当前位置:文档之家› 用样本估计总体(频率分布直方图、平均数、方差等)课案-共8页

用样本估计总体(频率分布直方图、平均数、方差等)课案-共8页

用样本估计总体(频率分布直方图、平均数、方差等)课案-共8页
用样本估计总体(频率分布直方图、平均数、方差等)课案-共8页

考点2 用样本估计总体(频率分布直方图、平均数、方差等)

1. (15泰州一模)若数据2,x ,2,2的方差为0,则x=

【考点】极差、方差与标准差. 【答案】2

【分析】因为数据2,x ,2,2的方差为0,由其平均数为

64

x

+,得到22166320444x x x ??

++????-+-=??

? ???????

??,解得x =2. 2.(15江苏高考压轴)样本容量为10的一组数据,它们的平均数是5,频率如图所示,则

这组数据的方差等于 .

第2题图 cqn17

【答案】7.2

【分析】2出现100.44?=次,5出现100.22?=次,8出现100.44?=次,所以

2222

14(25)2(55)4(85)7.210s ??=

?-+?-+?-=?

? 3.(2019江苏苏州市高三上调考)如图是小王所做的六套数学附加题得分(满分40)的

茎叶图,则其平均得分为 .

JSY33

第3题图 【考点】茎叶图. 【答案】31.

【分析】根据茎叶图的数据,得; 数据的平均分为

x =

182830323840

6

+++++=31.

故答案为:31.

4.(淮安都梁中学2019届高三10月调研)某校为了解2019届高三同学寒假期间学习情况,

抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的同学为 人.

zl085 第4题图

【考点】频率分布直方图;用样本的频率分布估计总体分布. 【答案】30

【分析】∵这100名同学中学习时间在6~8小时外的频率为 (0.04+0.12+0.14+0.05)×2=0.7

∴这100名同学中学习时间在6~8小时内为1-0.7=0.3

∴这100名同学中学习时间在6~8小时内的同学为100×0.3=30.

5.(徐州市2019届高考信息卷)甲、乙两个学习小组各有10名学生,他们在一次数学测

验中成绩的茎叶图如图所示,则在这次测验中成绩较好的是 组. 【考点】茎叶图.

第5题图 zl060

【答案】甲

【分析】甲的平均分为63747981838486868890

81.410

x +++++++++=

=甲,

5864677475767679808273.110

x +++++++++==乙;

x x >乙甲,且甲的成绩多集中在80分上,乙的成绩多集中在70分上,

∴甲组的成绩较好些; 故答案为:甲.

6. (南通市2019届高三第三次调研)

为了解学生课外阅读的情况,随机统计了n 名学生

的课外阅读时间,所得数据都在[]50,150中,其频率分布直方图如图所示.已知在

[50 75),中的频数为100,则n 的值为 .

zl071

第6题图

【考点】考查简单统计知识,直方图,频率. 【答案】1000

【分析】由频率分布直方图得在[50 75),之间的频率与组距比值为0.004,由题这区间的频数为100,组距为25,则100

10000.00425

n =

=?.

7. (2019高考冲刺压轴卷江苏试卷一)某校的一次英语听力测试中用以下茎叶图记录了甲、

乙两组各5名学生的听力成绩(单位:分).

第7题图 FGQ26

已知甲组数据的众数为15,乙组数据的中位数为17,则x 、y 的值分别为________. 【考点】茎叶图. 【答案】5,7

【分析】根据茎叶图知,甲组数据是9,15,10+x ,21,27; ∵它的众数为15,∴x =5;

同理,根据茎叶图知乙组数据是9,13,10+y ,18,27, ∵它的中位数为17,∴y =7. 故x 、y 的值分别为:5,7.

8. (15南京师大附中高三上学期12月月考数学试卷)对某种花卉的开放花期追踪调查,

调查情况如表:

花期(天) 11~13 14~16 17~19 20~22 个数

20

40

30

10

则这种卉的平均花期为________天. 【考点】众数、中位数、平均数. 【答案】16

【分析】由表格知,花期平均为12天的有20个,

花期平均为15天的有40个,花期平均为18天的有30个, 花期平均为21天的有10个, ∴这种花卉的评价花期是

1220154018302110

16100

?+?+?+?≈.

9. (15南京市湖滨中学高三上学期10月学情检测数学试卷)如图,是某班一次竞赛成绩

的频数分布直方图,利用组中值可估计其的平均分为 .

