当前位置:文档之家› 电动客车电池箱结构设计规范

电动客车电池箱结构设计规范

电动客车电池箱结构设计规范
电动客车电池箱结构设计规范

电动客车电池箱结构设计规范

编制:年月日

审核:年月日

批准:年月日

目录

1 概述 (2)

2 引用标准 (2)

3 定义 (2)

4 结构设计 (3)

4.1 标识 (3)

4.2 结构设计 (3)

4.3 通风与散热 (4)

4.4 绝缘与防水 (5)

4.5 碰撞保护 (5)

1 概述

车载储能装置是电动车的唯一能量来源,是电动车辆性能的决定因素之一。现在发展的车载储能装置以电池为主。因为车载电源必须由数百只单体电池串、并组合成电池组,形成能输出高电压、大电流的供电源,加之汽车的运行环境多变,对电池箱的散热、防水、绝缘等设计要求很高。本规范将指导本公司电池箱的结构设计。

2 引用标准

在电池箱的设计中,下列标准包所含的条文是设计的基础指导,设计活动中必须及时关注相关标准的修订,使用本规范适用使用下列标准最新版本。

GB/T 18384.1-2001电动汽车安全要求第1部分:车载储能装置

GB 2893-2001 安全色

GB 2894-1996 安全标志

GB 4208-1993 外壳防护等级(IP代码)

GB 156-1993 标准电压

GB/T 5465.2-1996 用于设备上的图形符号

3 定义

3.1 单体蓄电池battery cell

一种电化学能储存装置,由正极、负极及电解液组成,其标称电压力电化学偶的标称电压。

3.2 蓄电池模块battery module or battery monobloc

放置在一个单独的机械和电气单元内的内部相连的单体蓄电池的组合。

3.3 蓄电池包traction battery pack

由蓄电池模块、固定框或固定架组成的单一机械总成,可能还包括其他部件(例如:加注装置和温度控制器)。

3.4 动力蓄电池traction battery

用来给动力电路提供能量的所有电气相连的蓄电池包的总成。

3.5 蓄电池连接端子battery conection terminal

位于蓄电池包壳体外的带点部分,其作用是输送电能。

3.6 爬电距离creepage distance

连接端子的带电部分(包括任何可导电的连接件)和电底盘之间,或两个电位不同的带电部分之间的沿绝缘材料表面的最短距离。

3.7 可导电部分conductive part

能够使电流通过的部件,在正常工作状态下不带电,但当基本绝缘故障的情况下,可能成为带电部件。

3.8 外露可导电部件exposed Conductive par

按照GB 4208 规定,可以通过IPXXB试指触及的导电部件。

注1:本概念是针对特定的电路而言,一个电路中的带电部件也许是另一个电路中的外露导体,例如:乘用车的车身可能是辅助电路中的带电部件,但对于动力电路来说它是外露导体。

3.9 带电部件live part

正常使用时被通电的导体或导电部件。

3.10 电底盘electrical chassis

一组电气相连的可寻电部件,其电位作为基准电位。

3.11 直接接触direct contact

人员与带电部件的接触。

3.12 动力单元power unit

动力控制装置和电机的组合。

3.13 动力单元和车载储能装置的组合。

4 结构设计

4.1 标识

电池箱体安装在车辆上后对外的平整表面明显标识警告标记,如下图,并标明动力蓄电池的化学类型。

图1 电池箱表面警告标志

4.2 结构设计

电池箱的基本功能即容纳和保护电池组,其结构必须保证在保留最大的容纳空间基础上满足足够的强度。考虑到节省布置空间,并满足汽车多变的运行环境,电池箱的设计推荐使用框架结构,即边框、底框使用型材焊接,材料厚度推荐>3mm,型材外面或双面焊接蒙皮。电池箱外形首选规则长方体,并根据布置要求可适当调整。下图为一典型的电池箱结构示图。

图2 电池箱的结构

4.3 通风与散热

部分种类的动力蓄电池在充电和使用过程中有可能析出气体。为防止爆炸、起火或有毒物质的危害,电池箱中动力蓄电池产生气体时应考虑下列问题:

a)车辆的任何地方不得有潜在的危险气体的聚焦;

b)不允许乘客舱及封闭的货舱内的危险气体超过一定的浓度;

