当前位置:文档之家› 语音编码技术及其在通信系统中的应用

语音编码技术及其在通信系统中的应用

语音编码技术及其在通信系统中的应用
语音编码技术及其在通信系统中的应用

多媒体技术基础期末论文

题目:语音压缩编码及其在通信系统中的应用

专业:通信工程

姓名:张娴

学号: 1 2 3 0 7 1 3 0 4 4 9

2016年5月24日

在现代通信中,随着科学技术的迅速发展,图像、数据等非话音信息在通信信息总量中所占的比例大大提高,而且这种提高的趋势仍然会继续下去。比如说,以前的手机基本上只可以打电话,发短信,不能接收文件,不能观看视频,但是现在的3G手机甚至4G手机,可以看视频,接发文件,还有很多的应用软件。语音信号所占的传输比例的确是大大减小。但是,到目前为止,在大多数通信系统中,传输最多的信息仍然是语音信号。比如说我们经常打电话,用语音发微信,听音乐,看视频等等。在可以预见的未来通信中,尽管语音信号在通信信息总量中所占的比例会有所下降,但仍然会是传输最多的信息。

语音信号是模拟信号,不能直接在数字通信系统中传输,必须先进行模/数转换再进行数/模转换,这种转换就称为语音编译码(简称语音编码),其作用是将语音模拟信号转换为数字信号,到了接收端,再将收到的语音数字信号还原为语音模拟信号。可见,语音编码技术在数字通信中具有十分重要的作用,随着计算机技术与超大规模集成电路技术的飞速发展和广泛应用,信号的数字处理、数字传输和数字存储日益显示出巨大的优越性。数字化技术的应用范围迅速扩大到各个科学技术领域,渗透到工农业生产和社会生活的各个方面。因此,尽量减少信号占有带宽、持续时间和存储容积,以节省信号在传输、处理和存储中的开销,具有巨大的经济价值。所以,语音编码技术,尤其是语音压缩编码技术(编码速率在16kbit/s以下),近年来受到人们的广泛关注和重视,有着极为迫切的客观需求。正是在这种强大的客观需求推动下,近二十几年来,随着计算

机技术、微电子技术、信号处理技术以及编码理论的发展和进步,语音编码技术取得了许多突破性的进展,提出了许多新的编码技术和算法,并迅速得到了广泛应用。

由于各种通信网络工作的环境各不相同,传输信息也不完全一样,用户情况更是千差万别,因而对语音编码提出的要求也就不尽相同。综合各种通信网络对语音编码的共同要求,大致有几下几点。

(1)编码速率要适合在常用话音信道内传输,一般要求编码速率在2kbit/s 到16kbit/s之间。

(2)在一定的编码速率下,语音质量要尽可能高,即译码后的恢复语音的保真度要尽量高。

(3)编译码时延要小。总时延一般要求不大于65ms。

(4)编译码算法复杂度不能太大,以适用于大规模集成电路实现。

(5)坚韧性好,有较好的抗误码性能。

然而上述这些要求之间往往又是互相矛盾的。例如,为了使语音质量好,编码速率就应该要高一些,但这又会使其占用的信道带宽增大,信道带宽是有限的,编码速率过高就不能在信道内传输。因此,在实际应用中要根据具体情况综合分析和比较,在各个要求之间进行一定的折衷,选择最佳的编码方案。

目前语音编码已获得非常广泛的应用,语音编码系统的构成也多种多样。归纳起来可以分为两大类:第一类,编码—存储—回放系统,又称为数字语音录放系统,例如发声字典;第二类,编码—传输—译码系统,又称为数字电话通信系统。下图分别画出了这两种语音编码系统的原理方框图。

输入

输出

语音语音

数字语音录放系统原理方框图

输入

语音输出

语音

数字电话通信系统原理方框图

数字语音录放系统与模拟语音录放系统相比,具有灵活性高、可控性强、寿命长等有点。在这类语音编码系统中,对编码实时性要求不高,但要求有较高的数据压缩率,以降低数字存储的容量。对译码器则要求算法尽量简单,成本尽量低,能够实时译码或基本实时译码,以减少响应时延。

数字电话通信系统与模拟电话通信系统相比,具有抗干扰能力强、保密性好、易于集成化等优点。在数字电话通信系统中,一般都要求实时编码和译码,同时对算法复杂度、抗误码能力等都有一定要求。

语音编码按照传统的分类方法通常分为3类:波形编码、参数编码和混合编码。

波形编码是最基本的语音编码方式,也是最早提出和实现的编码技术,应用很广。它将时间或频域(或变换域)信号直接变换成数字信号,力求使重建语音波形保持原始语音信号的波形形状。具有语音质量好、抗干扰性能强等有点。其缺点是所需用的编码速率高,一般在16kbit/s到64kbit/s之间。波形编码当其编码速率进一步降低时,其语音质量等性能指标下降很快,但是若编码速率过高,又会使占用的信道带宽增大。

参数编码又称为声源编码或声码器,有时还称分析—综合编码,它将信源信号在频域或其他变换域提取特征参数,然后对这些特征参数进行编码和传输,在译码端再将收到的数字信号译成特征参数,根据这些特征参数重建语音信号。参数编码通过对语音信号特征参数的提取和编码,力求使重建语音信号具有尽可能高的可懂度,即保持原语音信号的语意,但重建语音信号的波形与原语音信号波形却相差甚远。参数编码的优点是可实现低速率语音编码,其编码速率可低至2.4kbit/s一下。其缺点是语音质量差,自然度较低,即使是熟人一般也听不出讲话人是谁。此外,参数编码的坚韧性也不够好。

混合编码是在采用线性预测编码(LPC)技术的语音参数编码的基础上,通过许多的改进措施,并引入波形编码的原理,使用合成分析法而形成的一种新的编码技术,它将波形编码和参数编码结合起来,克服了它们的缺点,借鉴了它们的长处,是近年来在语音编码技术上的一个突破性进展,它在4kbit/s到16kbit/s速率上能够得到高质量的合成语音。混合编码技术在现代通信系统中得到了广泛应用并正处于迅速发展之中,目前仍有许多新的编码算法不断出现。

语音编码所要解决的基本问题,是在给定的编码速率条件下,如何得到尽可能好的重建语音质量(或称编码质量),同时应尽可能减少编译码算法的复杂度和时延,并使编译码系统有较好的坚韧性;或是在给定编码质量、编译码复杂度和时延以及坚韧性要求的条件下,如何尽可能降低语音编码所需的速率等。这5个方面的要求,就是衡量语音编码性能的主要指标。在不同的应用中,对各个指标要求的侧重点也有所不同。

编码速率可以用“比特/秒”(bit/s)来度量,它代表了编码的总速率,一般用V表示。编码速率也可以用

“比特/样点”(bit/p)表示,它代表了平均每个语音样点用多少比特编码,一般用R表示,V和R可以通过取样速率联系起来:

V=R·

f

s

其中的取样速率

f通常根据Nyquist定理由信号带宽决定。

s

显然,平均每样点比特数R越高,语音波形或参数量化就越精细,话音质量也就越好,相应地对传输带宽或存储容量的要求也就越高。

编码和译码算法的复杂程度同语音编码的话音质量有非常密切的关系。在同样数码率的情况下,采用复杂一些的算法将会获得更好的话音质量;而对于相同的话音质量,采用复杂一点的算法能够降低编码所需的速率。编解码算法的复杂程度同硬件的实现也有密切关系,它将决定硬件实现的复杂程度、体积、功耗以及成本等。

增加算法的复杂程度可以提高语音编码质量,但往往也伴随着增加编译码的时延。在实时语音通信系统中,语音编译码的时延对系统的通话质量有很大的影响。例如在卫星通信中,一跳传输时延约0.5s,讲话后再听到对方回答需要1s,已明显感到对方反应“迟钝”。如果时延再大,正常交谈都会发生困难。

时延影响通话质量的另一个原因是回声。当时延比较小时,回声同话机侧音及房间交混回响声想混,因而感觉不到。当往返总时延超过约100ms左右,发话就能够从手机中听到自己的回声。如果回声传输路径损耗不够大,就会听到多次回声,从而严重影响通话质量。

近年来,一方面由于社会进步和科技发展所带来的强大客观需求的推动,另一方面由于计算机技术、通信技术、信号处理技术和微电子技术的飞速发展提供了良好的条件,语音编码技术在许多方面都取得了突破性的进展,有很多的研究和发展的热点课题。其中,倍受人们关注和重视、具有重要应用前景和价值的几个热点课题是:极低速率语音编码技术;宽频带高音质声频编码技术

。下面简要介绍这两个热点课题的研究和发展情况。

一、极低语音编码技术

编码速率低于1200bit/s的语音编码,称为极低速率语音编码。为了满足日益增长的对通信的巨大客观需求,现代通信一方面在努力建设新的通信线路,扩大通信信道的带宽,增大通信容量,实现宽带通信;另一方面也在努力压缩信号编码的速率,减少其传输占用的带宽,提高通信信道的利用率,增大通信容量。但是事实上,有的通信信道难以扩展并且质量很差,如短波通信;有的信道正在广泛应用,短期内无法或很难更新或扩展,如市话通信和载波通信;有的信号十分昂贵,如宇宙通信、卫星通信等,新建和扩展信道花费过大;在这些情况下,低速率语音编码是一种最佳选择,每压缩一比特速率都会带来巨大的经济利益;还有些特殊的通信,如在强大人为干扰下或环境噪声极强条件下的军用通信、数字语音保密通信等,无法或极难新建或扩展信道,在这种条件下,极低速率语音编码就成为唯一选择。综上所述可见,在保证良好语音质量的前提下,大力压缩语音编码速率,实现极低速率语音编码,有重大的经济价值,具有巨大的吸引力和广阔的应用前景。

1、1200bit/s到400bit/s的语音编码技术

速率在1200bit/s到400bit/s的语音编码技术,其编码算法一般是在

2.4kbit/s的声码器的基础上,利用帧间相关性和矢量量化技术进一步进行

数据压缩,实现极低速率的语音编码。

(1)帧填充技术

在速率为2.4kbit/s的声码器的码序列中,其相邻帧之间仍存在较大的相关性,尤其是在语音的平稳段,如浊音段,帧与帧之间的变化不大。若每隔一帧作一次编码和传输,并通知接受端在空白帧(未编码传输帧)中填

充哪一帧(是其前相邻帧或后相邻帧),即可将编码速率几乎压缩一半。根据这种思路,再配合采取一些其他的处理技术,就可以进一步压缩编码速率,并能使语音质量基本保持不变。

(2)利用矢量量化技术

利用矢量量化(VQ)技术,可以进一步减小帧间参数的相关性。其基本思路是:把一帧或几帧需要编码传输的参数划分为一组,组成一个矢量,根据感觉加权最小失真原则,在一个已训练、设计好的码书中,搜索该矢量对应的最佳码字,作为该矢量的量化矢量,对此码字的编码和传输则仅对该码字的序号(在码书中的标号或地址)进行编码传输。这样就可以进一步降低编码速率,又不会过多的影响语音质量。

2、400bit/s以下的语音编码技术

虽然从信息论的观点来看,语音编码的信息速率下限是50bit/s左右,但是,大量的研究结果表明,若是将比特率降低到400bit/s以下,目前低速率语音编码中所使用的基于LP分析合成的各种算法都难以满足要求,其所提供的语音质量根本无法达到公众能够接受的程度。所以为使语音编码的速率降低至400bit/s以下,甚至逼近50bit/s左右的下界,只有采用语音识别与合成技术,构成识别合成型声码器。

(1)识别合成型声码器的基本原理

识别合成型声码器,采用语音识别与合成技术对语音基元进行编码。语音基元可以是音素、音节或词,任何一种语言的音素或音节是一个有限数目的集合(比如说汉语拼音里面的声母、韵母等,又比如英语中的音标),用其作为基元进行编码,就可以实现无限词汇的语音编码。这种声码器在发送端采用语音识别技术进行语音基元识别和编码,接收端根据收到的语音基元代码和某些附加的韵律信息再重新合成语音。由于这种声码器需要编码传输的参数很少,而在接收端又是按规则合成语音,所以其传输速率很低,而且接收端恢复出的合成语音其质量非常好。目前已研制成功的汉语识别合成型声码器,其速率低于200bit/s,语句可懂度达95%以上。事实上,大量的研究证明,识别合成型声码器的编码速率还可以降低到150bit/s以下,仍可恢复出可懂度很高、自然度较好的合成语音。

一个无限词汇汉语识别合成型声码器的原理方框图如下图所示。语音

韵律信息

(2)关于识别合成型声码器编码速率的估计

汉语识别合成型声码器的编码速率究竟能降至多少?这可以根据现有的研究结果做如下估计。

在所有需要编码传输的信息当中,基音轮廓信息的编码是最重要的问题,若采用标量量化,每帧(10ms)用8bit对基音周期进行编码,编码速率将达到800bit/s。但是现在可以采用矢量量化技术,使其比特率可降低到每个音节8bit,相当于每秒16~40bit(每秒钟发音2~5个音节),加上每个音节的拼音和声调编码用11bit,音长和能量因子每音节各需用5bit,音联标志每秒用1bit,共需传输30bit/音节,则比特率为60bit/s~150bit/s。这就是汉语识别合成型声码器所能降低的最低速率的下限。

二、宽频带高音质声频编码技术

语音编码技术在沿着极低速率语音编码方向发展的同时,近年来又适应数字音频广播、电话会议、消费电子技术等方面的强大客观需求,朝着宽频带高音质声频编码的方向发展,这也是语音编码目前一个很重要的发展动向,受到人们的极大关注。

宽频带声频有供人们娱乐和鉴赏的功能,因此对于宽频带声频编码的重建语音的音质有很高的要求。目前的宽频带声频编码一般都是采用较高比特率的波形编码,以保证重建语音的质量能够达到要求。当然,这些波形编码可以是时域的,可以是频域的,还可以是变换域的。

下面介绍一种实用的宽频带高音质声频编码器,即由日本索尼公司提出的“自适应变换声学编码器(Adaptive Transform Acoustic Coder,ATRAC)”。