Abc2 第9题图

【考点】频率分布直方图.【答案】62

【分析】由频数分布直方图得,总人数是2+4+6+8+10=30人,

利用组中值可估计其的平均分为:

2104306501070890

30

?+?+?+?+? =62.

10. (15宿迁市沭阳县银河学校高三上学期开学试卷)如果数据1x ,2x ,3x ,…,n x 的

方差是a ,若数据31x ﹣2,32x ﹣2,33x ﹣2,…,3n x ﹣2的方差为9,则a = .

【考点】极差、方差与标准差. 【答案】1

【分析】根据题意,设数据1x ,2x ,…,n x 的平均数设为x , ∴方差2

s =

1

n

[21()x x -+22()x x -+…+2()n x x -]=a ; ∴数据31x ﹣2,32x ﹣2,…,3n x ﹣2的平均数为3x ﹣2, 方差2

S =1

n

[21(3232)x x --++22(3232)x x --++…+2(3232)n x x --+] =9·

1

n

[21()x x -+22()x x -+…+2()n x x -]=9a =9; ∴a =1.

11. (2019·扬州中学模拟)如图是某小组在一次测验中的数学成绩的茎叶图,则平

均成绩是________.

JSY147 第11题图

【答案】78

【分析】该小组的平均成绩是

61697377848696

787

++++++=.

12. (2019·南京、盐城模拟)某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生共有________人.

JSY148 第12题图

【答案】300

【分析】由频率分布直方图可得成绩在[300,350)的频率是1-(0.001+0.001+0.004+0.005+0.003)×50=1-0.7=0.3,所以成绩在[300,350)的学生人数是0.3×1 000=300.

13. (2019·无锡模拟)甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图(如图),则他们在这次测验中成绩较好的是________组.

JSY149 第13题图

【答案】甲

【分析】依题意,注意到将甲、乙两组的10名同学的成绩均由小到大排列,可看出甲组的10名同学的成绩均不低于相应位置乙组的10名同学的成绩,因此他们在这次测验中成绩较好的是甲组.

14. 在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面

积等于其他10个小长方形面积和的1

4

,且样本容量为160,则中间一组的频

数为________.

【答案】32

【分析】由频率分布直方图的性质,可设中间一组的频率为x,则x+4x=1,

∴x=0.2,故中间一组的频数为160×0.2=32.

15. 如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分

布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为________.

JSY150 第15题图

【答案】0.2

【分析】由频率分布直方图可知,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,又年龄在[30,35),[35,40),[40,45]的上网人数的频率成递减的等差数列分布,所以年龄在[35,40)的网民出现的频率为0.2.

16. (2019·苏、锡、常、镇四市调研)样本容量为100的频率分布直方图如图所示,

由此估计样本数据落在[6,10]内的频数为________.

JSY151 第16题图

【答案】32

【分析】由直方图可得样本数据落在[6,10]内的频率是0.08×4=0.32,又样本容量是100,所以频数为0.32×100=32.

17. (2019·启东中学模拟)某学校为了解该校600名男生的百米成绩(单位:s),随

机选择了50名学生进行调查,如图是这50名学生百米成绩的频率分布直方图.根据样本的频率分布,估计这600名学生中成绩在[13,15](单位:s)内的人数大约是________.

JSY152 第17题图

【答案】120

【分析】依题意,可估计这600名学生中成绩在[13,15](单位:s)内的人数大约是600×(0.02+0.18)=120.

18. 某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分

数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.

JSY153 第18题图

【答案】1

【分析】当x ≥4时,

89899293929194640

9177

++++++=≠,∴x <4,

89899293929190

917

x +++++++=,∴x =1.

19. (2019·扬州检测)某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),则分数在[70,80)内的人数是________.

JSY154 第19题图

【答案】30

【分析】这些学生中分数在[70,80)内的人数是100×[1-(0.005+0.010+

0.015×2+0.025)×10]=30.