C)在电池箱设计的通风道周围不能存在火花源。

火法源指——电接触

——保险丝

——接触电刷

——制动衬片

——静电放电

——其他的火花源如香烟、开发火焰及光源等。

允许气体的最大聚焦量应符合国家相关标准的要求。

汽车持续运行,尤其是长时间大负荷高速行驶,电池放电会同时释放出大量热量,为保证电池安全和使用寿命,电池箱必须具备良好的主动散热能力。对于本公司设计的车辆一般采用风冷方式散热,通风和散热结构设计规则:

1)进风口尽量位于车身风源丰富,并且没有其他热源位置,防止通风不畅。

2)根据电池箱容量的大小和电池放热特性匹配散热风流量,并保留足够的安全系数。

3)电池箱内部通过挡板等导流方式引导内部气流流向,保证每个单体电池充分散热,4)进排风口位于电池箱上部2/3以上的空间,避免运行中有水进入。

5)如遇突发故障,必须保障电池电源器断后散热风扇才切断。

图3 电池箱通风散热与防水

1散热风扇推荐布置位置1;2散热风扇推荐布置位置2;3线速推荐布置位置4.4 绝缘与防水

电动客车用电池组输出电压高达500伏以上,电池箱出保障容纳电池外,必须有效隔绝操作人员与乘客与电池的接触。设计要求如下:

1)电池箱必须有效接触,与电池间的绝缘电阻值是为了满足安全目的而确定的一个足够的值。要求在动力蓄电池的整个寿命周期内,该绝缘电阻值除以动力蓄电池的标称电压U,所得值应大于120Ω/V。

2)电池的两级以及两级的连接板与电池箱的最小距离必须>10mm,防止击穿放电。

3)电池箱内部涂覆绝缘漆。

4)电池箱在车身的布置位置必须高于最小通过距离200mm以上,防止机械损伤和溅水。

5)电池箱的散热通风口和电缆连接线必须布置在电池箱2/3高度以上,推荐布置在箱体上端。

4.5 碰撞保护

电池箱在车辆发生碰撞时,设计应满足下列要求:

a)如果动力蓄电池或蓄电池包安装在乘客舱的外部,动力蓄电池、蓄电池包或其他部件(蓄电池模块、电解液)不得穿入乘客舱内。

b)如果动力蓄电池或蓄电池包安装在乘客舱内,电池箱的任何移动应确保乘客的安全。

c)发生碰撞时,动力蓄电池、蓄电池包或其部件(蓄电池模块、电解液)不能由于碰撞而从电池箱内散落,尤其避免从车上甩出。

d)发生碰撞时,电池箱必须第一时间保证电池组的过流断开装置切断连接,并防止动力电池组短路。

汽车蓄电池构造和原理

汽车运用与维修专业课程改革——教案课题蓄电池的构造和原理 课型理论班级09春汽时 间 第一周星期三第二节 导学目标1、明确本门课的内容、任务、要求,掌握正确的学习方法,掌握汽车电器及电控制系统的功能、组成、特点。 2、掌握铅蓄电池的结构、特点、型号,训练组合、分解能力等。 3、掌握铅蓄电池的构造、工作原理,训练逻辑思维的能力、想象能力。 重点学习方法、普通铅蓄电池的结构、特点、工作原理。 难点铅蓄电池的工作原理; 教学 方法 手段 讲授、自学、提问、讨论 导学过程设计 教师活动学生活动时间 一.本课程简介 1.要求2.内容3、学习方法。二.电源系的组成、功能及电路关系汽车电源系统主要包括:发电机、调节器(装在发电机内)、蓄电池、放电警告灯、点火开关等。 三、蓄电池的构造、特点 图1-1看完后分解 引导观察:各类铅蓄电池的构造有何共同点?(训练分解组合能力) 引导思考:蓄电池的各组成部分所起的作用是什么?(训练分解组合能力) 单格之间的联接关系。(串) 1.极板组 引导观察:铅蓄电池的正负极桩、正负极板的特点。a作用b分类c组成 隔板一、听课、观察、思考 二、提问 三、讨论、解答下列问题: 1、明确本门课程的学习任务、 学习方法。 2、自学、答问电源系统的组成、 功能及电路连接特点。 3、为什么铅蓄电池被称为起动 型蓄电池? 4、为什么蓄电池正负极板有如 图所示的结构特点? 5、袋式隔板的优点是什么? 30′ 10′ 20′

