当前位置:文档之家› 基于重力传感器的电子秤设计

基于重力传感器的电子秤设计

基于重力传感器的电子秤设计
基于重力传感器的电子秤设计

佳木斯大学

测试技术产品说明书

姓名:

专业:机械设计制造及其自动化

班级:

学号:

指导教师:

2014年6月29日

目录

摘要 (2)

Abstract (3)

绪论 (4)

1.1引言 (4)

1.2背景及意义 (4)

1.3国内外电子称发展及成果 (5)

1.4电子秤的基本结构 (6)

1.5电子秤工作原理 (7)

2系统方案的设定 (8)

3.硬件选择及功能介绍 (9)

3.1LM324(TL074) ....................................................................... 错误!未定义书签。

3.2 ICL7135 ....................................................................................... 错误!未定义书签。

3.3 CD4017 ....................................................................................... 错误!未定义书签。

3.4单片机STC89C52RD+ ................................................................... 错误!未定义书签。

3.5 TL431 ............................................................................................. 错误!未定义书签。

3.6称重传感器 ................................................................................... 错误!未定义书签。

3.7压力传感器及液晶显示器的安装方式 ....................................... 错误!未定义书签。

4.软件部分 (14)

4.1程序源码 (14)

4.2电路原理图 (40)

5结论 (41)

6致谢 (42)

7参考文献 (43)

摘要

本文设计的电子称是以单片机为主要部件,用C语言进行软件设计。通过传感器测量信号,用信号放大系统放大信号,经过A/D转换系统转换信号输送给CPU控制系统,通过液晶屏显示系统显示数据,键盘输入系统用来输入操作指令,阀值报警系统可以防止超量程损坏电子称。基本上实现了电子秤的基本功能。具备使用方便,直观,测量准确,成本低等特点。适应了现代社会发展的需求。

在本设计中将智能化,人性化,自动化用在了电子秤的控制系统中。系统采用芯片作为单片机STC89C52RD+的主控芯片,外围以称重电路,显示电路,报警电路,键盘电路等构成系统电路板,从而实现了自动称重的各种控制功能。

关键词:电子称单片机STC89C52RD+称重传感器 A/D转换器 LCD显示器

Abstract

This article is based on single chip design, said the main electronic components in assembly language for software design. Measured by the sensor signal, amplifies thesi gnal with a signal amplification system, after A / D conversion system control signal transmission to the CPU, LCD display system displays the data through the keyboard input system for entering instructions, the threshold alarm system to prevent over-rang e damage to electronic said. Basically realize the basic functions of electronic scales. With easy to use, intuitive, measurement accuracy, and low cost. Adapted to the needs of modern social development.

In this design will be intelligent, humane, automated electronic scales used in the control system. System uses the STC89C52RD+chip as the microcontroller control chi p, the external load assigned to the city circuit, display circuit, alarm circuit, the keybo ard circuit board constitutes a system, enabling the automatic weighing of the various control functions.

Keywords: electronic scale STC89C52RD+ load sensor A/D converter LCD display

绪论

1.1引言

在我们生活中经常都需要测量物体的重量,于是就用到秤,但是随着社会的进步、科学的发展,我们对其要求操作方便、易于识别。随着计量技术和电子技术的发展,传统纯机械结构的杆秤、台秤、磅秤等称量装置逐步被淘汰,电子称量装置电子秤、电子天平等以其准确、快速、方便、显示直观等诸多优点而受到人们的青睐。电子秤向提高精度和降低成本方向发展的趋势引起了对低成本、高性能模拟信号处理器件需求的增加。通过分析近年来电子衡器产品的发展情况及国内外市场的需求,电子衡器总的发展趋势是小型化、模块化、集成化、智能化;其技术性能趋向是速率高、准确度高、稳定性高、可靠性高;其功能趋向是称重计量的控制信息和非控制信息并重的“智能化”功能;其应用性能趋向于综合性和组合性。