高中数学频率分布直方图

频率分布直方图 作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一 个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距 频率 ,这 样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率. 频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图. 作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出. 知识点1:利用频率分布直方图分析总体分布 例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆 变式:某工厂对一批产品进行了抽样 检测.右图是根据抽样检测后的产品 净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98), [98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 A.90 B.75 C. 60 D.45 变式:某初一年级有500名同学,将他们的 身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在 [)120,130,[)130,140,[]140,150三 组内的学生中,用分层抽样的方法选取 30人参加一项活动,则从身高在 [)130,140内的学生中选取的人数 为 . 知识点2:用样本分估计总体 例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,7 1,49,45, 96 98 100 102 104 106 0.150 0.125 0.100 0.075 0.050 克 频率/组距 100 110 120 130 140 150 身高 频率|组距 0.005 0.010 0.020 a 0.035

样本方差的期望

方差: 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 方差是衡量源数据和期望值相差的度量值。 历史: “方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。 统计学意义: 当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 最近进展:

方差不仅仅表达了样本偏离均值的程度,更是揭示了样本内部彼此波动的程度,也可以理解为方差代表了样本彼此波动的期望。当然,这个结论是在二阶统计矩下成立。 样本方差: 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。样本方差用来表示一列数的变异程度。样本均值又叫样本均数。即为样本的均值。 均值是指在一组数据中所有数据之和再除以数据的个数。 简介: 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22 (()) X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为22 1 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得 ()22211()()()i i E S E x nx E x nE x n n '??= -=-??∑∑

抽样分布习题()

抽样分布习题 1.抽样分布是指( C ) A 一个样本各观测值的分布 B 总体中各观测值的分布 C 样本统计量的分布 D 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( A )。 A μ B x C 2σ D n 2 σ 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( D )。 A μ B x C 2σ D n 2 σ 4.从一个均值μ=10,标准差σ=0.6的总体中随机选取容量为n=36的样本。假定该总体并不是很偏的,则样本均值x 小于 9.9的近似概率为( A )。 A 0.1587 B 0.1268 C 0.2735 D 0.6324 5.假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( B ) A 服从非正态分布 B 近似正态分布 C 服从均匀分布 D 服从2χ分布 6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样

本,当样本容量增大时,样本均值的标准差( C )A 保持不变 B 增加 C 减小D 无法确定 7. 总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分布为( B )。 A 50,8 B 50,1 C 50,4 D 8,8 8.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( B )。 A 正态分布,均值为250元,标准差为40元 B 正态分布,均值为2500元,标准差为40元 C 右偏分布,均值为2500元,标准差为400元 D 正态分布,均值为2500元,标准差为400元 9. 某班学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布是( A ) A 正态分布,均值为22,标准差为0.445 B 分布形状未知,均值为22,标准差为4.45

用样本估计总体(频率分布直方图、平均数、方差等)

考点 2 用样本估计总体(频率分布直方图、平均数、方差等)1. (15泰州一模)若数据2,x,2,2的方差为0,则x=. 【考点】极差、方差与标准差. 【答案】 2 【分析】因为数据2, x, 2, 2 的方差为0,由其平均数为6 x ,得到 4 12 6 x2 6 x 0,解得 x=2. 32x 444 2. 江苏高考压轴)样本容量为10 的一组数据,它们的平均数是5,频率如图所示,则( 15 这组数据的方差等于. 第 2 题图 cqn17 【答案】 7.2 【分析】 2 出现10 0.44次,5出现 100.2 2 次,8出现10 0.4 4 次,所以 s214(25)22(55)24(85)27.2 10 3.(2015江苏苏州市高三上调考)如图是小王所做的六套数学附加题得分(满分40)的茎叶图,则其平均得分为. JSY33 第 3题图 【考点】茎叶图. 【答案】 31. 【分析】根据茎叶图的数据,得; 数据的平均分为 182830323840 x ==31 . 6

故答案为: 31. 4. 2015 届高三 10 月调研 )某校为了解2015 届高三同学寒假期间学习情况,( 淮安都梁中学 抽查了 100 名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这 100名同学中学习时间在6~ 8 小时内的同学为人. zl085 第 4题图 【考点】频率分布直方图;用样本的频率分布估计总体分布. 【答案】 30 【分析】∵这100 名同学中学习时间在6~ 8 小时外的频率为 (0.04+0.12+0.14+0.05 )×2=0.7 ∴这 100 名同学中学习时间在6~ 8 小时内为10.7=0.3 ∴这 100 名同学中学习时间在6~ 8 小时内的同学为100×0.3=30. 5.(徐州市2014 届高考信息卷)甲、乙两个学习小组各有10 名学生,他们在一次数学测验中成绩的茎叶图如图所示,则在这次测验中成绩较好的是 【考点】茎叶图. 组. 第5题图 zl060 【答案】甲 【分析】甲的平均分为 63747981838486868890,x甲1081.4 58646774757676798082; x乙1073.1 x甲x乙,且甲的成绩多集中在80 分上,乙的成绩多集中在70 分上, ∴甲组的成绩较好些; 故答案为:甲. 6.(南通市2015届高三第三次调研)为了解学生课外阅读的情况,随机统计了n 名学生 的课外阅读时间,所得数据都在50,150中,其频率分布直方图如图所示.已知在