教师活动学生活动时间引导思考:袋式隔板与普通隔板相比 有何特点。(训练想象能力) a位置b特点c材料d袋式隔板3.壳体 a作用b材料c要求 4.电解液 引导思考:电解液过大对蓄电池性能有何影响?(训练组合思维能力) a成分b相对密度范围c配制d相对密度与容量。 5.联条 a材质b作用c型式 6.加液孔盖 a作用b结构 7.极桩a分类b结构 8、蓄电池的型号和规格 四、蓄电池的工作原理 引导思考:蓄电池为什么能存电放电?(训练组合思维能力) (一)概述:反应总方程式 (二)电势的建立 [2.0-(-0.1)=2.1V] (三)放电过程 在放电过程中,正极板上四价的铅离子与电子结合生成二价铅离子,进人电解液再与硫酸根离子结合生成硫酸铅(附着在正极上);负极板上,二价铅离子也同硫酸根离子结合生成硫酸铅(附着在负极板上)。 (四)充电过程 总结:本次课的主要内容。6、什么是相对密度?配制顺 序? 相对密度是否越大越好? 7、自学蓄电池的型号和规 格,答问 8、铅蓄电池的电压建立过 程? 9、蓄电池放电过程中电性能 会有什么变化?为什么? 10、自学蓄电池充电过程。 30′

《纯电动汽车结构与检修》课程标准

目录 一、课程性质与定位 (2) 二、课程设计思路 (2) 三、课程教学目标 (2) 四、课程主要容与教学要求 (2) 五、课程实施建议 (3) 六、其他说明 (7)

《纯电动汽车结构与检修》课程标准 一、课程性质与定位 《纯电动汽车结构与检修》是汽车专业群(汽车检测与维修技术专业、汽车电子技术专业、汽车运用技术专业、汽车营销与服务专业)的专业必修课,属于专业群大类培养平台课程。《纯电动汽车结构与检修》在专业课程体系中,起到承上启下的作用,学校层面设置的必修课等专业课程。 使学生了解汽车行业、产业发展历程和专业背景、课程体系及就业岗位,树立专业思想,激发学习兴趣,了解纯电动汽车技术在行业发展中的重要性,明确职业规划,培养学生的创新思维能力。 二、课程设计思路 第5学期开设,每周6课时,采用讲授形式,根据学时安排,由专业教师、企业专家、高新技术企业负责人等思想,将专业文化、行业技术创新发展与前沿技术等容融入课程,拓宽学生视野,培养学生创新精神。 按照“了解汽车专业和行业背景——树立专业思想,激发学习兴趣——了解纯电动汽车技术在行业发展中起到的关键作用,培养学生掌握新知识的思维能力”的依次递进的思路开设学习情景。 三、课程教学目标 通过课程学习,使学生了解纯电动汽车在汽车行业、产业发展历程和专业背景、课程体系及就业岗位,树立专业思想,激发学习兴趣,了解纯电动汽车技术在行业发展中的重要性,明确职业规划,了解纯电动汽车过程,同时,培养学生善于自我学习、沟通表达、团队协助等职业素养,主动探索新知识、新技术的应用,培养学生的创新思维能力。 四、课程主要容与教学要求 (一)纯电动汽车结构与检修 主要容: 1)项目一概述; 2)项目二纯电动汽车的主要部件及工作原理;

汽车动力电池的基本构成 各种电池的性能对比

汽车动力电池的基本构成各种电池的性能对比 电动汽车,是解决能源、环境、城市交通等问题的一个主流趋势,也是未来汽车产业发展的一个主要方向。 现状当下,家用的混合动力汽车,纯电动汽车已在大地区投入使用;电动公共汽车、巡逻车、接待车、搬运车、摆渡车等,已经在各行业得到广泛普及。燃料电池汽车、生物能源汽车等洁净能源汽车已正在如火如荼的研发设计中,未来必将成为主流。 政策我国新能源汽车的发展前景无限开阔。近10年来,国务院不断加大对其资金的投入,包括对技术进步、技术改造专项基金、支持重点汽车生产企业等。各城市也在不断在政策、发展规划、基础设施建设,消费补贴,等环节积极参与新能源汽车的普及推广中。格局传统汽车产业链涉及一百多个产业,新能源汽车是在传统汽车产业链的基础上进行延伸。当前,多数国家将重点放在发展纯电动车上。上游主要增加了锂离子电池、电机及控制系统、汽车整车控制系统,下游则增加了充电设施、电池回收等产业。核心在纯电动汽车(EV)的成本构成中,电力驱动系统(包括动力电池系统和电机驱动系统),占比达到整车的50%以上。其中,锂电池是关键之一,故有“得锂者得天下”的呼声。而胶粘剂是实现电力驱动系统稳定、高效、持久、安全工作的一个核心因素之一。汽车动力电池的基本构成 汽车动力电池简介 目前主流的汽车动力电池是:三元锂和磷酸铁锂电池。三元锂电池具有能量密度高、低温性能好、可靠性高、寿命长、电池续航也更长等特点,但造价偏高;而磷酸铁锂电池成本低、便于汽车量产且电池易于回收,安全性较三元锂高,但续航上逊于三元锂电池。 各种电池的性能对比 1软包电池 (1)安全性能好:软包电池在结构上采用铝塑膜包装,在发生安全隐患的情况下软包电

