当前位置:文档之家› 直线的参数方程_圆锥曲线的参数方程及其应用等-高中数学 2

直线的参数方程_圆锥曲线的参数方程及其应用等-高中数学 2

直线的参数方程_圆锥曲线的参数方程及其应用等-高中数学 2
直线的参数方程_圆锥曲线的参数方程及其应用等-高中数学 2

直线的参数方程,圆锥曲线的参数方程及其应用

一. 教学内容:

直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。

[基本知识点]

(1)直线的参数方程 <1>标准形式:

:),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α

)t (sin t y y cos t x x 00为参数??

?+=+=αα

<2>一般形式

)1b a 't ('bt y y '

at x x 2200≠+??

?+=+=为参数且

(2)参数t 的几何意义及其应用

标准形式:

)y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数??

?+=+=αα

的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即=

<1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2|

<2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0 <3>设弦M 1,M 2中点为M ;则点M 相应的参数2t t t 2

1M +=

(3)圆锥曲线的参数方程

<1>)

(sin r y cos r x r y x 222为参数的参数方程为圆ααα

???===+

轴正方向的旋转角

的几何意义动半径对于其中x α <2>

其几何意义为离心为参数的参数方程为椭圆

,(sin b y cos a x 1b y a x 22

2

2ααα

???===+

角)。

<3>)

(btg y asec x 为参数双曲线的参数方程为ααα

???==

<4>抛物线y 2=2px 的参数方程为

)(t pt 2y pt 2x 2

为参数????

?== (4)极坐标系的基本概念。

在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和

角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合;

两坐标系中的长度单位统一。

<2>互化公式

?????≠==+??

?==)

0x (x y

tg y x )2(sin y cos x )1(222θρθ

ρθρ

(6)曲线的极坐标方程

<1>定义:在极坐标系中,曲线可以用含有ρ、θ这两个变数的方程来表示,这种方程叫做曲线的极坐标方程。 <2>直线与圆的极坐标方程。

过极点的直线方程θ=θ0(ρ∈R )

过点A (a,0),倾角为α的直线方程

αθαρsin )sin(a =- 以极点为圆心,半径为r 的圆的方程ρ=r

圆心在C (a,0),半径为a 的圆的方程ρ=2acos θ 圆心在(ρ0,θ0),半径为r 的圆的方程

220002r )cos(2=+--ρθθρρρ

【例题选讲】 例1

两点

与双曲线交于的直线作倾角为的右焦点过双曲线B ,A l 45F 116y 9x 2

2 =-

,M 是AB 的中点,求|MF|。

解:方法一

依题意a =3,b =4,c =5

所以F(5,0),又直线l 的倾斜角为45度 所以k=1

5-=∴x y l 的方程为

5

x y 116y 9x 2

2-==-和联立

0369x 90x 7:2=-+得

780

5x y 7

45

2x x x M M

21M -

=-=-=+=

2760

|MF |=

解法2:依题意l 的参数方程为: 116y 9x t

22y t 2

2

5x 22=-??

????

?=+

=代入

0512t 2160t 72=-+得

2780

2||||21=+=

∴t t MF

小结: 方法二:用参数方程求解,且灵活运用参数t 的几何意义,使求解过程变得简洁,同学们可以多尝试。 例2

????

?=+=??

sin 3y cos 2m x ,椭圆在直角坐标系中

(m 为常数,?是参数) ,和抛物线

)t (t 6y t

23x 2为参数?

????

=+=有交点,试求m 的取值范围。

解:解法1 化椭圆方程为普通方程。

)1(0

12y 4)m x (322=-+-

抛物线方程化为普通方程为y 2=6x-9 (2)

由(1)(2)联立消去y 得x 2+2(4-m)x+m 2-16=0 (3) 因为椭圆与抛物线有交点 所以方程(3)的判别式:

0)16m (4)m 4(422≥---=?