样本方差的抽样分布

样本方差的抽样分布 样本方差 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。[ 从一个样本取n个值y1,...,y n,其中n

估计值可以简单地称为样本方差。同样的证明也适用于从连续概率分布中抽取的样本。 样本方差分布 作为随机变量的函数,样本方差本身就是一个随机变量,研究其分布是很自然的。在yi是来自正态分布的独立观察的情况下,s2服从卡方分布: 所以可求;和 如果y i独立同分布,但不一定是正态分布,那么 如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 抽样分布 抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。样本估计量是样本的一个函数,在统计学中称作统计量,因此抽样分布也是指统计量的分布。以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能

样本的平均数所形成的分布,就是样本平均数的抽样分布。 抽样分布定理 (1)从总体中随机抽取容量为n的一切可能个样本的平均数之平均数,等于总体的平均数,即(E为平均的符号,为样本的平均数,μ为总体的平均数)。 (2)从正态总体中,随机抽取的容量为n的一切可能样本平均数的分布也呈正态分布。 (3)虽然总体不是正态分布,如果样本容量较大,反映总体μ和σ的样本平均数的抽样分布,也接近于正态分布。 样本方差的抽样分布 样本方差的抽样分布是指在重复选取容量为n的样本时,样本方差的所有可能取值形成的概率分布。 χ2分布具有如下性质和特点: (1)χ2分布的变量值始终为正。 (2)χ2(n)分布的形状取决与其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称,如图7-2所示。 (3)χ2分布的期望为E(χ2)=n,方差为D(χ2)=2n(n为自由度)。 (4)χ2分布具有可加性。若U和V为两个独立的χ2分布随机变量,U~χ2(n1),V~χ2(n2),则随机变量U+V服从自由度为n1+n2的χ2分布。

统计学抽样与抽样分布练习题

第6章 抽样与抽样分布 练习题 6.1 从均值为200、标准差为50的总体中,抽取100=n 的简单随机样本,用样本均值x 估计总体均值。 (1) x 的数学期望是多少? (2) x 的标准差是多少? (3) x 的抽样分布是什么? (4) 样本方差2 s 的抽样分布是什么? 6.2 假定总体共有1000个单位,均值32=μ,标准差5=σ。从中抽取一个样本量为30的简单随机样本用于获得总体信息。 (1)x 的数学期望是多少? (2)x 的标准差是多少? 6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。样本均值的抽样标准差x σ等于多少? 6.4 设总体均值17=μ,标准差10=σ。从该总体中抽取一个样本量为25的随机样本,其均值为25x ;同样,抽取一个样本量为100的随机样本,样本均值为100x 。 (1)描述25x 的抽样分布。 (2)描述100x 的抽样分布。 6.5 从10=σ的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差: (1)重复抽样。 (2)不重复抽样,总体单位数分别为50000、5000、500。 6.6 从4.0=π的总体中,抽取一个样本量为100的简单随机样本。 (1)p 的数学期望是多少? (2)p 的标准差是多少? (3)p 的分布是什么? 6.7 假定总体比例为55.0=π,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1) 分别计算样本比例的标准差p σ。 (2) 当样本量增大时,样本比例的标准差有何变化? 6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。从中随机抽取40个顾 客,每个顾客消费金额大于87元的概率是多少? 6.9 在校大学生每月的平均支出是448元,标准差是21元。随机抽取49名学生,样本均值 在441~446之间的概率是多少? 6.10 假设一个总体共有8个数值:54,55,59,63,64,68,69,70。从该总体中按重复 抽样方式抽取2=n 的随机样本。 (1) 计算出总体的均值和标准差。 (2) 一共有多少个可能的样本? (3) 抽出所有可能的样本,并计算出每个样本的均值。 (4) 画出样本均值的抽样分布的直方图,说明样本均值分布的特征。 (5) 计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行比较,得 到的结论是什么? 6.11 从均值为5.4=μ,方差为25.82=σ的总体中,抽取50个由5=n 个观测值组成的 随机样本,结果见Book6.11。 (1) 计算每一个样本的均值。 (2) 构造50个样本均值的相对频数分布,以此代表样本均值x 的抽样分布。 (3) 计算50个样本均值的平均值和标准差x σ。 6.12 来自一个样本的50个观察值见Book6.12。 (1) 用组距为10构建频数分布表,并画出直方图。 (2) 这组数据大概是什么分布?