1.编码系统的组成

频谱

信号

图1 ATARC 编、译码器原理方框图

L 0~5.5 PCM

音响

图2 ATARC信号分析-合成原理方框图

2.设计特点

ATRAC的设计充分利用了人耳的以下听觉特性。

(1)等响度即对于同样声压级的声音,人耳实际感觉到的音量却是随频率而变化的。

(2)同时掩蔽即当几个跨度不同的声音同时存在时,强声使得较弱的声音难以听见。这种特性受掩蔽声音和被掩蔽声音之间的相对频率关系影响很大。

(3)异时掩蔽即不同时间先后产生的声音之间的掩蔽。强声音掩蔽其后产生的弱声音,称为“正向掩蔽”;弱声音短暂地被其后产生的强声音所掩蔽,称为“反向掩蔽”。

(4)对频谱形状的依赖即如果信号能量相同,听觉对频谱宽阔平坦的类噪声信号的S/N敏感程度,要比之对陡峭的单音信号的敏感程度低得多。

3.编码系统的工作原理

ATRAC的工作按照下述步骤进行:

(1)音频分帧它将输入声音信号每512个样值分为一帧,构成一个声音帧,时间约为11.6ms,然后以帧为单位进行处理。

(2)子带分割用上面图2所示的两级QMFB将一帧信号分成高(H:11~22kHZ)、中(M:5.5~11kHZ)、低(L:0~5.5kHZ)3个频段。

(3)谱分析利用MDCT得到各帧的频谱。为了更有效的利用音乐信号的非平稳性质和人耳的掩蔽效应,MDCT的变换长度是可变的。在高、中、低3个频段均设长、短两个变换组长(窗)模式;若选择长模式,则无论在哪个频段均只做一次变换;若采用短模式,则在高频段要做8次MDCT,在中、低频段则做4次MDCT。

(4)归一化以各组频谱数据的最大绝对值为基准,将各参数的幅度变换至(-1,1)范围,然后按该编码单元的比特赋值进行量化。

(5)比特分配按照变换编码中有关比特分配的原则和方法进行比特分配。

近年来,随着数字通信、计算机技术、信号处理技术、微电子技术等相关技术的迅速发展和广泛应用,语音编码技术的发展十分迅速,不断研发出了新的算法,相信随着相关科技的进一步发展,语音编码技术一定能取得更多的突破。

参考文献

(1)吴家安,张会生等编著.语音编码技术及其应用.北京:机械工业出版社,2006(2)吴家安主编.现代语音编码技术.北京:科学出版社,2008

(3)鲍长春编著.数字语音编码原理.西安:西安电子科技大学出版社,2007

(4)李烨,唐昆等编著.数字语音编码技术.北京:电子工业出版社,2013

(5)姚天任编著.数字语音编码.北京:电子工业出版社,2011

(6)王文兴. 语音编码技术的分析与应用. 焦作工学院学报(自然科学版),21(3)(7)王少勇,王秉均. 语音编码技术的现状与发展. 天津通信技术,第二期

如有侵权请联系告知删除,感谢你们的配合!

语音识别技术文献综述

语音识别技术综述 The summarization of speech recognition 张永双 苏州大学 摘要 本文回顾了语音识别技术的发展历史,综述了语音识别系统的结构、分类及基本方法,分析了语音识别技术面临的问题及发展方向。 关键词:语音识别;特征;匹配 Abstact This article review the courses of speech recognition technology progress ,summarize the structure,classifications and basic methods of speech recognition system and analyze the direction and the issues which speech recognition technology development may confront with. Key words: speech recognition;character;matching 引言 语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。 1.语音识别技术的发展历史 语音识别技术的研究开始二十世纪50年代。1952年,AT&Tbell实验室的Davis等人成功研制出了世界上第一个能识别十个英文数字发音的实验系统:Audry系统。

语音识别发展现状与展望

中国中文信息学会第七次全国会员代表大会 暨学会成立30周年学术会议 语音识别发展现状与展望中科院自动化研究所徐波 2011年12月4日

报告提纲 ?语音识别技术现状及态势?语音识别技术的行业应用?语音识别技术研究方向?结论与展望

2010年始语音识别重新成为产业热点?移动互联网的兴起成为ASR最重要的应用环境。在Google引领下,互联网、通信公司纷纷把语音识别作为重要研究方向 –Android系统内嵌语音识别技术,Google语音 翻译等; –iPhone4S 上的Siri软件; –百度、腾讯、盛大、华为等都进军语音识别领 域; –我国语音技术领军企业讯飞2010年推出语音云识别、讯飞口讯 –已有的QQ2011版语音输入等等

成熟度分析-技术成熟度曲线 ?美国市场调查咨询公司Gartner于2011年7月发布《2011新兴技术成熟度曲线》报告:

成熟度分析-新兴技术优先矩阵?Gartner评出了2011年具有变革作用的技术,包括语音识别、语音翻译、自然语言问答等。其中语音翻译和自然语言问答有望在5-10年内获得大幅利用,而语音识别有望在2-5年内获得大幅利用;

三十年语音识别技术发展 ---特征提取与知识方面?MFCC,PLP,CMS,RASTA,VTLN;?HLDA, fMPE,neural net-based features ?前端优化 –融入更多特征信息(MLP、TrapNN、Bottle Neck Features等) ?特征很大特点有些是跟模型的训练算法相匹配?大规模FSN图表示,把各种知识源集中在一起–bigram vs. 4-gram, within word dependencies vs. cross-word

语音识别技术

目前主流的语音识别技术是基于统计模式识别的基本理论。一个完整的语音识别系统可大致分为三部分: (1)语音特征提取: (2)声学模型与模式匹配(识别算法) (3)语义理解:计算机对识别结果进行语法、语义分析。 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR), 语音识别的发展简史 1952年AT& T Bell实验室实现了一个单一发音人孤立发音的十个英文数字的语音识别系统,到现在的人机语音交互。语音识别研究从二十世纪50年代开始到现在历半个多世纪的蓬勃发展,在这期间获得了巨大的进展。 现代语音识别技术研究重点包括即兴口语的识别和理解,自然口语对话,以及多语种的语音同声翻译。 语音识别应用的特点 1.语音识别系统必须覆盖的功能包括: (1)语音识别系统要对用户有益(希望它是能检测到的)。例如提高生产率,容易使用,更好的人机界面,或更自然的信息交流模式。 (2)语音识别系统要对用户“友好”。这种“友好”的含义是:用户在和系统进行语音对话时感到舒适;系统的语音提示既有帮助,又很亲近。 (3)语音识别系统必须有足够的精度 (4)语音识别系统要有实时处理能力;例如系统对用户询问的响应时间要很短。 2. 语音识别错误的处理 有以下四种方式可以处理这个问题。 (1)错误弱化法。这种处理仅仅花费用户很少一点时间,对用户几乎没什么其它不利影响。 (2)错误自检纠正法 系统利用已知任务的限制自动地检测并纠正错误。 (3)确认或多层次判定