4≤m 解得

23

x ,,0),23(,)23x (6y 2≥

-=故开口向右顶点坐标为又

2

3

m 2824m m

282)m 4(x (3)≥-+-∴-±--=得由 m

211

2m -82-≥整理得

2

m m 114121

m 8320m 2

11

+-≥-∴>-

27m 21≤≤-

解得

若,

m ,23

m 2824m 值不存在时≥---

27

m 21m ,≤≤-

的取值范围为综上可知

解法2:

根据题意,椭圆与抛物线有交点,而抛物线化为普通方程为y 2=6x-9 (1)

又椭圆的方程为:

)2()(sin 3y cos 2m x 为参数θθθ

??

??

?=+=

9cos 12m 63sin (1)(2)2-+=θθ得代入把 4

)2(cos 21

m :2++-=θ整理得

为最小值

时当21

429m ,1cos -=+-==∴θ

27

m 21m 27

421m ,1cos ≤

≤-∴=+-

=-=的取值范围为为最大值时当θ

例3 极坐标系中,圆ρ=4cos θ+3sin θ的圆心坐标是( )

)

54

arcsin ,5.(B )

5

3arcsin ,25(.A

)

54

a r c s i n ,25.(D )53arcsin ,5(.C 解法一:化为圆的一般方程。

)

53

arcsin cos(5)

43

arctg cos(5sin 3cos 4-=-=∴+=θρθρθθρ即

)25

()25()53arcsin cos(252222=-+-?=∴θρρ )

53

arcsin ,25(圆心坐标为∴

故选A 。

解法2 依互化关系求。

:sin 3cos 4的直角坐标系方程是θθρ+=

425

)23y ()2x (y

3x 4y x 2222=

-+-+=+即

53

223

sin ,2

5)23(2),2

3

,2(22=

==+=∴θρ其极坐标可求

圆心的直角坐标是

例4

被圆截得的弦

直线半径为的圆心为已知圆)R ,(05,),2(6,C ∈<≤=ρπααθπ

长为8,求α的值。 解法一: 得

一般方程之中代入圆的极坐标系下的及半径将圆心坐标, 5r )2,6(=π

011sin 122=+-θρρ

?????==+-αθθρρ0

11sin 122由

8

|-|11

sin 12011sin 122121212===+∴=+-ρρρρα

ρραρρ又得

644)(21221=-+∴ρρρρ

64114)sin 12(2=?-∴α 32302

3sin 36sin 12ππ

απ

ααα或

又从而得=

∴<≤=∴=

解法2 (几何法)

x

设直线ρ与圆C 相交于A 、B 两点 如图作CD ⊥AB 于D 则|CD|=3,|OC|=6

21

63|OC ||OD ||cos |=

==∴α

323),0[2

1cos ππ

απαα或

=

∴∈±=∴

解法3 化为直角坐标方程后求解。

【同步类型题选】

1. )

(|AB |,t ,t B A,)t (bt y y at x x 2100等于则对应的参数值是上两点为参数直线???+=+=

|t t |.B |

t t |.A 2121-+

22212122b a |t t |.

D |

t t |b a .C +--+

2.

)

(

2P(-2,3))t (t 23y t 2--2x 的点的坐标是的距离等于上的点到为参数直线?????+==

A. (-4 , 5)

B. (-3,4)

C. (-4,5)或(0,1)

D. (-3,4)或(-1,2)

3.

)

(

,0ab ),t (bt y y at x x 00则直线的倾斜角为为参数直线

a b arctg

.B a

b arctg

.A -π

a b arctg

D a

b arctg

C +-π..

4. )

(cos 22)4D(2,-),34,2C(-),4B(2,),3(0,A 上的点的个数有中在曲线点θρπ

πππ=

A. 1

B. 2

C. 3

D. 4

5. 已知点P 的极坐标为(1,π),那么过点P 且与极轴垂直的直线的方程为( )。 A.

ρ=1

B. ρ=cos θ

θρθ

ρcos 1.cos 1.=

-

=D C

6.