频率分布直方图

2.2.2频率分布直方图与折线图 【教学内容】 频率分布直方图的定义及绘制,折线图的绘制 【教学要求】 1.使学生了解频率分布直方图的定义及组成 2.掌握画频率法直方图的步骤,能正确画出频率直方图与折线图 【教学重点】 绘制频率直方图、条形图、折线图 【教学难点】 会根据样本频率分布或频率直方图去估计总体分布 【教法】 启发法,讲练结合,讨论式 【教学过程】 一.复习引入 (学生活动) 前面我们已经学过频率分布表,请同学们回答下列问题: 1.总体分布的频率、频数的概念 2.列频率分布表的一般步骤是什么? (引入)我们还学过一种更为直观地体现数据分布规律的方法—绘制频数条形图或频率直方图等。 二.讲授新课 (一)频数条形图 例1.下表是某校一个星期中收来的失物件数,请将5天中 收交来的失物数用条形图来表示。 解: (二)频率直观图 一般地绘制频率直观图的方法 1.把横轴分成若干段,每一线段对应一个组的组距; 2.然后以此线段为底作一矩形,它的高等于该组的频率/组距; 3.这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图。 例2. 我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a ,用水量不超过a 的部分按平价收费,超出a 的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么a 定为多少比较合理? 分析:先绘制频率分布表,在进行频率直方图的绘制 解:假设通过抽样,我们获得了100位居民的月均用水量(单位:t ) 星期 一 二 三 四 五 件数 6 2 3 5 1 累计 6 8 11 16 17

样本及抽样分布

第六章样本及抽样分布 【基本要求】1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】4学时 【授课内容】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X的分布的研究,所谓总体的分布也就是数量指标X的分布,因此,X的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量: X=所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

频率分布直方图题型归纳-邓永海

频率分布直方图题型归纳- 邓永海 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频率分布直方图题型归纳 1.频率、频数、样本容量三个量产生的知二求一 2.补全频率分布表 3.做频率分布直方图 4.性质“面积和为1”的应用,补全直方图 5.与分层抽样、数列等知识综合 6.估计总体的频率分布,区间内的频数问题 【例1】14.I2[2012·山东卷] 如图1-4是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________. 14.9[解析] 本题考查频率分布直方图及样本估计总体的知识,考查数据处理能力, 容易题. 样本容量= 11 1×(0.10+0.12) =50,样本中平均气温不低于25.5℃的城市个数为 50×1×0.18=9. 【例2】18.I2[2012·安徽卷] 若某产品的直径长与标准值的差的绝对值不超过 ...1 mm 时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:

(1)将上面表格中缺少的数据填在答题卡... 的相应位置. (2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率; (3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数. 18.解:(1)频率分布表 (2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70; (3)设这批产品中的合格品数为x 件, 依题意有505000=20x +20 , 解得x =5000×2050 -20=1 980. 所以该批产品的合格品件数估计是1 980件. 【例3】18.I2[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表: (1)在答题卡上作出这些数据的频率分布直方图; (2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22(())X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为221 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得

直方图 知识讲解

直方图知识讲解 责编:康红梅 【学习目标】 1. 会制作频数分布表,理解频数分布表的意义和作用; 2. 会画频数分布直方图,理解频数分布直方图的意义和作用. 【要点梳理】 要点一、组距、频数与频数分布表的概念 1.组距:每个小组的两个端点之间的距离(组内数据的取值范围). 2.频数:落在各小组内数据的个数. 3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释: (1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数; ③确定分点;④列频数分布表; (2)频数之和等于样本容量. (3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定 组距,使所分组数合适,一般组数为最大值-最小值 组距 的整数部分+1. 要点二、频数分布直方图 1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成. (1)横轴:直方图的横轴表示分组的情况(数据分组); (2)纵轴:直方图的纵轴表示频数; (3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数. 2.作直方图的步骤: (1)计算最大值与最小值的差; (2)决定组距与组数; (3)列频数分布表; (4)画频数分布直方图. 要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种. (2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布. 【高清课堂:数据的描述 369923 直方图和条形图的联系与区别:】 3.直方图和条形图的联系与区别: (1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的; (2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数. 要点三、频数分布折线图 频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频