1.2背景及意义

称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。电子秤是电子衡器中的一种,衡器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,衡器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。称重装置不仅是提供重量数据的单体仪表,而且作为工业控制系统和商业管理系统的一个组成部分,推进了工业生产的自动化和管理的现代化,它起到了缩短作业时间、改善操作条件、降低能源和材料的消耗、提高产品质量以及加强企业管理、改善经营管理等多方面的作用。称重装置的应用已遍及到国民经济各领域,取得了显著的经济效益。因此,称重技术的研究和衡器工业的发展各国都非常重视。50年代中期电子技术的渗入推动了衡器制造业的发展。60年代初期出现机电结合式电子衡器以来,经过40多年的不断

改进与完善,我国电子衡器从最初的机电结合型发展到现在的全电子型和数字智能型。现今电子衡器制造技术及应用得到了新发展。电子称重技术从静态称重向动态称重发展:计量方法从模拟测量向数字测量发展;测量特点从单参数测量向多参数测量发展,特别是对快速称重和动态称重的研究与应用。通过分析近年来电子衡器产品的发展情况及国内外市场的需求,电子衡器总的发展趋势是小型化、模块化、集成化、智能化;其技术性能趋向是速率高、准确度高、稳定性高、可靠性高;其功能趋向是称重计量的控制信息和非控制信息并重的“智能化”功能;其应用性能趋向于综合性和组合性。电子秤是电子衡器中的一种,衡器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,衡器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。

1.3国内外电子称发展及成果

随着第二次世界大战后的经济繁荣,为了把称重技术引入到生产工艺过程中去,对称重技术提出了心动要求,希望称重过程自动化,为此电子技术渗入衡器制造业。在1954年使用了带新式打印机的倾斜式秤,其输出信号能控制商用结算器,并且用电磁铁机构与人工操作的按键与办公机器联用。在1960年开发出了与衡器相联的专门称重值打印机。当时带电子装置的衡器其称量工作是机械式的,但与称量有关的显示、记录、远传式控制器等功能是电子方式的。电子称的发展过程与其他事物一样,也经历了由简单到复杂、又粗糙到精密、由机械到机电结合再到全电子化、由单一功能到多功能的过程。特别是近30年以来,工艺流程中的现场称重、配料定量称重、以及产品质量的监测等工作,都离不开能输出信号的电子衡器。这是由于电子衡器不仅给出质量或重量信号,而且也能作为总系统中的一个单元承担着控制和检验功能,从而推进工业生产和贸易交往的自动化和合理化。近年来电子称已愈来愈多地参与到数据的处理和控制过程中。现代称重技术和数据系统已经成为工艺技术、储运技术、预包装技术、收货业务及商业销售领域中不可或缺的组成部分。随着称重传感器各项性能的不断突破,为电子称的发展奠定了基础,国外如美国、西欧等一些国家在20世纪60年代就出

现了0.1%称量准确度的电子称,并在70年代中期约对75%的机械称进行了机电结合式改造。

我国的衡器在20世纪40年代以前还全是机械式的,40年代开始发展了机电结合式的衡器。50年代开始出现了以称重传感器为主的电子衡器。80年代以来,我国通过自行研究引进消化吸收和技术改造。已由传统的机械式衡器步入集传感器、微电子技术、计算机技术与一体化的电子衡器发展阶段。目前,由于电子衡器具有称量快、读数方便、能在恶劣条件下工作、便于与计算机技术相结合而实现称重技术和过程控制的自动化特点,已被广泛应用于工矿企业、能源交通、商业贸易和科学技术等各个部门、随着称重传感器技术以及超大规模集成电路和微处理器的进一步发展,电子称重技术及其应用范围将更进一步的发展,并被人们越来越重视。电子衡器产品量大面广、种类繁多,从通用的各种规格的电子称到大型的电子称重系统,从单纯的称重、计价到生产过程检测系统的一个测量控制单元,其应用领域不断地扩大。根据近些年来电子称重技术和电子衡器的发展情况及电子衡器市场的需求,电子称的发展动向为:小型化、模块化、智能化、集成化;其技术性能趋向于速率高、准确度高、可靠性高;其应用性趋向综合性、组合性。

1.4电子秤的基本结构

电子秤是利用物体的重力作用来确定物体质量(重量)的测量仪器,也可用来确定与质量相关的其它量大小、参数、或特性。不管根据什么原理制成的电了秤均由以下三部分组成:

(1)承重、传力复位系统

它是被称物体与转换元件之间的机械、传力复位系统,又称电子秤的秤体,一般包括接受被称物体载荷的承载器、秤桥结构、吊挂连接部件和限位减振机构等。

(2)称重传感器

即由非电量(质量或重量)转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。

按照称重传感器的结构型式不同,可以分直接位移传感器(电容式、电感式、电位计式、振弦式、空腔谐振器式等)和应变传感器(电阻应变式、卢表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。

对称重传感器的基本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。

(3) 测量显示和数据输出的载荷测量装置

即处理称重传感器信号的电子线路(包括放人器、模数转换、电流源或电压源、调节器、补尝元件、保护线路等)和指示部件(如显示、打印、数据传输和存贮器件等)。这部分习惯上称载荷测量装置或二次仪表。在数字式的测量电路中,通常包括前置放大、滤滤、运算、变换、计数、寄存、控制和驱动显示等环节。

1.5电子秤工作原理

当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力一电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。此信号由放大电路进行放大、经滤波后再由模/数( A/D)器进行转换,数字信号再送到微处器的CPU处理,CPU 不断扫描键盘和各功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。运算结果送到内存贮器,需要显示时,CPU发出指令,从内存贮器中读出送到显示器显示。一般地信号的放大、滤波、A/D转换以及信号各种运算处理都在仪表中完成。

2系统方案的设定

按照本设计功能的要求,系统由5个部分组成:控制器部分、测量部分、数据显示部分、键盘部分、和电路电源部分,总体设计框图如图2-1所示。

图2-1

测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送单片机中的A/D转换器,将模拟量转化为数字量输出,控制器接受来自A/D转换器输出的数字信号,经过复杂的运算,将数宁信号转换为物体的实际重量信号,并将其送到显示单元中。

3.硬件选择及功能介绍3.1LM324(TL074)

此芯片图如下图3-1所示,其功能如下。

图3-1 LM324

功能说明:运算放大器

V-(11脚):负电源端。

V+(4脚):正电源端。

3.2 ICL7135

此芯片图如下图3-2所示,其功能如下。

图3-2 ICL7135

功能说明:4位半A/D转换器

V-(1脚):负电源端-5V。

REFERENCE(2脚):基准电压输入端。

ANALOGY GND(3脚):模拟地。

INT/OUT(4脚):积分器输入端,接积分电容。

AZ(5脚):积分器和比较器反相输入端,接自零电容。

BUF(6脚):输出缓冲端,接积分电阻。

CREF-(7脚):基准电容负。

CREF+(8脚):基准电容正。

IN-(9脚):被测信号负输入端。

IN+(10脚):被测信号正输入端。

V+(11脚):电源正端,接+5V。

D5~D1(12,17~20脚):位扫描输出端。

B1~B4(13~16脚):BCD码输出端。

BUSY(21脚):忙状态输出端,指示正在进行A/D转换。

CLK(22脚):时钟信号输入端。

POL(23脚):负极性信号输出端。

DGND(24脚):数字地。

R/H(25脚):运行/读数操作控制端。

STROBE(26脚):数据选通输出端。

OR(27脚):超量程状态输出端。

UR(28脚):欠量程状态输出端。

3.3 CD4017

此芯片图如下图3-3所示,其功能如下。

图3-3 CD4017

功能说明:Y0-Y9(1~7,9~11脚):为计数输出端。

VSS(8脚):接地。

CO(12脚):进位输出端。

EN(13脚):使能端。

CP(14脚):时钟输入端。

CR(15脚):清零端。

VDD(16脚):电源端。

3.4单片机STC89C52RD+

单片机如下图3-4所示,其功能如下。

图3-4 STC89C52RD+

引脚功能说明:

(1)输入/输出引脚(I/O口线):

P0.0~P0.7:P0口8位双向I/O口,占39~32脚;

P1.0~P1.7:P1口8位准双向I/O口,占1~8脚;

P2.0~P2.7:P2口8位准双向I/O口,占21~28脚;

P3.0~P3.7:P3口8位准双向I/O口,占10~17脚;

(2)控制口线:

PSEN(29脚):外部程序存储器读选通信号。

ALE/P(30脚):地址锁存允许/编程信号。

EA/VP(31脚):外部程序存储器地址允许/固化编程电压输入端。

RST/VPD (9脚):RST 是复位信号输入端,VPD 是备用电源输入端。

3.5 TL431

此芯片图如下图3-5所示,其功能如下。

图3-5 TL431

功能说明:1:2.500V 参考电压输出。 2:阳极。

3:阴极。

3.6 称重传感器

称重传感器结构图如下图3-6所示,其功能如下。

VCZ

IN -

GND

IN+

图3-6 称重传感器结构图

功能说明: 红色线:电源正极(VCZ ) 黑色线:接地端(GND ) 绿色线:正输出端(IN+) 白色线:负输出端(IN -)

3

2

1

3.7压力传感器及液晶显示器的安装方式

电子秤模型图如下图3-7所示。

1.圆盘

2.液晶显示器

3.螺丝(3*6mm)

4.螺丝(3*6mm)

5.PCB线路板

6.铜柱(3*30mm)

7.铜柱(3*10mm)

8.压力传感器图3-7模型图

9.螺丝(含垫片)

4.软件部分

4.1程序源码

#include

#include

#include

#include

#include

#include

#define SENDCOMM 0XF8 //0XF1000

#define READCOMM 0XFC //0XF1100

#define SENDDATA 0XFA //0XF1010

#define READDATA 0XFE //0XF1110 11111ab0

uchar hao[8];

uchar temp,num,num1;

void LCD_send_byte(unsigned char a);

unsigned char LCD_read_byte(void);

unsigned char LCD_bf(void);

void LCD_comm(unsigned char comm);

void LCD_setxy(unsigned char x,unsigned char y);

void LCD_PORTInit(void);

void LCD_WriteStr(unsigned char dis_addr_x,unsigned char dis_addr_y,char* str);

void LCD_WriteDBC(unsigned char dis_addr_x,unsigned char dis_addr_y,unsigned char dis_dat);

sbit E_CLK =P2^6; //clock input

sbit RW_SID=P2^5; //data input/output

sbit RS_CS =P2^4; //chip select sbit P23=P0^0;

void LCD_PORTInit(void)

{

E_CLK=0;

RS_CS=0;

}

void LCD_send_byte(unsigned char a) {

unsigned char i;

for(i=8;i>0;i--)

{

if(a&(0x01<<(i-1)))

RW_SID=1;

else

RW_SID=0;

delay(1);

E_CLK=1;

// delay(1);

E_CLK=0;

// delay(1);

}

}

unsigned char LCD_read_byte(void) {

unsigned char i,dat=0;

for(i=8;i>0;i--)

{

E_CLK=1;

delay(1);

if(RW_SID==1)

dat|=(0x01<<(i-1));

E_CLK=0;

delay(1);

}

return dat;

}

unsigned char LCD_bf(void)

{

unsigned char readh,readl,bf;

RS_CS=1;

delay(1);

LCD_send_byte(READCOMM);

readh=LCD_read_byte();

readl=LCD_read_byte();

delay(1);

RS_CS=0;

readl=(readl>>4);

bf=(readh&0xf0)|(readl&0x0f); return bf;

}

void LCD_comm(unsigned char comm) {

unsigned char temp;

do{

temp=LCD_bf();

}while(temp&0X80);

RS_CS=1;

delay(1);

LCD_send_byte(SENDCOMM);

temp=comm&0XF0;

LCD_send_byte(temp);

temp=((comm&0X0F)<<4)&0XF0;

LCD_send_byte(temp);

delay(1);

RS_CS=0;

}

void LCD_data(unsigned char lcd_data)

{

unsigned char temp;

RS_CS=1;

delay(0);

LCD_send_byte(SENDDATA);

temp=lcd_data&0xf0;

LCD_send_byte(temp);

temp=(lcd_data&0X0F)<<4;

LCD_send_byte(temp);

delay(0);

RS_CS=0;

}

/**************************************************************** ***/

// 设置显示位置 X(1~16),Y(1~4)

/**************************************************************** ***/

void LCD_setxy(unsigned char x,unsigned char y)

{

switch(y)

{

case 1:

LCD_comm(0X7F+x);break;

case 2:

LCD_comm(0X8F+x);break;

case 3:

LCD_comm(0X87+x);break;

case 4:

LCD_comm(0X97+x);break;

default:break;

}

}

/**************************************************************** ***/

// 在指定位置显示一半角字符

/**************************************************************** ***/

void LCD_WriteDBC(unsigned char dis_addr_x,unsigned char dis_addr_y,unsigned char dis_dat)

{

LCD_setxy(dis_addr_x,dis_addr_y);

LCD_data(dis_dat);

/**************************************************************** ***/

// 在指定位置显示字符串

/**************************************************************** ***/

void LCD_WriteStr(unsigned char dis_addr_x,unsigned char dis_addr_y,char* str)

{

unsigned char LCD_temp;

LCD_setxy(dis_addr_x,dis_addr_y);

LCD_temp=*str;

while(LCD_temp != 0x00)

{

LCD_data(LCD_temp);

LCD_temp=*(++str);

}

}

void LCD_init(void)

{

unsigned char i;

LCD_PORTInit();

i=LCD_bf();

while(i==0x80)

{

delay(1);

i=LCD_bf();

基于霍尔式传感器的电子秤-课程设计

基于霍尔式传感器的电子秤-课程设计

————————————————————————————————作者:————————————————————————————————日期:

课程设计报告 设计题目基于霍尔式传感器的电子秤 指导老师 摘要 科学技术的发展对称重技术提出了更高的要求,尤其是微处理技术和传感技术的巨大进步,大大加速了这个进程。目前,电子秤在商业销售中的使用已相当普遍,但在市场上仍广泛使用的电子秤有很大局限性。这些电子秤体积大、成本高,又不便随身携带,而目前市场上流行的便携秤又大都采用杆式秤或以弹簧压缩、拉伸变形来实现计量的弹簧秤等,其计量误差大,又容易损坏。杆式秤和弹簧秤等计量器械将逐渐被淘汰。因此,一种能够在未来更方便、更准确的普及型电子秤的发展受到人们的重视,设计一种重量轻、计量准确、读数直观的民用电子秤迫在眉睫。 本设计过程充分利用传感器的有关知识,利用霍尔传感器设计的简单电子秤很大程度上满足了此应用需求,并从简单电子秤的基本构造进一步了解大型电子秤的构造原理。 关键词:CSY传感器实验仪;电子秤;霍尔式传感器;差动放大器

目录 第一章绪论 (1) 1.1 电子秤概述 (1) 1.1.1 电子秤的发展 (1) 1.2 电子秤的组成 (2) 1.2.1 电子秤的基本结构 (2) 1.2.2 电子秤的基本工作原理 (2) 第二章电子秤设计的目的意义及设计任务与要求 (4) 2.1 电子秤设计目的 (4) 2.2 此课程在教学计划中的地位和作用 (4) 2.3 电子秤设计任务与要求 (4) 2.3.1 设计任务 (4) 2.3.2 设计要求 (4) 第三章电子秤总体设计方案 (5) 3.1 电子秤设计思想 (5) 3.2各电路单元或部件选择 (6) 3.2.1 直流稳压电源的选择 (6) 3.2.2 电桥平衡网络的选择 (6) 3.2.3 称重传感器的选择 (6) 3.2.4 差动放大器的选择 (9) 3.2.5 F/V表的选择 (9) 3.3 最终方案的确定 (10) 第四章硬件设计 (11) 4.1 硬件设计概要 (11) 4.1.1 硬件电路设计原理说明及电路图 (11)

电子称的设计 传感器.