)

()4

cos(

所表示的曲线为θπ

ρ-=

A. 双曲线

B. 椭圆

C. 抛物线

D. 圆

7. 曲线ρ=sin θ和2sin θ=1的交点个数是( )。

8. ) (,22

)4

sin(则极点到直线的距离为已知直线的极坐标方程=

+

π

θρ

【试题答案】

1. C

2. D (提示:把直线方程化为标准方程)

3. D

4. D

5. C.(解三角形即得)

6. D (化为直角坐标方程)

7. 3个(数形结合)

8. 22

22

)4,22(,22)4sin(:为且极点到该直线的距离表示过点解法一ππ

θρ=

+

的直线。 解法二:将直线的极坐标化为普通方程为x+y =1,极点即为原点,原点到直线的距离为 22

(97年,全国高考)

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

新高中数学直线方程公式

欢迎阅读 直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程: 22 22y 1,b a x += 练习:已知椭圆4 92 2y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧? 错解:由已知可得a =3,b =2,θ=600, ∴x =acos θ=3cos60°=2 3,y =bsin θ=2sin60°=3。 从而,点M 的坐标为)3,2 3(。 正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4 92 2y x +=1联立, 解得x =31316, y =9331 6。 所以点M 的坐标为(31316,9331 6)。 另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。 代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是 A )sin cos (ααb a ,)2 0(π α< <,矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π = 时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ? ? =?? =?

5 3 arcsin 23-π= α时,距离d 有最大值2。 例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段 例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =, 试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++ = cos 8211021cos 12211x 21x x B A 3sin 42 11921 sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ? ?+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 例6 椭圆)0b a (1b y a x 22 22>>=+与x 轴的正向相交于点A ,O 为坐标原 点,若这个椭圆上存在点P ,使得OP ⊥AP 。求该椭圆的离心率e 的取值范围。 解:设椭圆)0b a (1b y a x 22 22>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A

高中数学直线方程公式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ?=≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

高中数学直线方程公式电子教案

高中数学直线方程公 式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。

高中数学直线方程公式21447

1.斜率公式 ①若直线的倾斜角为α, 则k=tan α (α2π ≠) ②若直线过点111(,)P x y 和222 (,)P x y 两点. 则21 21 y y k x x -=- 2.方向向量坐标 : ( )()k y y x x x x p p x x ,1,1 11 2 121 22112=---=- 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111 12222 ||A B C l l A B C ? =≠ ; ②1212120l l A A B B ⊥?+= 4..直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 5.“到角”及“夹角”公式 : 设 l 1 :b k x y 11+= ; l 2 :b k x y 22 += () (1)当121-≠k k 时 ??? ? ???+ -=+-=k k k k l l k k k k l l 212 1212 11 2 2 11tan 1tan θθθθ,则的角为与,则的角为到 (2)当121-=k k 时,两直线的夹角为 2 π 6.两点间的距离公式 若点()y x A 21, , ()y x B 2 2 , 则 ()y y x x AB 1 2 1 2 ,--= 即 终点坐标-始点坐标 ()()y y x x 1 2122 2--+=

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题 1、若点()3,P m 在以点F 为焦点的抛物线2 4{4x t y t == (t 为参数)上,则PF 等于( ) A.2 B.3 C.4 D.5 答案:C 解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4. 故选C. 2、参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( ) A.圆的一部分 B.抛物线的一部分 C.双曲线的一部分 D.椭圆的一部分 答案:B 解析:参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤, 表示抛物线的一部分. 3、椭圆5cos ,{3sin x y ?? == (?为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)± 答案:B 解析:椭圆5cos ,{3sin x y ?? == (?为参数)的普通方程为22 1259x y +=,故4c =. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.

4、已知过曲线3cos ,{ 4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4 π,则P 点的坐标是( ) A.(3,4) B.1212,55??- ??? C.? D.1212,55?? ??? 答案:D 解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{ 4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4 π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125 x y ==. 5、已知O 为原点,P 为椭圆4cos ,{ x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3 π,则点P 坐标为( ) A.()2,3 B.()4,3 C.( D.( ,55 答案:D 解析:椭圆4cos , {x y αα== (α为参数)化为普通方程,得22 11612x y +=.由题意可得直线OP 的方程为y = (0x >). 由22(0), {11612y x x y =>+= 解得x y ==∴点P 的坐标为()55 .故选D. 6、参数方程cos 2sin x y θθ=??=? (θ为参数)化为普通方程为( ) A.22 14y x += B.2212y x += C.2214x y += D.2 212x y +=

圆锥曲线的参数方程

二 圆锥曲线的参数方程 [学习目标] 1.掌握椭圆的参数方程及应用. 2.了解双曲线、抛物线的参数方程. 3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接] 1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程???x =a cos φ, y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y ) 的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是 OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠3 2π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗? 提示 ???x =2pt , y =2pt 2 (p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程

2.双曲线的参数方程 3.抛物线的参数方程 (1)抛物线y 2 =2px 的参数方程是???x =2pt 2 ,y =2pt (t ∈R ,t 为参数). (2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.