样本方差的期望

样本方差的期望 假设某百货超市现有一批快到期的日用产品急需处理,超市老板设计了免费抽奖活动来处理掉了这些商品。纸箱中装有大小相同的20个球,10个10分,10个5分,从中摸出10个球,摸出的10个球的分数之和即为中奖分数,获奖如下: 一等奖100分,冰柜一个,价值2500元; 二等奖50分,电视机一个,价值1000元; 三等奖95分,洗发液8瓶,价值178元; 四等奖55分,洗发液4瓶,价值88元; 五等奖60分,洗发液2瓶,价值44元; 六等奖65分,牙膏一盒,价值8元; 七等奖70分,洗衣粉一袋,价值5元; 八等奖85分,香皂一块,价值3元; 九等奖90分,牙刷一把,价值2元; 十等奖75分与80分为优惠奖,只収成本价22元,将获得洗发液一瓶; 分析:表面上看整个活动对顾客都是有利的,一等奖到九等奖都是白得的,只有十等奖才收取一点成本价。但经过分析可以知道商家真的就亏损了吗?顾客就真能从中获得抽取大奖的机会吗?求得其期望值便可真相大白。 摸出10个球的分值只有11种情况,用X表示摸奖者获得的奖励金

额数,计算得到E(X)=-10.098,表明商家在平均每一次的抽奖中将获得10.098元,而平均每个抽奖者将花10.098元来享受这种免费的抽奖。 从而可以看出顾客真的就站到大便宜了吗?相反,商家采用这种方法不仅把快要到期的商品处理出去了,而且还为超市大量集聚了人气,一举多得。 此百货超市老板运用数学期望估计出了他不会亏损而做了这个免费抽奖活动,最后一举多得,从中可看出了数学期望这一科学的方法在经济决策中的重要性。 体育比赛问题: 乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。赛制有两种,一种是双方各出3人,三场两胜制,一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利? 分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。 参考资料来源:百度百科-数学期望 期望值:

样本均值的抽样分布

抽样分布 根据样本统计量去估计总体参数,必须知道样本统计量分布。 定义6.2 某个样本统计量的抽样分布,从理论上说就是在重复选取容量为n 的样本时,由每一个样本算出的该统计量数值的相对数频数分布或概率分布。 由于现实中我们不可能将所有的样本都抽出来,因此,统计的抽样分布实际上是一种理论分布。 (一)样本均值的抽样分布 从单位数为N 的总体中抽取样本容量为n 的随机样本,在重复抽样的条件下 共有n N 个可能的样本,在不重复抽样条件下,共有!!()! n N N C n N n =-个可能样本。对于每一个样本,我们都可以计算出样本的均值2()x s 或或p ,因此,样本均值是一个随机变量。所有的样本均值形成的分布就是样本均值的抽样分布。 [例6.4]设一个总体含有4个个体(元素),即N=4,取值分别为: 12341234x x x x ==== 总体分布为均匀分布,如图6.1所示。 图6.1 总体均值:10 2.54X μ== = 总体方差:22() 1.25x x n σ-==∑ x

若重复抽样,n=2 则共有2416=个可能样本。具体列示如表5.1.1。 表6.1 可能的样本及其均值 每个样本被抽中的概率相同,均值为116 样本均值的抽样分布如表5.1.2和图5.1.2所示。 样本均值x 抽样分布的形状与原有总体的分布有关,如果原有总体是正态分布,样本均值也服从正态分布。 如果总体分布是非正态分布,当x 为大样本(30n ≥)时,样本均值的分布趋于服从正态分布;当x 为小样本时,其分布不是正态分布。 下面再让我们来看看样本均值x 抽样分布的特征:数学期望和方差。 设总体共有N 个元素,其均值为μ,方差为2σ,从中抽取容量为n 的样本。 E()x x X μ=== (6.1) 22 x n σσ=(重复抽样) (6.2) 22 ()1x N n n N σσ-=-(不重复抽样) (6.3) 对于无限总体,样本均值的方差,不重复抽样也可按重复抽样来处理;对于有限总体,当N 很大,而/n N 又很小,修正系数 1 N n N --会趋于1,不重复抽样也可按重复抽样来处理。 样本均值x 抽样分布的特征—数学期望和方差的计算公式,可以通过[例6.4]加以验证。 样本均值的均值 1.0 1.5 3.5 4.040 2.51616x μ++++====