(4)拒绝/转向人工座席。系统对其中通常较易导致系统识别错误的极少部分语音指令拒绝做出识别决定,而是将其转给人工座席。 在很多情况下,语音识别技术可以充分发挥出RFID的潜能: 1.积压产品、脱销产品 2.被废弃、被召回或已过期产品 3.回收的商品 4.促销产品 RFID系统在利用原有语音导向投资的情况下可以大大增加收益 语音识别技术在邮件分拣中的应用 现代化分拣设备在邮政上的应用大大提高了邮件处理的效率。但是,并不是所有的邮件都能上分拣机处理,那些需要人工处理的邮件成了邮政企业实现自动化的瓶颈。邮政使用人工标码技术以及先进的计算机软件 系统来处理不能上机的邮件,仍需要大量的劳动力。 由MailCode公司开发并准备申请专利的Spell-ItTM软件技术通过提高系统数据库能力的方式对语音识别自动化设备进行了革命性的变革。这种技术提供了无限的数据库能力,并且保证分拣速度不会因数据库的增大而减小。由各大语音引擎公司开发的系统还支持世界上的各种主要语言,这样,语音技术就成为世界性的产品。 以英语语音识别系统为例,系统建立了36个可识别字符26个字母加上0~9的10个数字,同时还建立了一套关键词。Spell-It软件使用这些字符来识别成千上万的口语词汇和无数的词语组合。 对于大公司的邮件收发中心来说,使用MailCode公司的Spell-It软件技术,分拣员实际上只需发出几个字符的音来找到和数据库中相对应的词。例如:碰到了寄给Joseph Schneider的邮件,操作员只需发出“J”、“S”、“C”和“H”几个音就可以得到准确的分拣信息。 姓名和邮箱编码:Jennifer Schroeder, 软件工程部;Joseph Schneider, 技术操作部;Josh Schriver, 技术操作部,因为这三个姓名全都符合(J,S,C,H)的发音标准。邮件中心的操作员知道邮件实际上是寄给Joseph Schneider的,就可以把邮件投入Joseph Schneide的信箱了。 邮局要把邮件按投递路线分发,分拣员必须熟悉长长的投递段列表以及各种各样的国际邮件投递信息。Spell-It技术把地址、投递路线等信息都存入了系统,这样就大大方便了分拣工作。 例如,有一件寄往Stonehollow 路2036号的邮件。使用语音识别技术,分拣员仅仅需要发出“2”、“0”、“S”、“T”和“O”几个音,如表2所示,数据库就会给出所有可能和这几

语音识别的发展及应用

语音识别的发展及应用 本文介绍了隐马尔可夫模型(Hidden Markov Model,HMM),传统的人工神经网络语音识别方法以及改进的人工神经网络,针对最近研究热点深度学习在语音识别中的应用做了详细的描述,并对与人工神经网络在语音识别中的缺点进行阐述,就如何将HMM与深度神经网络联合起来运用到语音识别中进行详细的分析与介绍。 标签:隐马尔科夫模型人工神经网络深度学习 一、引言 伴随着计算机技术的不断进步以及人工智能学科的飞速发展。人们对大脑学习、思维机能的研究逐渐深入。人工神经网络作为借鉴人脑神经元互相连结构的信息处理网络,受到了广泛的关注。深度学习作为人工神经网络的一个分支,能够从海量的数据中挖掘到有效的信息,成为语音识别领域的一个研究热点。 二、隐马尔科夫模型 隐马尔可夫模型[3](HMM)是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程——具有一定状态数的隐马尔可夫链和显示随机函数集。 隐马尔科夫模型(HMM)可以用五个元素来表示,包括两个状态集合和三个概率矩阵:1.隐含状态S;2.可转移状态O;3aaaa.初始状态概率矩阵π;4.隐含状态转移概率矩阵A;5.观测状态转移概率矩阵B。一般的,可以用λ=(A,B,π)三元组来简洁的表示一个隐马尔科夫模型。应用隐马尔科夫模型通常解决三类基本问题:1.评估问题;2.解码问题;3.学习问题。 隐马尔可夫模型是目前进行声学建模的主流技术。采用5状态的连续HMM 模型(见图1),其中1、5状态只起连接作用,没有观测概率,第2、3、4状态有高斯概率分布,假设特征参数是相互独立的,所以规定协方差矩阵为对角阵。 图1 五状态HMM模型结构 三、深度神经网络模型 1.神经网络的基本概念 神经网络即人工神经网络,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法的数学模型。此网络依靠系统的复杂程度,通过调整内部大

语音识别技术原理及应用

语音AgentNet 的整体实现张宇伟

摘要: 本文论述了一个人机对话应用的实现(我命名它为AgentNet)。其应用实例为一种新的整合了语音技术的智能代理网络服务。 服务器端开发使用了微软SQL SERVER 7.0技术,客户端使用了微软Agent ,微软Specch SDK5语音合成,和语音识别技术。网络连接使用了SOCKET 技术,并论述了高层网络协议的实现。 [关键词] 人机对话,MS-AGENT,语音合成,语音识别,网络编程 [Abstract] This paper discuss a new actualization of man-machine conversation application, which is based on a modal of network service. And I name this service with the name of AgentNet. The development of this service used Microsoft SQL SERVER 7.0. And the client used the technology of Microsoft Agent, TTS (Text To Speech),SR(Speech Recognition).Also the client and the server connect with SOCKET. On the SOCKET, the paper discuss the development of High-Level net protocol. [Key Words] Man-Machine Conversation, MS-AGENT, TTS , SR ,Net Work Programming

语音识别基本知识及单元模块方案设计

语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 1语音识别的基本原理 语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示: 未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。显然,这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。2语音识别的方法 目前具有代表性的语音识别方法主要有动态时间规整技术(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)、人工神经网络(ANN)、支持向量机(SVM)等方法。 动态时间规整算法(Dynamic Time Warping,DTW)是在非特定人语音识别中一种简单有效的方法,该算法基于动态规划的思想,解决了发音长短不一的模板匹配问题,是语音识别技术中出现较早、较常用的一种算法。在应用DTW算法进行语音识别时,就是将已经预处理和分帧过的语音测试信号和参考语音模板进行比较以获取他们之间的相似度,按照某种距离测度得出两模板间的相似程度并选择最佳路径。 隐马尔可夫模型(HMM)是语音信号处理中的一种统计模型,是由Markov链演变来的,所以它是基于参数模型的统计识别方法。由于其模式库是通过反复训练形成的与训练输出信号吻合概率最大的最佳模型参数而不是预先储存好的模式样本,且其识别过程中运用待识别语音序列与HMM参数之间的似然概率达到最大值所对应的最佳状态序列作为识别输出,因此是较理想的语音识别模型。 矢量量化(Vector Quantization)是一种重要的信号压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是将若干个语音信号波形或特征参数的标量数据组成一个矢量在多维空间进行整体量化。把矢量空间分成若干个小区域,每个小区域寻找一个代表矢量,量化时落入小区域的矢量就用这个代表矢量代替。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量实现最大可能的平均信噪比。在实际的应用过程中,人们还研究了多种降低复杂度的方法,包括无记忆的矢量量化、有记忆的矢量量化和模糊矢量量化方法。 人工神经网络(ANN)是20世纪80年代末期提出的一种新的语音识别方法。其本质上是一