燕山大学 课程设计说明书题目:电子秤的设计 学院(系):电气工程学院 年级专业: 12级 学号: 学生姓名: 指导教师: 教师职称:

燕山大学《传感器原理与设计》课程设计任务书 院(系):电气工程学院基层教学单位:仪器科学与工程系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年 12月 12日

摘要 称重技术是日常生活不可获缺的技术,随着科学技术的发展,称重技术和称重装置也获得了广泛的发展。基于电阻应变传感器的电子称以其制作简单、成本低、量程大、精度高等优点,得到了广泛的应用和发展。 电阻应变式传感器是以电阻应变效应为基本原理的电阻式传感器。它由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、扭矩、位移等多种物理量。 本文介绍了一种基于电阻应变式的称重传感器的电子秤的设计,其中包括惠斯通全桥电路的设计和搭建、OP07组成的放大电路的设计、AD7705组成的模数转换电路以及转换后数字采集和显示的实现。详细叙述了该称重传感器的参数设计,并验证其可行性。 关键字:传感器、电阻应变、差动电桥、放大电路、AD转换

目录 第1章概论 (1) 1.1 调研的意义 (1) 1.1.1课题背景 (1) 1.1.2调研意义 (1) 1.2研究现状 (1) 1.2.1国内外电子称的研究现状和发展趋势 (1) 1.2.2典型电子称产品举例 (3) 1.3为电子称设计进行的准备 (3) 第2章电子称的具体设计方案 (5) 2.1敏感元件的介绍 (5) 2.1.1电阻应变片的工作原理 (5) 2.1.2弹性元件 (6) 2.2 匹配电路的设计 (7) 2.2.1 元器件选择与功能描述 (7) 2.2.2 测量电路的设计 (8) 2.2.3 差动放大电路单元 (10) 2.2.4 A/D转换单元 (11) 2.2.5数据处理与显示部分 (12) 第3章仿真电路 (14) 3.1仿真电路的建立 (14) 3.2仿真电路结果分析 (16) 第4章体会与收获 (18) 参考文献 (19)

电子秤的设计与制作

《基于Lab View的电子秤设计》 课设报告书 学院:机电学院 学号: 姓名: 同组人: 指导老师: 提交日期:2017 年 6 月12 日

目录 一、概述 (1) 二、功能需求分析 (1) 三、系统设计 (1) 四、技术实现 (12) 五、课程设计问题及解决方法 (13) 六、心得体会 (13)

一、概述 电阻应变片是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化。可直接作为测量传感元件,将电阻应变片接成电桥形式,当钢梁受到外力产生形变时,电桥内各电阻值将发生变化,产生相应的不平衡输出。 本次课程设计的目的,是掌握传感器的组成和基本原理、基本概念和分析方法、并具备构造、调试和工程设计传感器的能力。了解labview软件的使用方法,并利用软件构建信号分析程序和前面板。 二、功能需求分析 (1)量程0~1.5Kg,应变式传感器的结构设计; (2)电路设计,差分放大电路; (3)程序设计,包括信号处理程序和前面板。 三、系统设计 其电路构成主要有测量电路,差动放大电路。其中测量电路中最主要的元器件就是电阻应变式传感器。电阻应变式传感器是传感器中应用最多的一种,广泛应用于电子秤以及各种新型结构的测量装置。而差动放大电路的作用就是把传感器输出的微弱的模拟信号进行一定倍数的放大,以满足NI数据采集卡的输入要求,将信号输入进电脑进行进一步分析。 原理流程图如下: 1、测量电路 电阻应变式传感器简称电阻应变计。当将电阻应变计用特殊胶剂粘在被测构件的表面上时,则敏感元件将随构件一起变形,其电阻值也随之变化,而电阻的变化与构件的变形保持一定的线性关系,进而通过相应的二次仪表系统即可测得构件的变形。通过应变计在构件上的不同粘贴方式及电路的不同联接,即可测得重力、变形、扭矩等机械参数

自动化传感器实验报告四--直流全桥的应用——电子秤实验

广东技术师范学院实验报告 学院:自动化专业:自动化班级:08自动化 成绩: 姓名:学号: 组 别: 组员: 实验地点:实验日期:指导教师签名: 实验二项目名称:直流全桥的应用——电子秤实验 一、实验目的 了解应变直流全桥的应用及电路的标定。 二、基本原理 电子秤实验原理与实验三相同,利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。 三、需用器件和单元 传感器实验箱(二)中应变式传感器实验单元,应变式传感器实验模板、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。 四、实验内容与步骤 1.按实验一中的步骤2,将差动放大器调零,按图3-1全桥接线,打开直流稳压电源开关,调节电桥平衡电位器Rw1,使直流电压表显示为零。 2.将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节)使直流电压表显示为0.200V或-0.200V。 3.拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使直流电压表显示为0.000V。 4.重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。 5.把砝码依次放在托盘上,填入下表4-1。 表4-1电桥输出电压与加负载重量值 6. 误差:0% 非线性误差:0% 五、实验注意事项 1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。 2.电桥的电压为±5V,绝不可错接成±15V。