样本方差的期望

样本方差的期望和方差沉义义(上海工程技术大学基础教学学院,上海201620)摘要在实际应用中,样本均值珔X和样本方差s 2,x I珔X和计算XJ珔X有必要计算协方差和相关系数。本文给出了相应的计算公式,并提供了一些简单的计算方法。关键词:样本均值样本方差期望;方差;协方差研究生入学数学考试中的相关系数,样本均值X的期望和方差和样本方差s 2是非常重要的测试点。但是,在概率论和数理统计的教学过程中,很少涉及如何计算样本方差S2的方差。其次,对于简单的随机样本x 1,x 2如何计算协方差cov(x I,珔x),相关系数ρx I珔x,yi = x I-X和YJ = x J-xx,协方差cov(y I,y J)以及x I和XX的相关系数ρy I y J使学生感到困惑。本文对以上知识进行了系统分析,并给出了一些简单的计算方法。1,课本中样本均值和样本方差的期望值和方差,样本均值珔X和样本方差s 2的性质由以下定理给出:定理:让总体x?n(μ,σ2),x 1,x 2如果xn(n> 1)是一个简单的随机样本,X是一个样本均值,s 2是一个样本方差,则(1)x?nμ,σ2()n; (2)x和S 2是独立的;(3)(n-1)S2σ2?χ2(n-1)。推论1 e (x)=μ,D(x)=σ2n; E(S2)=σ2,D(S2)= 2σ4N-1。上述推论的前三个结论的证明

见教科书[1]。D(s 2)= 2σ4N-1的证明如下。从定理(3)的结论中,我们可以得出D (n-1)s 2σ()2 = 2(n-1),即(n-1)2σ4D(s 2)= 2(n-1),所以D(s 2)= 2σ4N-1。2,2 cov(x I,x)=σ2n,ρx I珔x = 1 = n(I = 1,2,n)。证明x I?n(μ,σ2)独立于彼此(I = 1,2然后cov(x I,XJ)=σ2,I = J0,I≠{J(I = 1,2,...))因此,cov(x I,珔x)= 1ncov(x I,x 1 + ...)+ X i +…+ X n)= 1ncov(X i,X 1)+…+ 1ncov(X i,X i)+…+ —8 1 —1ncov(X i,X n)= 0 +…+σ2n +…+0 =σ2n(i = 1,2,…,n),ρx I珔x = cov(x I,珔x)d(xi)d (xx槡)=σ2nσ2·σ2槡n = 1槡n(I = 1,2,n)。3,yi = x I-X的性质是推论3 E(yi)= 0,D (yi)= 1-1()nσ2; cov(y I,y J)=-σ2n(I≠J),ρy I y J =-1n-1(I≠J)(I = 1,2,n)。证明了e(yi )= e(x ixx)= e(x ixx)= e(x ixx)= e(x IX)=u-μ= 0,D(yi)= D(x ixx)= D(xi)+ D(x(x)珔(x I,x,x)=σ2 +σ2 +σ2n-2,σ2n = 1-1(nσ2),cov (y I,y J)= cov(x I ,y J)= cov(x IX,x,J)x,jx jx,jxx,xxxxxxxxxxxxxxxxxxxxxxxx-x-= cov(x I,XJ)-CoV(x I,XJ)-CoV(xx,XJ)+ cov (x,x,x)= 0-σ2n-σ2n +σ2n =-σ2n,ρy I,y J = cov(yi)YJ)d(yi)d(y J槡)=-σ2n1 -1()nσ2 =-1n-1。这里我们必须指出