浅谈语音识别技术的应用和发展

浅谈语音识别技术的应用和发展 摘要语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的技术,其最终目标是实现人与机器进行自然语言通信。语音作为一个交叉学科,具有深远的研究价值,近50年的研究发展,语音识别技术已经有了极大的发展。本文介绍了语音识别技术的基本原理和应用,并且对语音识别技术的发展趋势进行了展望。 关键词语音识别;应用;发展 0 引言 语音是人类互相之间进行交流时使用最多、最自然、最基本、最重要的信息载体。在高度信息化的今天,语音处理的一系列技术及其应用已经成为信息社会不可缺少的组成部分。语音的产生是一个复杂的过程,包括心理和生理等方面的一系列因素。当人们需要通过语音表达某种信息时,首先是这种信息以某种抽象的形式表现在说话人的大脑里,然后转换为一组神经信号,这些神经信号作用于发声器官,从而产生携带信息的语音信号。 1 语音识别的研究历史及现状 在国外语音识别的研究工作可以追溯到上世纪50年代。1952年AT&T贝尔实验室的Audry系统是第一个可以识别十个英文数字的语音识别系统。 上世纪60年代末70年代初出现了语音识别方面几种基本思想,其中重要成果是提出了信号线性预测编码(LPC)技术和动态时间规整(DTW)技术,有效的解决了语音信号特征提取和不等长语音匹配问题,同时,还提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。 上世纪80年代语音识别研究进一步走向深入,其显著特征是隐马尔可夫模型(HMM)和人工神经网络(ANN)在语音识别中的成功应用。上世纪90年代,在计算机技术、电信应用等领域飞速发展的带动下,迫切的要求语音识别系统从实验室走向实际应用。具代表性的是IBM的Via V oice和Dragon公司的Dragon Dictate 系统,这些语音识别系统具有说话人自适应能力,新用户不需要对全部词汇进行训练便可在使用中不断提高识别率[1]。

语音识别技术在手机中的应用

语音识别的应用 语音识别可以应用的领域大致分为大五类:办公室或商务系统。典型的应用包括:填写数据表格、数据库管理和控制、键盘功能增强等等。制造业:在质量控制中,语音识别系统可以为制造过程提供一种“不用手”、“不用眼”的检控(部件检查)。电信:相当广泛的一类应用在拨号电话系统上都是可行 的,包括话务员协助服务的自动化、国 际国内远程电子商务、语音呼叫分配、 语音拨号、分类订货。医疗:这方面的 主要应用是由声音来生成和编辑专业的 医疗报告。其他:包括由语音控制和操 作的游戏和玩具、帮助残疾人的语音识 别系统、车辆行驶中一些非关键功能的 语音控制, 如车载交通路况控制系统、 音响系统。 当语音识别技术应用到计算机桌面 的时候,这看起来似乎是一个好主意。 但是,对于大多数人来说,语音识别还 不能取代键盘和鼠标。现在,语音技术 正用于一个全新的环境:手机。语音识 别技术在手机中的应用将进一步推动这 语音识别是以语音为研究对象, 通过语音信号处理和模式识别让机器自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。 语音识别技术在手机中的应用

专题报道2011年第7期 种技术向新的方向发展和应用。这是语音识别技术在台式电脑应用中从来没有涉足的方向。 IBM在60年代初期创建了一个名为“Shoebox”的试验性的语音识别系统。这个系统解决了口语算法问题。语音识别技术是在50年代作为一项早期的技术第一次出现的,当时主要是由于好奇。在60年代初,IBM的“Shoebox”设备能够识别出16个口语单词并且能够回答简单的数学问题,如“3 + 4 =?”。 Dragon Systems在80年代初为DOS计算机推出的DragonDictate可能是第一个语音识别应用程序。这个应用程序只能识别单个单词,每次只说一个单词。随着时间的推移,这个应用程序已经发展成为名为“Dragon NaturallySpeaking”(目前是第11个版本,由Nuance通讯公司所有)的产品。这个应用程序能够翻译以正常的会话语音和速度读出的文本。 语音识别技术在台式电脑中的应用有两个制约因素。第一,为了使这个应用程序以更高的准确性工作,这个应用程序必须要进行训练以便识别用户的语音特征。Windows Vista和Windows 7操作系统中的本地语音转换文本技术和Dragon NaturallySpeaking等第三方产品仍然都需要一个用户训练期才能使用。 第二个制约因素是键盘的流行程度。大多数人已经习惯于键盘打字而不是讲话,因此,语音控制面临Dvorak键盘布局同样的应用障碍。当简单的老式QWERTY键盘供货充足并且工作的很好的时候,为什么要学习使用Dvorak键盘呢? 微软TellMe团队是负责为多媒体环境开发语音识别技术的部门。TellMe团队高级产品经理Abhi Rele指出,在台 式电脑环境,用户有方便的人机交流模 式,如键盘和鼠标。因此,语音的使用 主要是针对语音爱好者的。 语音控制的计算更广泛的应用需要 两件事情:更好的方便的应用和主要使 用语音的地方。手机正是很长时间以来 一直在增长的这种地方。 Nuance负责产品管理和营销的副总 裁Matt Revis解释说,台式电脑和移动环 境的区别是这样的:台式电脑是一个固 定的环境,重点完全在于台式电脑的使 用情况。因此,台式电脑的语音技术主 要执行如下任务:支持办公应用程序、 网络浏览、通讯等。在移动方面,语音 更多地用于支持各种生活方式方面:移 动中的专业人员、户外的有趣活动、免 提电话等等。 Gartner分析师Tuong Nguyen赞同这 个观点:语音在移动环境中更有意义。 他说,从使用的角度看,掌上设备的语 音识别功能价值更大。它增加了用户友 好的、方便的输入方式。 Nguyen补充说,如果不用 语音技术说出一个简单的说明语 句,而是翻动许多菜单或者努力 地在小显示屏键盘上进行输入, 语音识别的价值就显现出来了。 随着触摸屏设备(没有物理键 盘)应用的增长,语音识别技术 将用来增强数据输入和输出。语 音识别还支持免提要求或者法律 要求。 在移动设备方面 因为移动设备一般仅支持 台式电脑的一部分存储和处理功 能,语音处理需要一些时间才能 以基本的形式出现在手机中。 语音处理Springer手册解释了手机 在2000年代初的情况。尽管那时还有 一些局限性,但是,手机经过编程之后 能够识别逐个数字的拨号语音,在某种 程度上还能识别人的名字。主要问题是 内存,因此,大多数手机一次只能识别 10个数字或者名字。但是,这些作者指 出的另一个问题是这个功能使用的比较 少,可能是因为手机厂商在这方面的营 销很糟糕。 随着手机的增加内存和增强处理能 力,普通手机的识别能力也增强了。三 星电子在2005年发布的售价99美元的 SCH-p-207型手机增加了语音至文本的 听写功能和语音拨号功能。随着内存达 到数百MB和存储容量达到数GB,目前 这一代智能手机很少受到限制。 另一个关键的进步是网络速度。 速度更快的无线网络浪潮抬高了许多大 船,包括最新一代的语音处理技术。速 度更快的网络能够把语音处理任务从网 络迁移到远程服务器。 谷歌语音搜索产品经理Amir Mane