蓄电池结构图和主要部件

蓄电池结构图和主要部件 电池是电动车的能源载体,是影响电动车性能的关键部件。目前可作为电动车用的电池主要有铅酸蓄电池、镍-金属氢化物蓄电池(Ni-MH电池)、锂离子蓄电池、燃料电池及锌空电池。其中,铅酸蓄电池价格便宜,材料来源丰富,技术和制造工艺比较成熟,是目前商品化电动车主要采用的电池。 一蓄电池结构图 铅酸密封蓄电池由正、负极板、隔板和电解液、电池槽及连接条(或铅零件)、接线端子和排气阀等组成。 一只蓄电池一般由3个单格(6V电池)或6个单格(12V电池)组合而成。每个单格由若干片正极板与若干片负极板(负极板比正极板多一片),间隔重叠而成,中间用超细玻璃纤维隔板隔离。数片正极板用铅合金焊接在一起组成正极群,同样数片负极板用铅合金焊接在一起组成负极群,正、负极群装于电池槽内组成单体蓄电池。单体电池之间用铅零件或连接条从单格之间的电池槽隔板顶端(或穿孔穿壁焊)以串联形式连在一起。电池槽盖用密封胶粘结。首尾单格作引出端子,引出正负极。 燃料电池:

利用氢(或碳氢化合物转换来的氢)和空气中的氧,通过高温化学反应,将化学能直接转换成电能的装置。 二蓄电池主要部件 极板是蓄电池的核心部件,被誉为蓄电池的“心脏”。目前电动助力车电池绝大多数采用涂膏式正、负极板。 隔板被誉为蓄电池“第三电极”。它用以隔离正、负极,防止短路。作为电解液的载体,它能够吸收大量电解液,起到离子良好扩散(离子导电)的作用。对密封蓄电池而言,隔板还作为正极板产生氧气到达负极板的“通道”,使其顺利地建立氧循环,减少水损失。采用超细玻璃纤维让隔板式蓄电池实现免维护的关键。 电解液主要由纯水与硫酸组成,配以一些添加剂混合而成。主要作用:一是参与电化学反应,是蓄电池活性物质之一;二是起导电作用,蓄电池使用时通过电解液中离子迁移,起到导电作用,使电化学反应得以顺利进行。 安全阀是蓄电池的关键部件之一,它位于蓄电池顶部,作用有三个: 安全使用。即当蓄电池使用过程中内部产生气体气压达到安全阀压时,开阀将压力释放,防止产生电池变形、破裂等发生。 密封作用。当蓄电池内压低于安全阀的闭阀压时安全阀关闭,防止内部气体酸雾往外泄漏,同时也防止空气进入电池造成不良影响。 保证蓄电池有一定内压,促进蓄电池内氧复合,减少失水。 防爆作用。某些安全阀装有防酸、爆片。 安全阀结构类型较多,主要有帽式、伞状、片状等几种。 帽式阀技术比较成熟,图1是当前普遍采用的一种压力阀门。阀结构简单,制作工艺也比