样本平均数分布的方差

σ2与总体方差σ2、样本容量n的关系是xσ2=(σ2 1.样本平均数分布的方差x /)。 2.样本中各观察值与其平均数的差数的平方的总和为(P42 )。 3.样本中各观察值与其平均数的差数的总和为(0 );样本中各观察值与平 均数的差数的平方的总和为(P42 )。 4.一般而言,假设测验可能犯( 2 )类错误。 5.一般正态分布的正态离差U=();样本平均数分布的正态离差U= ()。 6.一个4因素3水平试验的所有可能处理组合数为(81 )。 7.由回归方程估计x为某一定值时条件总体平均数的95%置信区间为 ();估计x为某一定值时条件总体预测值的95%置信区间为()。 8.有12个处理,要进行随机区组设计,可查得随机数字表中任一页的任一行,去掉 (00 )、(97 )、(98 )和(99 )四个数字后,凡大于12的数均被12除后得余数,将重复数字划去,即得12个处理的排列次序。 9.有6个处理,每处理3次重复,用对比法设计,至少要安排(9 )个对照。 10.有8个处理,每处理3次重复,用对比法设计,至少要安排(12 )个对照。 11.有一个总体共有4个个体,分别为2,4,6,8,从总体中进行复置随机抽样,每次抽2 个观察值,抽出所有样本,则共有()个可能样本;所有样本平均数分布的平均数为(),标准差为()。 12.有一样本,其6个观察值分别为6,3,8,4,1,3;则其中数为( 3.5 ),均 方为(22.5 )。 13.有一样本,其6个观察值分别为7,3,8,4,2,3;则其中数为( 3.5 )。 14.有一样本,其6个观察值分别为7,4,8,5,2,3;则其中数为( 4.5 )。 15.有一样本的5个观察值为2,7,7,5,4;则其样本均方为(28.6 )。 16.有一正态分布N(16,4),已知U0.05=1.96,则其分布中间有95%观察值的全距为 (7.84 )。 17.有一正态分布N(30,9),则落于24与36之间的观察值的百分数为()。 18.有一正态分布N(36,9),已知U0.01=2.58,则其分布中间有99%观察值的全距为 (10.32 )。

样本方差的期望

样本方差的期望 (1)样本(背景知识):由学过的概率论的知识可以知道,若在总体个数有限的情况下,抽取出一些个体,总体的分布可能会发生变化,所以个体的分布可能反映不了总体的分布。后一句不太好理解,所以举个经典例子:若N个产品中有M个废品,在抽样调查其废品率时,正常抽取样本(随机抽不放回),则样品的废品率服从超几何分布;而产品中的废品率服从二项分布。这样由样品得到的估计,统计性质就与总体不同。而且当产品数量不是很大时,这种分布差异无法忽视。然而只有在总体中包含的个体极多或包含无限多个个体时,不放回的抽取才对总体的分布影响极少或者毫无影响,这种例子才不成立,此时可以用样本估计总体。这种情形在应用中最为常见,数理统计学在理论上对其研究得也最深入。此时称抽出的若干数据独立同分布,称这组数据为从某总体抽出的独立随机样本,简称为从某总体中抽出的样本。【1】 (2)样本均值/方差:顾名思义,样本均值就是样本的均值,样本方差就是样本数据的方差。 (3)总体均值/方差:同上。。 (4)样本均值/方差的期望:样本数据均为我们抽取得来(是已知量)

我们利用它算出样本参数(例如样本均值),假装它是总体的参数(例如总体均值,是未知量),这就是用样本估计总体的过程;由样本的定义,用样本估计得到的总体的参数不是完美的,有时和真正的总体的参数之间可能有一个偏移。那么接下来一个很自然的想法就是,由于我们对样本参数计算式已知,除去不可控的抽样随机性,从计算方法的角度上来说,我们可以知道这个偏移量是多少吗?更进一步地,我们可以在计算方法上对这个偏移加以修正吗?自然地,类似前述在定义样本时举过的例子,我们还可以假设对总体的数据和参数已知,这样就可以用总体的数据和参数模拟抽样,反算出样本参数,并与真实的总体参数加以对比,达到修正偏移的目的了!而这样反算出的样本参数,就叫做样本参数(例如样本均值、样本方差)的期望。 从正面的/科学的(也是教材上的)角度来说,我们是用总体反过来估计了样本,得到的当然就是样本参数的期望值啦。 若样本参数经修偏后,在某种算法下与真实的总体参数达到一致,该样本参数为总体参数的一个无偏估计量。一个参数往往有不止一个无偏估计,我们需要在一个对估计的整体的优良性准则下视情况讨论。

相关主题
文本预览
相关文档 最新文档