语音识别研究及应用

语音识别研究及应用 目前关于语音识别的研究及应用主要集中在以下几个方面: 一、语音控制(Voice\Command): 即用人声控制机器的动作。目前单独支持中文或英文的语音控制环境已经比较成熟,市场上的各产品都能较好地实现,但同时支持中文和英文语音控制的产品并不多见,而目前中国众多电脑使用者大多同时使用中英文软件。 二、电子发声(Voice—Text): 即让电脑念文章,这是人与电脑沟通的一个重要方面,英文电子声研究成果很多,中文还处于起步状况。但此类软件还未有实质性突破,主要问题在于电子味道较浓。单词的电子发音较好,但连续语音方面效果较差,而且大多设置复杂,无法直接使用。 三、连续语音识别(Continual Speech): 中英文连续语音识别技术都已进入使用阶段,IBMVIAVOICE是典型产品,但同样存在无法实现中英文混合识别问题。连续语音识别目前的主要问题集中在: 1、非标准音的用户需要较长的学习适应过程 2、由于使用隐马尔科夫算法,对中文多音字的识别虽然有了很大进展,但依旧存在很大问题,目前主要的识别错误基本都来自此类问题。 四、非连续语音识别(WordRecognize): 对有限词的识别技术相对较完善,但大词汇量非特定人等方面识别效果很差。尤其对其中爆破音、后鼻音的识别十分困难。 五、语音学习(Training): 这是语音识别的一个较新方向,它的侧重点与传统的语音识别不同,通常意义的语音识别是通过电脑适应人的发音来识别人的说话,而它则要求人模仿标准发音,其面临的困难是如何衡量人模仿的好坏。金洪恩公司的《随心所欲说英语》就是采用“语音学习”的技术制作的,并收到了良好的效果。

语音识别技术的发展与未来

语音识别技术的发展与未来-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

语音识别技术的发展与未来 与机器进行语音交流,让它听明白你在说什么。语音识别技术将人类这一曾经的梦想变成了现实。语音识别就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。 在1952年的贝尔研究所,Davis等人研制了世界上第一个能识别10个英文数字发音的实验系统。1960年英国的Denes等人研制了第一个计算机语音识别系统。 大规模的语音识别研究始于上世纪70年代以后,并在小词汇量、孤立词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向大词汇量、非特定人连续语音识别。 同时,语音识别在研究思路上也发生了重大变化,由传统的基于标准模板匹配的技术思路开始转向基于统计模型的技术思路。此外,业内有专家再次提出了将神经网络技术引入语音识别问题的技术思路。 上世纪90年代以后,在语音识别的系统框架方面并没有什么重大突破。但是,在语音识别技术的应用及产品化方面出现了很大的进展。比如,DARPA是在上世界70年代由美国国防部远景研究计划局资助的一项计划,旨在支持语言理解系统的研究开发工作。进入上世纪90年代,DARPA计划仍在持续进行中,其研究重点已转向识别装置中的自然语言处理部分,识别任务设定为“航空旅行信息检索”。 我国的语音识别研究起始于1958年,由中国科学院声学所利用电子管电路识别10个元音。由于当时条件的限制,中国的语音识别研究工作一直处于缓慢发展的阶段。直至1973年,中国科学院声学所开始了计算机语音识别。 进入上世纪80年代以来,随着计算机应用技术在我国逐渐普及和应用以及数字信号技术的进一步发展,国内许多单位具备了研究语音技术的基本条件。与此同时,国际上语音识别技术在经过了多年的沉寂之后重又成为研究的热点。在这种形式下,国内许多单位纷纷投入到这项研究工作中去。 1986年,语音识别作为智能计算机系统研究的一个重要组成部分而被专门列为研究课题。在“863”计划的支持下,中国开始组织语音识别技术的研究,并决定了每隔两年召开一次语音识别的专题会议。自此,我国语音识别技术进入了一个新的发展阶段。 自2009年以来,借助机器学习领域深度学习研究的发展以及大数据语料的积累,语音识别技术得到突飞猛进的发展。

用于智能家居语音识别系统设计

仪器科学与电气工程学院 本科毕业论文(设计)开题报告题目:用于智能家居的语音识别系统设计 学生姓名:学号: 专业:电气工程及其自动化 指导教师:讲师 2015年1月3日

1. 选题依据 1.1选题背景 语言作为人类信息交流中最重要的和最方便的方式,人与机器的交流能否像人与人一样自如,是人们研究的问题。控制论创始人维纳在1950年就曾指出:“通常,我们把语言仅仅看作人与人之间的通信手段,但是,要使人向机器,机器向人以及机器向机器讲话,那也是完全办得到的”。 随着现代科学技术的进一步发展和人民生活水平不断的提高,人们对家庭住宅需求的概念也发生了彻底的改变。人们正在从以往追求房屋空间的宽阔和装饰的亮丽、豪华,向着追求品味、安全、舒适、便捷和智能方向发展。现在的家庭不仅要满足人们生活、工作、娱乐和交流的需要,同时还可以提供充分的安全防护、物业管理等手段。智能家居是建筑艺术、生活理念与信息技术、电子技术等现代高科技手段完美结合的产物,它的出现满足了人们对住宅高性能、智能化的要求21世纪信息时代的到来,IT产业的发展和人们生活水平的提高,“智能家居”、“家庭自动化”、“网络家电”、“家庭网络”等技术的推动,智能家居的生活已经近在咫尺。 在智能家居中传统的家用电器的控制,无外乎两种控制方式:手动或遥控。随着家用电器的增多,开关和遥控越来越多,使用极不方便。这时,我们可以釆用语音识别的方式控制,例如,在观看电视频道时,我们可以很方便地直接说出“中央一套”来,所以语音识别及控制在智能家居中尤其重要。 1.2国内外研究现况 1、语音识别技术的发展 就技术而言,目前国内外对语音识别理论及各种实用算法的研究是一热点。人们普遍关心的问题是不断提高语音识别的识别率、识别更多的词汇量、扩大语音识别的应用等研究。语音识别技术发展到今天,PC 机的语音识别系统己经趋于成熟,而且还出现了一些具有实用价值和市场语音识别前景的语音识别芯片。近几年来,个人消费类电子产品的广泛使用,使大量的识别系统从实验室 PC 平台转移到嵌入式平台设备中,现在嵌入式对特定人语音识别系统的识别精度己经达到 98%以上。嵌入式语音识别系统和 PC 机的语音识别系统相比,虽然其运算速度和内存容量有一些限制,但是它也有各自的特点。嵌入式系统体积小、可靠性高、耗电低、投入小、便于移动等优点,是嵌入式语音识别系统和 PC 机的语音识别系统相比的最大优势。而且嵌入式语音识别系统多为实时系统,当用户讲话后,系统能够立即完成词条识别并作出反应。这些特点决定了嵌入式语音识别系统的应用十分广泛。可以预测在近几年内,嵌入式语音识别系统的应用将更加广泛。各种语音识别系统将出现在市场上。根据美国专家预测,具有语音识别功能的产品可达 50 亿美元。在短期内还不可能具