GZ6120EV1纯电动城市客车

GZ6120EV1纯电动城市客车 检验规范 广州汽车集团客车有限公司

2010年7月 目录 1 部件检验 (3) 1.1 动力电池系统................................................................................... 3.. . 1.1.1 电池包检查................................................................................... 3.. . 1.1.2 动力电池技术参数:..................................................... 4.. 1.1.3 安全性能要求................................................................................... 6.. . 1.1.4 动力电池组连线检验..................................................... 6.. 1.2 电机及控制器................................................................................... 8.. . 1.2.1 基本要求................................................................................... 8.. . 1.2.2 安全使用要求 8... 1.2.3 驱动控制系统技术参数 ................................................. 9.. 1.3 DCDC 检验 (9) 1.3.1 DC/DC 变换器主要技术参数............................................. 9.. 1.3.2 使用功能测试 1..0. 1.3.3 电气安全测试: 1..0. 1.4 DC/AC 检验 1..0. 1.4.1 DC/AC 主要技术参数 1..0 1.4.2 使用功能测试: 1.1. 1.4.3 电气安全测试 1..1. 1.5 整车控制器 1..1.

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

电动客车电池箱结构设计规范

电动客车电池箱结构设计规范 编制:年月日 审核:年月日 批准:年月日 目录 1 概述 (2) 2 引用标准 (2) 3 定义 (2) 4 结构设计 (3) 4.1 标识 (3) 4.2 结构设计 (3) 4.3 通风与散热 (4) 4.4 绝缘与防水 (5) 4.5 碰撞保护 (5)

1 概述 车载储能装置是电动车的唯一能量来源,是电动车辆性能的决定因素之一。现在发展的车载储能装置以电池为主。因为车载电源必须由数百只单体电池串、并组合成电池组,形成能输出高电压、大电流的供电源,加之汽车的运行环境多变,对电池箱的散热、防水、绝缘等设计要求很高。本规范将指导本公司电池箱的结构设计。 2 引用标准 在电池箱的设计中,下列标准包所含的条文是设计的基础指导,设计活动中必须及时关注相关标准的修订,使用本规范适用使用下列标准最新版本。 GB/T 18384.1-2001电动汽车安全要求第1部分:车载储能装置 GB 2893-2001 安全色 GB 2894-1996 安全标志 GB 4208-1993 外壳防护等级(IP代码) GB 156-1993 标准电压 GB/T 5465.2-1996 用于设备上的图形符号 3 定义 3.1 单体蓄电池battery cell 一种电化学能储存装置,由正极、负极及电解液组成,其标称电压力电化学偶的标称电压。 3.2 蓄电池模块battery module or battery monobloc 放置在一个单独的机械和电气单元内的内部相连的单体蓄电池的组合。 3.3 蓄电池包traction battery pack 由蓄电池模块、固定框或固定架组成的单一机械总成,可能还包括其他部件(例如:加注装置和温度控制器)。 3.4 动力蓄电池traction battery 用来给动力电路提供能量的所有电气相连的蓄电池包的总成。 3.5 蓄电池连接端子battery conection terminal 位于蓄电池包壳体外的带点部分,其作用是输送电能。 3.6 爬电距离creepage distance 连接端子的带电部分(包括任何可导电的连接件)和电底盘之间,或两个电位不同的带电部分之间的沿绝缘材料表面的最短距离。 3.7 可导电部分conductive part 能够使电流通过的部件,在正常工作状态下不带电,但当基本绝缘故障的情况下,可能成为带电部件。 3.8 外露可导电部件exposed Conductive par 按照GB 4208 规定,可以通过IPXXB试指触及的导电部件。 注1:本概念是针对特定的电路而言,一个电路中的带电部件也许是另一个电路中的外露导体,例如:乘用车的车身可能是辅助电路中的带电部件,但对于动力电路来说它是外露导体。 3.9 带电部件live part 正常使用时被通电的导体或导电部件。