要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆 x 236 +y 2 9 =1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程. 解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得?????x =6+0+6cos θ3,y = 0+3+3sin θ3(θ为参数),即?? ?x =2+2cos θ, y =1+sin θ. 故重心G 的轨迹的参数方程为???x =2+2cos θ,y =1+sin θ (θ为参数). 规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便. 跟踪演练1 已知曲线C 1:???x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 2 9=1. (1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线? (2)若C 1上的点P 对应的参数为t = π 2 ,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值. 解 (1)由???x =-4+cos t ,y =3+sin t ,得???cos t =x +4, sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1, C 1表示圆心是(-4,3),半径是1的圆.

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

高中数学直线方程公式

1.斜率公式 ①若直线的倾斜角为α, 则k=tan α (α2 π ≠) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则21 21 y y k x x -= - 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,111 2 1 2 1 22 1 1 2=---= - 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111 12222 ||A B C l l A B C ? =≠ ; ? ②1212120l l A A B B ⊥?+= 4..直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 5.“到角”及“夹角”公式 : 设 l 1 :b k x y 11+= ; l 2 :b k x y 22 += () (1)当121-≠k k 时 ??? ? ???+ -=+-=k k k k l l k k k k l l 212 1212 11 2 2 11tan 1tan θθθθ,则的角为与,则的角为到 / (2)当 121-=k k 时,两直线的夹角为 2 π 6.两点间的距离公式 若点()y x A 21, , ()y x B 2 2 , 则 ()y y x x AB 1 2 1 2 ,--= 即 终点坐标-始点坐标 ()()y y x x 1 2122 2--+=

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

高中数学直线方程练习题集

高中数学直线方程练习题 一?选择题(共12小题) 1 .已知A (- 2, - 1) , B ( 2 , - 3),过点P (1 , 5)的直线I与线段AB有交点, 则I的斜率的范围是( ) A.(-x, 8] - B. [2 , + x) C.(-汽8] -u [2, +呵 D.8) -U(2 , + x) 2.已知点A (1, 3), B (- 2, - 1).若直线I: y=k (x- 2) +1与线段AB相交,则k的取值范围是( ) A. [ , + x) B.(-x, 2] - C .(-x, 2]-U [ , +x) D. [ - 2,] 3 .已知点A (- 1, 1) , B (2, - 2),若直线I: x+my+m=O 与线段AB (含端点) 相交,则实数m的取值范围是( ) A ?(-x, ]U [2 , + x) B . [ , 2] C. (-x, 2] u- [-, + x) D . [- , - 2] 1 1 t 1 4 ?已知M ( 1 , 2) , N (4, 3)直线I过点P (2 , - 1)且与线段M N相交,那么 直线I的斜率k的取值范围是( ) A.(-x, 3] -U [2 , +x) B. [-, ] C .[-3, 2] D.(-x,- ] U [ + x) 1 A 1 1 5 .已知M (- 2, - 3) , N (3 , 0),直线I过点(-1 , 2)且与线段MN相交,则直 线I的斜率k的取值范围是( ) A. 或k>5 B. C. D. 6.已知A (- 2, ) , B (2, ), P (- 1 , 1),若直线I过点P且与线段 K^h A J n V ■iH、科

直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α )t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式 )1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且 (2)参数t 的几何意义及其应用 标准形式: )y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数 2t t t 2 1M += (3)圆锥曲线的参数方程 <1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+ 轴正方向的旋转角 的几何意义动半径对于其中x α <2> 其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+ 角)。 <3>)(btg y asec x 为参数双曲线的参数方程为ααα???== <4>抛物线y 2=2px 的参数方程为 )(t pt 2y pt 2x 2 为参数?????== (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式