语音识别的研究现状和应用前景

语音识别的研究现状和应用前景 语音识别技术并不是一夜之间冒出来的神话,早在三四十年前,在美国的一些大学和研究单位,就已经有人开始从事这一方向的研究,并有一些相关论文发表;七十年代前后,研究的脉络日渐清晰,于是贝尔实验室和国际商用机器公司(I BM)等都先后建立了专门的研究机构。今天这两家公司在这一领域都已取得了显著的成果,并且在商业上应用成功,但贝尔实验室主要是偏重于电信方面应用的语音识别系统,如电话查询等;而I BM则偏重于商务应用,因而在连续语音识别上取得了不小的成功。 不谈商业方面的应用,事实上,很多家公司都提供语音识别的引擎 (En gi ne),并且都表示能支持微软的SA PI。看一看 SA PI4.0 SU ITE 就不难发现,微软在这方面的研究并不逊于任何一家公司,只是很奇怪它居然没有将成果商业化。微软同时提供了一系列引擎,如 Spee ch R e cog ni ti on ( 语音识别)、C omm and & C ont rol( 发布指令并控制)、Ph one Qu ery ( 电话语音识别)、T ext to spee ch( 文本语音转换) 等。 今天,许多用户已经能享受到语音技术的优势了,可以对计算机发送命令,或者要求计算机记录下用户所说的话,以及将文本转换成声音朗读出来。尽管如此,距离真正的人机自由交流的前景似乎还远。目前,计算机还需要对用户作大量训练才能识别用户的语音。并且,识别率也并不总是尽如人意。换言之,语音识别技术还有一段路需要走,要做到真正成功的商业化,它还必须在很多方面取得突破性进展,这实际就是其技术的未来走向。 就算法模型方面而言,需要有进一步的突破。 目前能看出它的一些明显不足,尤其在中文语音识别方面,语言模型还有待完善,因为语言模型和声学模型正是听写识别的基础,这方面没有突破,语音识别的进展就只能是一句空话。目前使用的语言模型只是一种概率模型,还没有用到以语言学为基础的文法模型,而要使计算机确实理解人类的语言,就必须在这一点上取得进展,这是一个相当艰苦的工作。此外,随着硬件资源的不断发展,一些核心算法如特征提取、搜索算法或者自适应算法将有可能进一步改进。可以相信,半导体和软件技术的共同进步将为语音识别技术的基础性工作带来福音。 就自适应方面而言,语音识别技术也有待进一步改进。 目前,象IB M 的V i aV oi ce 和A si a works 的 SPK都需要用户在使用前进行几百句话的训练,以让计算机适应你的声音特征。这必然限制了语音识别技术的进一步应用,大量的训练不仅让用户感到厌烦,而且加大了系统的负担。并且,不能指望将来的消费电子应用产品也针对单个消费者进行训练。因此,必须在自适应方面有进一步的提高,做到不受特定人、口音或者方言的影响,这实际上也意味着对语言模型的进一步改进。现实世界的用户类型是多种多样的,就声音特征来讲有男音、女音和童音的区别,此外,许多人的发音离标准发音差距甚远,这就涉及到对口音或方言的处理。如果语音识别能做到自动适应大多数人的声线特征,那可能比提高一二个百分点识别率更重要。事实上,V i aV oi ce 的应用前景也因为这一点打了折扣,只有普通话说得很好的用户才可以在其中文版连续语音识别方面取得相对满意的成绩。

语音识别技术论文

摘要:语音识别技术是一门涉及面很广的交叉学科。随着新理论的提出和应用,语音识别技术取得了很大的进步,许多产品已经得以实际的应用,但在其进一步的发展进程中,还有许多棘手的问题有待解决。 关键词:语音识别;动态时间规整算法;人工神经元网络 1 背景介绍 语言是人类特有的功能,是人们思维最重要的寄托体,是人类交流最主要的途径。语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。语言和语音与人类 社会科学文化发展紧密相连。 语音识别技术是让机器接收,识别和理解语音信号,并将其转换成相应的数字信号的 技术。它是一门交叉学科,涉及到语音语言学、数理统计、计算机、信号处理等一系列学科。 2 发展历史 1952年贝尔实验室的Davis等人研制成功了能识别十个英文数字发音的Audry系统,标志着语音识别技术研究工作开始。20世纪60年代计提出了动态规划(Dynamic programming)和线性预测分析技术(Liner Predictive)等重要成果。20世纪70年代,语音识别领域取得了突破。实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别 系统。20世纪80年代语音识别研究进一步走向深入, 基于特定人孤立语音技术的系统研 制成功, 隐马尔可夫模型和人工神经元网络(Artificial Neural Network)在语音识别中的成 功应用。进入20世纪90年代后语音识别系统开始从实验室走向实用。我国对语音识别的研究开始于20世纪80年代,近年来发展迅速,并取得了一系列的成果。 3 具体应用 随着计算机技术、模式识别等技术的发展,适应不同场合的语音识别系统相继被开发 出来,语音识别及处理技术已经越来越突现出其强大的技术优势。近三十年来,语音识别 在计算机、信息处理、通信与电子系统、自动控制等领域的应用越来越广泛。 在许多政府部门、商业机构,语音识别技术的应用,可免除大量操作人员的重复劳动,既经济又方便。如:语音邮件、IP电话和IP传真、电子商务、自动语音应答系统、自动 语音信箱、基于IP的语音、数据、视频的CTI系统、综合语音、数据服务系统、自然语音识别系统、专家咨询信息服务系统、寻呼服务、故障服务、秘书服务、多媒体综合信息服务、专业特别服务号(168自动信息服务系统,112、114、119等信息查询系统)等。许多特定环境下,如工业控制方面,在一些工作环境恶劣、对人身有伤害的地方(如地下、深水及辐射、高温等)或手工难以操作的地方,均可通过语音发出相应的控制命令,让设备完成各种工作。

基于深度学习的语音识别——文献阅读笔记

语音识别 1 《基于深度学习的语音识别应用研究》 语音识别主要作用就是把一段语音信号转换成相对应的文本信息,系统主要由声学特征提取、语言模型、声学模型和解码器等组成。训练识别的过程是从原始波形语音数据中提取的声学特征经过训练得到声学模型,与发声词典、语言模型组成网络,对新来的语音提取特征,经过声学模型表示,通过维特比解码得出识别结果。 特征 系统主要由声学特征提取、语言模型、声学模型和解码器等组成。 音识别中的特征包括:线性预测参数(LinearPredictionCoefficients,LPC)、倒谱系数(Cepstral Coefficients, CEP)、梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCC)和感知线性预测系数(Perceptual Linear Prediction, PLP)等。 声学模型 声学基元选择 词(Word)、音节(Syllable)、声韵母(Initial/Final) 以及音素(Phone) HMM声学建模 隐马尔科夫模型 声学模型训练准则 最大似然准则 语言模型 统计语言模型,通过概率来表示词序列在语言环境中出现的可能性,并不是基于语法规则的简单判断。 解码器 通过在一个由语言模型、发声词典、声学模型构成的网络空间中 搜索得分较高的状态序列,其中这里的网络空间有动态网络和静态网络,得分主要由声学模型得分和语言模型得分共同决定。 语音识别的深度学习 CNN 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度,这两维的物理意义完全不同!.