一种新型纯电动城市客车锂电池组的PACK及管理

一种新型纯电动城市客车锂电池组的PACK及管理 纯电动城市汽车已经成为新能源发展的重要战略之一,而已经投入运行的纯电动城市汽车取得了一定的效果,但也展现了许多问题,主要体现在电池组的续航能力和使用寿命上。本文中详细的说明其中存在的问题,并介绍新型的锂电池组的PACK及管理方式,希望对促进纯电动城市客车的发展有所裨益。 标签:纯电动城市客车;锂电池组;PACK及管理方式; 随着工业化进程发展,环境保护和新能源开发问题越来越受到大众关注,《节能与新能源汽车产业发展规划(2012—2020 年)》的发布也使得将纯电驱动作为新能源的城市客车渐渐成为主要战略,要想更为顺利的发展新能源城市客车就需要对已有的运行情况进行总结,促进商业化转变。 1 总结纯电动城市客车发展情况 从2008年北京奥运会开始纯电动城市客车就出现在我们的视野中,迄今为止已经投入运行的纯电动城市客车不断增加,已有的运行经验发现其对环境的影响主要体现在城市角度,采用绿色能源可以很好的解决发电污染问题,且伴随着技术研发,运营效果渐入佳境,同时也表现出一系列的问题,主要有:①电池寿命衰减快,续航里程短,在北京奥运会中投入使用纯电动城市客车时就发现,每跑一圈就需要重新换电池;②使用寿命短,价格昂贵,在合肥投入使用的纯电动锂电池城市客车中发现无法使用8年,仅能运行2年,总体来说性价比很低;③换电过程需要较长的停车时间,大大降低了运营效率,实地调查青岛纯电动城市客车运行发现,充换电时间需要15分钟,加上排队等候时间,平均需要30分钟,给高效运行打来了阻碍[1];④更换电池频度高,价格昂贵,一些地方的纯电动城市客车在运行不到两年的情况下就出现了电池问题,更换需要花费60万左右,极为不划算;整体上来说,纯电动城市客车很好的起到了保护环境的效果,但是却存在质量、效率和性价比问题,对此选择恰当的电池PACK方式和管理方式就显得尤为重要。 2 纯电动城市客车锂电池PACK方式 以常用的540VDC电压为例,下表1列出了纯电动城市客车的电池参数[2],为提高纯电动城市客车的使用效率,需要不断开发电芯技术,并且做好有效PACK和管理工作,尽可能的增加电池组的续航里程和使用寿命,对此有两种PACK方式,下面将进行详细介绍。 2.1先并后串的PACK方式 此方式需要考虑到电池组的容量和电压,采用先并联后串联的PACK方式,下图1(a)为先并后串PACK方式示意图,这种方式有利有弊。以圆柱形电芯为例,需要较高的并联工艺,采用并联方式后失效的单个电池会自发退出,最终

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池阻小,电压稳定,在短时间能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上与发电机并联,它的主要作用是:(1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。 (3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造 车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。 隔板材料有木质、微孔橡胶、微孔塑料以及浸树脂纸质等。近年来,还有将微孔塑料隔板做成袋状,紧包在正极板的外部,防止活性物质脱落。

RL6100混合动力城市客车总布置设计说明

摘要 能源危机和环境污染是当今世界可持续发展所面临的两大根本问题,混合动力汽车在技术、经济和环境等方面具有综合优势,是目前缓解这两个问题的有效途径。城市客车在各个城市中承担着人口流动的任务,应用广泛,数量众多。同时城市客车的运行工况特殊,城市号灯多,站点之间距离短,运行路线固定,城市客车频繁的起步,加速,制动,怠速时间长,平均运行速度低。由于汽车设计时需要满足最高行驶车速和最大爬坡度等动力性要求,需要装备大功率发动机,使得城市客车经常处于功率过剩状态,造成了严重的能源浪费和环境污染。 本文以运用于城市公交系统的传统客车6100为研究对象,将其改装为混合动力城市客车。本文首先分析并比较了串联式、并联式以及混联式混合动力客车的驱动结构、类型和使用围,确定了混合动力客车驱动系统的布置型式;通过对我国典型城市公交车循环工况的分析,制定了混合动力城市客车性能指标,并对所研究的混合动力客车的总体方案进行了设计,据此对发动机、电机、传动系的参数进行了匹配,初步确定了各部件的参数。 油电混合动力汽车融合了传统燃油汽车和纯电动汽车的优点,具有传统燃机车动力性好和电动汽车清洁环保的特点,能够有效的降低能源消耗,减少污染排放,具有重要的研究意义。 关键词:混合动力;城市客车;动力系统;参数匹配;人机工程学