高中数学知识点总结-第七章直线和圆的方程

高中数学-直线和圆的方程 考试内容: 直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式. 两条直线平行与垂直的条件.两条直线的交角.点到直线的距离. 用二元一次不等式表示平面区域.简单的线性规划问题. 曲线与方程的概念.由已知条件列出曲线方程. 圆的标准方程和一般方程.圆的参数方程. 考试要求: (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是: 1=+b y a x . 注:若232-- =x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(23 2≥--=x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定值,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

上海高二数学直线方程经典例题

直线的倾斜角和斜率 (1)倾斜角定义 (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 两直线的平行与垂直 1、 两直线平行:l 1//l 2 ?k 1=k 2 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 2、 垂直:l 1 ⊥ l 2 ?k 1k 2 =—1 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 直线的方程 二、直线方程的分类: 1、点斜式: y-y 0=k (x -x 0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) 2、 两点式: 121y y y y --=1 21x x x x -- 3、 一般式:A x +B y +C=0 4、 截距式:a x +b y =1 三、典型例题 1.过点(1,0)且与直线x-2y-2=0平行的直线方程。 2、直线过点(3,2),且在两坐标轴上的截距相等的直线方程。 3、经过点A (-1,8),B (4,-2)的直线方程。 4、已知A(1,2), B (3,1),求线段AB 的垂直平分线方程。 5、一条光线从点P (6,4)射出,与x 轴相交于点Q (2,0)经x 轴反射,求入射光线和反射光线所在的直线方程。 直线的交点坐标与距离公式 1、求两条直线的交点(联立方程组)

圆锥曲线的参数方程

圆锥曲线的参数方程 一、教学目的 1:了解圆锥曲线的参数方程及参数的意义 2:能选取适当的参数,求简单曲线的参数方程 二、知识点整理 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(2x/2a)+(2y/2b)=1 其中a>b>0,c>0,2c=2a-2b. 2.中心在原点,焦点在y轴上的椭圆标准方程:(2x/2b)+(2y/2a)=1 其中a>b>0,c>0,2c=2a-2b. 参数方程: X=acosθ Y=bsinθ (θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 标准方程: 1.中心在原点,焦点在x轴上的双曲线标准方程:(2x/2a)-(2y/2b)=1 其中a>0,b>0,2c=2a+2b. 2.中心在原点,焦点在y轴上的双曲线标准方程:(2y/2a)-(2x/2b)=1. 其中a>0,b>0,2c=2a+2b. 参数方程: x=asecθ y=btanθ (θ为参数 )

3)抛物线 标准方程: 1.顶点在原点,焦点在x 轴上开口向右的抛物线标准方程:2y =2px 其中 p>0 2.顶点在原点,焦点在x 轴上开口向左的抛物线标准方程:2y =-2px 其中 p>0 3.顶点在原点,焦点在y 轴上开口向上的抛物线标准方程:2x =2py 其中 p>0 4.顶点在原点,焦点在y 轴上开口向下的抛物线标准方程: 2x =-2py 其中 p>0 参数方程 x=2p 2t y=2pt (t 为参数) t=1/tan θ(tan θ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0 直角坐标 y=a 2x +bx+c (开口方向为y 轴, a<>0 ) x=a 2y +by+c (开口方向为x 轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cos θ) 其中e 表示离心率,p 为焦点到准线的距离。 三、练习 1.(北京卷理5)极坐标方程(ρ-1)(θπ-)=(ρ≥0)表示的图形是( ) (A )两个圆 (B )两条直线 (C )一个圆和一条射线 (D )一条直线和一条射线 2.(湖南卷理3文4)极坐标方程cos ρθ=和参数方程123x t y t =--??=+?(t 为参数)所 表示的图形分别是( ) A 、圆、直线 B 、直线、圆 C 、圆、圆 D 、直线、直线 3.(湖南卷文4)极坐标cos p θ=和参数方程12x t y t =--??=+?(t 为参数)所表示的图 形分别是 A. 直线、直线 B. 直线、圆 C. 圆、圆 D. 圆、直线 4.(广东卷理15)在极坐标系(ρ,θ)(0 ≤ θ<2π)中,曲线ρ=2sin θ 与cos 1p θ=- 的交点的极坐标为______。

相关主题
文本预览
相关文档 最新文档