输入层、卷积核、特征图(feature map)都是一维的。 用Kaldi中特征提取工具以帧长25ms、巾贞移10ms,提取原始数据生成39维MFCC特征(12维滤波器输出值加上1维对数能量,以及其一阶差分和二阶差分)。分布满足a, =0及德尔塔=1,这么做可以直接避免训练样本分布的重新估计。 总结 通过深度神经网络提取语音特征的方法、深度神经网络提取声韵母属性的方法和深度学习搭建声学模型的方法的语音识别系统与MFCC特征下GMM-HMM 搭建的系统就词识别率的结果比较可以看出,深度学习网络替换GMM模型做状态输出的系统识别错误率最低,深度神经网络提取声韵母属性的方法的效果次之,深度神经网络提取语音特征效果比深度神经网络提取声韵母属性效果差,但是比MFCC的系统好。 2 卷积神经网络在语音识别中的应用 将语音看做二维特征输入时,第一维是时域维度,第二维是频域维度。 DNN上实验证明,多帧串联的长时特征对模型性能的提高很重要。当前帧的前后几帧串联起来构成长时特征。 频域维度上,一般采用梅尔域的滤波带系数( filterbank) 作为参数( 如图% 中选择+ 个滤波频带) 在送入B++ 训练前,将多帧串联构成长时 特征!所有特征都进行了逐句的均值方差规整! 英文标准连续语音识别库TIMIT 主流的语音识别系统基本上都是以隐马尔科夫模型为基础所建立的 倒谱均值方差归一化、声道长度归一化以及RASTA滤波 用深度学习方法提取语音高层特征通常可以采用MFCC、PLP以及filter-bank 等参数作为输入。

语音识别技术的应用

评委一评分,签名及备注队号: 评委三评分,签名及备注 1209 评委四评分,签名及备注评委二评分,签名及备注选题: C 题目:语音识别技术的应用 摘要 语音识别技术(ASR)是一项涉及多学科的综合性技术,并且语音识别系统在现代社会中的应用也越来越广泛,尤其是智能手机客服语音服务方面。因此本文就语音识别技术的各个环节展开建模分析,并通过10段语音样本验证语音识别模型的识别精度。 首先,本文通过Microsoft Visio软件对语音识别技术的基本原理绘制流程框图;然后通过Matlab录制一段语音样本,并对该语音信号做分帧加窗、预加重等预处理操作。 针对问题一,本文从端点检测、特征提取(MFCC参数)、模式识别三个方面展开建模,通过Matlab编程与图像说明语音识别系统的各个环节。对于端点检测环节,我们采取“双门限检测”法找出语音样本的起始点和终止点;特征提取环节,在已经过端点检测的语音样本基础上,本文选取能提高识别性能的MFCC 参数来分析;关于模式识别环节,我们首先对特征参数进行规整,然后基于神经网络算法详细阐述语音识别的过程。 针对问题二,根据问题一中的模型,本文结合软件工程中面向对象(OOD)的分析方法以及用户操作手册编写规范,为手机运营商制定了可行、简单的用户操作规则。 针对问题三,本文通过设计实验来验证语音识别模型的准确性。首先,根据用户操作规则,我们录制了不同情况下不同人的10段语音;然后根据问题一模型建立流程进行语音识别验证;最后结果表明,在本次试验中基于神经网络的语音识别的系统的识别准确率达75%。 关键字:语音识别;端点检测;MFCC;神经网络;OOD

人工智能与语音识别

语音识别及其发展 本文简要介绍了语音识别技术的发展历史,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别在通信等领域中的应用。 ——机器能听懂人类的语言吗?我们能扔掉键盘、鼠标用自然语言操纵计算机吗?随着语音识别技术的发展,梦想正在变为现实。 ——语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。 ——本文将简要介绍语音识别的发展历史,采用的关键技术,面临的困难与挑战以及广阔的应用前景。 1 语音识别的发展历史 ——语音识别的研究工作大约开始于50年代,当时A T& T Bell实验室实现了第一个可识别十个英文数字的语音识别系统——Audry系统。 ——60年代,计算机的应用推动了语音识别的发展。这时期的重要成果是提出了动态规划(DP)和线性预测分析技术(LP),其中后者较好地解决了语音信号产生模型的问题,对语音识别的发展产生了深远影响。 ——70年代,语音识别领域取得了突破。在理论上,LP技术得到进一步发展,动态时间归正技术(DTW)基本成熟,特别是提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。在实践上,实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。 ——80年代,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于A T&T Bell实验室Rabiner等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识。ANN和HMM模型建立的语音识别系统,性能相当。 ——进入90年代,随着多媒体时代的来临,迫切要求语音识别系统从实验室走向实用。许多发达国家如美国、日本、韩国以及IBM、Apple、A T&T、NTT等著名公司都为语音识别系统的实用化开发研究投以巨资。 ——我国语音识别研究工作一直紧跟国际水平,国家也很重视,并把大词汇量语音识别的研究列入“863”计划,由中科院声学所、自动化所及北京大学等单位研究开发。鉴于中国未来庞大的市场,国外也非常重视汉语语音识别的研究。美国、新加坡等地聚集了一批来自大陆、台湾、香港等地的学者,研究成果已达到相当高水平。因此,国内除了要加强理论研究外,更要加快从实验室演示系统到商品的转化。

语音识别的应用前景.

语音识别的应用前景北京双语教育电子有限公司 ????语音识别技术的发展的确经历了一个漫长的渐进过程。二十多年前,它还只是科研人员在实验室里描述的一个梦想般的希望,但两个方面的进步终于促成了这一技术的平民化。其一,半导体技术的发展使得以前只有在巨型机上才能进行的语音识别系统如今在微机上就可以实现。无疑,英特尔公司在这其中扮演了重要的角色,今天,多数的普通家庭都对“Intel Inside” 这样一句广告词耳熟能详,并且也具备足够的支付能力来使用一台高性能微机;其二,软件技术的演进也使得这项技术走向实用,一些核心算法,如特征提取、语音的声学摸型及相应的语言模型,搜索算法及自适应算法等都取得了长足的进展。软硬件技术的有效结合为我们提供了一种全新的远景。很显然,语音处理正在革新这个世界,因为一旦赋予人类语音以力量之后,任何会说话的人都将能自由地应用这种技术。并且,这也是现存的最为自然的用户界面。 ????多数人可能都怀着一种模糊而激动的心情期待着这一新技术的来临,然而,语音识别技术确切地能够为我们带来什么呢?许多行业还并未清晰地意识到该技术所可能开拓的广阔空间。但是,就目前的发展势态及技术进步来看,它将有可能涉足人类生活的每一领域。 ????目前,在信息处理、教育与商务应用、消费电子应用方面,语音识别技术都已经展现出了它的巨大优势。一、语音识别技术在信息处理领域的应用: ????个人电脑的普及在 中国一直有着不小的障碍。多数的中国用户往往会被其复杂的用户界面弄得不知所措。此外,汉字输入也是计算机应用的一个困难,即使五笔字型已经如此著名,但愿意花时间去学并且学好的人也并不很多,而拼音输入对于发音不太准或拼音基础不好的人来讲也成问题。因此,语音识别技术至少首先在这两个方面有着广阔的应用。 ????简单地讲,语音识别技术在信息处理领域的首要的巨大应 用将在于提供了一种全新的人机

相关主题
文本预览
相关文档 最新文档