量的过程。如何把电能直接转化为激光的能量,一直是人们梦寐以求的事情。近年来,科学家成功地研制出了半导体激光器,一旦接通电源,便会发出激光。选用不同的半导体材料和不同制造工艺可以制造出功率不同、发射不同波长激光的激光器。半导体激光器的出

半导体激光器

半导体激光器 半导体激光器又称激光二极管[1](LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。 A 小功率LD 用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。 B 高功率LD 1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1 mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。最近配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。 【特点及应用范围】半导体二极管激光器是实用中最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 【半导体激光器的发展及应用】半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。 在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

国际产业大功率半导体激光器发展现状

国际产业大功率半导体激光器发展现状 国际产业大功率半导体激光器发展现状 作者:王智勇秦文斌曹银花 激光材料加工、信息与通讯、医疗 保健与生命科学以及国防是世界范 围内激光技术的四个最主要的应用领域,其中激光材料加工所占比例最大,同时也是发展最快、对一个国家国民经济影响最大的激光技术应用领域。激光材料加工技术在产业领域应用的广泛程度,已经成为衡量一个国家产业水平高低的重要标志。 激光材料加工用大功率激光器经历了大功率CO2激光器、大功率固体YAG激光器后,目前正在朝着以半导体激光器为基础的直接半导体激光器和光纤激光器的方向发展。在材料加工应用中,以大功率半导体激光器为基础的直接半导体激光器和光纤激光器,不仅具备以往其他激光器的上风,而且还克服了其他激光器效率低、体积大等缺点,将会在材料加工领域带来一场新的技术革命,就如同上世纪中叶晶体管取代电子管、为微电子技术带来的革命一样。因此,直接半导体激光器和光纤激光器是未来材料加工用激光器的发展方向之一。 下面将先容近年来大功率半导体激光器的发展现状,以及目前进步半导体激光器输出功率和改善光束质量的方法和最新进展,同时先容大功率半导体激光器在材料加工中的应用现状、分析展看大功率半导体激光器的发展趋势。

图1:半导体激光器多光束合成技术示意图。 产业用大功率半导体激光器发展现状 高功率和高光束质量是材料加工用激光器的两个基本要求。为了进步大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在产业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。 图2:大功率半导体激光器的光束质量与输出功率之间的关系以及目前的应用领 域

半导体激光器用于材料加工

半导体激光器用于材料加工 激光器的光束模式对激光加工效果有较大的影响。如下图所示为几种常见的激光器的光束形状。以激光焊接为例,对于高斯分布的激光束,焊缝截面通常为细长的钉子形状;而对于平顶分布的激光束,激光能量分布较为均匀,焊缝截面上部与下部的宽度较一致。 半导体激光器的光束呈平顶分布,光束能量分布均匀,适用于熔覆、钎焊以及表面热处理等应用。创鑫激光高功率光纤耦合半导体激光系统具有比光纤激光器更高的电光转换效率、更紧凑的体积,激光通过光纤传导输出,适合于与自动化设备配套,实现柔性加工。 激光熔覆 激光熔覆是指在被熔覆基体表面上放置涂层材料,经激光辐照使之与基体表面同时熔化,快速凝固后形成与基体成冶金结合的表面涂层。激光熔覆能显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。激光熔覆工艺主要应用于模具、轴承等贵重易损件的材

料表面改性、表面修复,具有极高的经济价值。如图所示为典型的激光熔覆过程。 激光钎焊 激光钎焊时采用激光作为热源,钎料熔化填充接头间隙,实现被焊母材的连接。钎焊前对工件必须进行细致加工和严格清洗,除去油污和过厚的氧化膜,保证接口装配间隙。钎焊变形小,接头光滑美观,适合于焊接精密、复杂和由不同材料组成的构件,如透平叶片、硬质合金刀具和印刷电路板等。由于半导体激光器平顶光束能量均匀的特点,激光熔覆时一般采用半导体激光器作为热源。 激光焊接 激光焊接因其深宽比大、热输入量小等优点,被广泛应用于不锈钢、铝、铜等多种材料及异种材料的焊接。相较光纤激光器,半导体激光器光束能量分布均匀、光斑较粗,适用于塑料焊接,以及五金等行业焊接工件接头间隙较大的场合,焊缝表面平整,可容许接头一定的间隙,焊接质量优良。如下图所示为1.0mm厚SUS304不锈钢对接焊的焊缝宏观形貌及截面金相。

相关主题
文本预览
相关文档 最新文档