ABSTRACT Energy shortage and environment pollution are two serious problems that can prevent the world from developing forward rapidly.In this case HEV’S(hybrid electric vehicle)are the key to so lve the problems.It has advantages in many fields,such as technology, economy and environment City bus is bearing the task of the movement of the population. City bus is widely used and the number is large. The using condition of city bus is special、there are many signal lights、 short distance between sites 、fixed routes, frequently starting, accelerating, braking, long idle time, low average speed and so on. As the vehicle needs to meet the requirement of the highest speed and maximum climbing degree while designing, usually a high-power engine is equipped, making the city bus in power surplus state, resulting in a serious energy waste and environment pollution. This paper bases on the traditional bus 6100 using in the city traffic system, and refit it to be HEB(hybrid electric bus).The paper firstly analyzed and compared the drive structure,type and scope of application of SHEV,PHEV and PSHEV, and made sure the layout pattern of HEB drive system;by studying statistical data of typical Chinese city bus driving cycle,it formulated the performance index for HEB,and the study of hybrid bus design the overall program, according to the engine, motor, drive system matching parameters, initially set the parameters of each component. Hybrid electric vehicle combines the traditional fuel vehicles and pure electric vehicles advantages effectively reduce energy consumption and reduce emissions. It is meaningful to study on hybrid vehicles.

纯电动汽车电动机&电池匹配参数

电动机&电池匹配 ? 整车参数: 整车自重(带电池):700KG (TBD ) 额定载荷: 300KG (4个人) 车辆滚动半径: 0.247mm ? 计算变速器速比和车速: 无变速箱,无差速器,根据产品定义设计最高车速:80KM/H ,计算电动机最高转速需求: 0.377 0.3770.24780/859/a rn u n km h i n r m ==?== 取满载时最高车速为40KM/H 0.2470.377 40/1 a r u km h == 则430/n r m = ? 计算满载在正常道路上行驶时所需要的扭矩: 初步确定传动效率为0.92,空气阻力系数为0.35、轮胎滚动阻力系数为0.015、迎风面 积2 1.66m 2 21.15M CdA Gf u r η=+ 20.920.35 2.2 8409.80.015800.24721.15M ??=??+? 95.7M Nm = ? 计算在正常道路上行驶时所需要的功率: 3max max 1 ( )360076140e a a Gf CdA P u u η=+ 3 17009.80.020.35 2.2(8080) 5.70.92360076140 e P Kw ???= ?+= ? 选择电动机 根据车辆的安装空间以及市场上的电动机的情况,选择电动机额定电压为72V ;根据车辆用 设车辆最大行驶里程为80KM ,电池放电深度为0.8: 0.8e S P UI V ?=? 82.3I A = 800.88082.3 W S Vt km ==??= 102.875W Ah = 所以选择110Ah 电池

5.9车轮总成 5.9.1 车轮总成的结构:车轮:145/70R12轮胎 5.9.2车轮总成的性能要求 5.9.2.1车轮总成应有合理的负荷能力和速度能力 5.9.2.2轮胎应有良好的附着性能和缓冲性能 5.9.2.3同时考虑铝合金和钢车轮 5.9.2.4具有良好的均匀性和质量平衡性。车轮总成在轮毂边缘上总的动不平衡量不大于80g,每一轮毂边缘单侧只用一块平衡块。 5.9.2.5车轮总成应有较小的滚动阻力和行驶噪声。 5.9.2.6车轮装饰盖与车轮搭配合理。 5.9.2.7无备胎 5.10 电气 5.10.1蓄电池 5.10.1.1免维护式,容量:210A·h 5.10.1.2要求安装位置接近性好、固定可靠 5.10.3.1 组合仪表包括指针式车速表、里程表、指针式电动机转速表、电压表、水温表等。 5.10.3.2组合仪表设有:点亮报警灯、充电指示灯、制动报警灯、转向指示灯、远光指示灯、前雾灯指示灯、防盗报警灯等。 5.10.3.3仪表台灯光应柔和、明亮、可调。 5.10.4喇叭 5.10.4.1单无触点电喇叭。 5.10.5车灯 5.10.5.1整车车外设定前照灯、前/后位置灯、前后转向灯、制动灯、倒车灯、前雾灯、后雾灯(选装)、牌照灯、回复反射器。

纯电动汽车动力电池包结构静力分析及优化设计

纯电动汽车动力电池包结构静力分析及优化设计 摘要:动力电池包作为纯电动汽车的唯一动力源,承受着电池组等模块的质量,因此其强度、刚度必须满足使用要求才可以保证行驶的安全性。在建立其有限元模型的基础上,分析了电池包结构在弯曲工况、紧急制动工况、高速转弯工况、垂直极限工况以及扭转工况下的强度、刚度。分析结果显示,在垂直极限工况下,电池包底板的受力情况最为恶劣,因此对原有模型做出了改进,改变底板加强筋的布置形式。经过相同工况的模拟,发现在力学性能提升的基础上,整体质量得以减轻,实现了轻量化的目标。 关键词:动力电池包有限元法静力分析优化设计 Abstract:As the only power source of pure electrical vehicle,the power battery pack bears the weight of several models such as the battery model. To ensure the safety,the pack’s strength and stiffness must meet the fundamental requirements. This paper mainly analyzed the strength and stiffness under different working conditons on the base of a finite element model. The rsult shows that and the corresponding stress and deformation graphs are obtained.The structure of the battery pack is improved after analyzing the causes of the stress concentration.Also, the performance of the new model is compared with the original one.The results show that the weight of the structure is reduced while the performance of the structure is improved, and the lightweight of the vehicle is realized. Keywords:power battery pack finite element method static structural analysis optimal design

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池得功用 蓄电池种类较多,根据电解液不同,有酸性与碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大得起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上与发电机并联,它得主要作用就是: (1)发动机起动时,蓄电池向起动机与点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大得起动电流(汽油机为200~600A。柴油机有得高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给她激励磁电流。 (3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机得电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压得作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压得作用。蓄电池相当于一个较大得电容器,可吸收发电机得瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池得构造 车用12V蓄电池均由6个单格电池串联而成,每个单格得标称电压为2V,串联成12V得电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板与负极板两种。蓄电池得充电过程就是依靠极板上得活性物质与电解液中硫酸得化学反应来实现得。正极板上得活性物质就是深棕色得二氧化铅(PbO2),负极板上得活性物质就是海绵状、青灰色得纯铅(Pb)。 正、负极板得活性物质分别填充在铅锑合金铸成得栅架上,加入锑得目得就是提高栅架得机械强度与浇铸性能。但锑有一定得副作用,锑易从正极板栅架中解析出来而引起蓄电池得自行放电与栅架得膨胀、溃烂,从而影响蓄电池得使用寿命。 负极板得厚度为1、8mm,正极板为2、2mm,为了提高蓄电池得容量,国外大多采用厚度为1、1~1、5mm得薄型极板。另外,为了提高蓄电池得容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板得数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池得内阻与体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好得耐酸性与抗碱性。 隔板材料有木质、微孔橡胶、微孔塑料以及浸树脂纸质等。近年来,还有将微孔塑料隔板做成袋状,紧包在正极板得外部,防止活性物质脱落。

纯电动城市客车动力系统参数匹配及仿真研究2013.3.31全解

纯电动城市客车动力系统参数匹配及仿真研究 汤峰邱静 (安徽交通职业技术学院汽车与机械工程系,安徽合肥 230051) 摘要:在分析纯电动城市客车的基本技术参数和设计要求,进行驱动系统结构型式以及驱动体统电机基础选型,对驱动电机主要参数分析计算并确定选型,建立动力系统数学模型,通过仿真试验验证动力系统设计与电机选型方案的可行性。 关键词:纯电动城市客车;动力系统;蓄电池;参数匹配;仿真 A Study on the Parameters Matching and Simulation of Power System For Pure Electric City Bus Tang Feng Qiu Jing (Faculty of Machinery and Automobile Engineering, Anhui Communications Vocational and Technical College,Anhui Hefei,230051,China) Abstract:According to the analysis of the technical parameters and design requirements for pure electric city bus,Structure of the drive system and motor parameters are being matched,Calculating and determining the main parameters of the drive motor,Establish mathematical model of the power system,To verify the feasibility of design about the power system and Motor selection through the simulation result. Keywords:Pure electric city bus;Power system;Battery;parameter matching; Simulation 0 引言 纯电动城市客车具有零污染有害气体排放、能量利用的效率高、废弃热量排放少、声噪小、制动能回馈利用高等诸多方面的优点,其在城市公交、大巴等公共交通领域具有极强的开发应用意义[1]。纯电动城市客车动力系统的驱动电机、动力蓄电池的基础选型在研究过程中往往是凭开发设计人员的经验来确定,开发周期较长。通过对动力系统进行分析计算,并确定其参数,用仿真建模来验证参数的合理性能够大大的缩短研发周期[2]。 1 整车基本参数要求与基础选型 根据实际纯电动城市客车设计要求,整车基本参数要求如下表1所示。

电动汽车中的电池能量管理系统

一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能

相关主题
文本预览
相关文档 最新文档