六、实验报告要求 1.记录实验数据,绘制传感器的特性曲线。 2.分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。 答:环境因素和实验器材的校正不准会导致非线性误差增大。通过多次校正,调节变位器可消除或减少误差。若要增加输出灵敏度可增加相形放大电路。

《传感器应用技术》课程设计

《传感器应用技术》课程设计 题目 压电式力传感器的结构与应用 姓 名 学 号 院(系) 电子电气工程学院 班 级 P10 电信二班 指导教师 职 称 教授 二O 一二年 七 月 一日

摘要 此次压电式力传感器设计主要阐述了压电式力传感器的具体设计过程。 设计过程主要包括设计格式、设计要求及设计过程中有关压电式力传感器的设计,还有在整个设计过程中的有关计算、与传感器相连的测试电路。 本压电式传感器采用压缩型单项里传感器结构,利用纵向压电效应进行工作,在设计中压电材料采用石英晶体。由于安装中需施加预紧力,以保证该传感器的线性度良好,故留出一定的过载量,本设计中重点考虑了各部分的面积、刚度等参数,未讨论预紧力的选用范围,可能还存在一些其他因素,如安装误差等可以影响设计传感器的性能,属于正常范围内,使用中可忽略。

目录 摘要 (1) 第一章传感器的结构设计 (2) 第二章传感器的参数计算 (3) 第三章测量电路 (6) 总结 (7) 参考文献 (8)

传感器的结构如下图 图一 1、顶盖 2、敏感元件 3、导电片 4、基座 5、外壁 6、预紧螺钉 该传感器由顶盖、敏感元件、导电片、基座、外壁、预紧螺钉和输出插座组成。通过预紧螺钉加预紧力,将顶盖、基座和外壁焊接为一体,输出插座可与同轴低噪声电缆连接。

1、压电晶体(石英)的几何尺寸 石英片在机械强度上必须满足公式 δ F S ≥ 式中: S 为石英晶片的受力面积 F 为传感器待测力的最大力 δ为石英晶体的许用应力,为17.5 2/kg mm 本设计中传感器的额定负载为400 kg ,由于包括预紧力,并留出一定的过载量,取最大负载量为700 kg ,因而S ≥ 40 2mm 。 设计中取晶片的长为10 mm ,宽为6 mm ,受力面积60 2mm 。 2、石英片的晶片电容值 d S r 00 εε= C 这里取每片石英片的厚度为1.2mm ,石英的r ε=4.5,每片石英片的电容 0C =1.99pF 为了提高传感器的灵敏度,取两片石英片并联方式,所以总的电容大小为3.98pF 。 3、传感器刚度参数计算 设在外力F 的作用下,传感器的变形为x δ,12()x F k k δ=+ 式中:1k 为敏感部分的组合刚度 2k 为辅助部分组合刚度 图二 在晶片数一定时, 112 k k k +决定了传感器的精度,因此, 在结构设计中应确保

电子秤设计

传感器课程设计 小量程电子秤设计 学校:河海大学 专业:应用物理学 姓名:季庚午 学号:0810020116 指导老师:丁万平

Ⅰ、总体设计方案 本设计由以下几部分组成:电阻应变传感器、信号放大器、模数转换、单片机、显示器。其结构图如下所示。 由电阻应变式传感器感受被测物体的质量,通过电桥输出电压信号,通过放大电路将输出信号放大,而后送入A/D转换单元进行模数转换,将转换后的数字信号送给单片机;单片机接收数据后,对数据进行处理,将其转换为对应的重量信息,送LED显示模块进行显示。单片机同时也可以进行去皮调零操作。 Ⅱ、硬件电路设计 一、传感器选择 1、传感器型号:WTP616平行梁式称重(测力)传感器; 2、产品特点及结构:主要适用于口袋称,手掌称等电子称重; 3、主要技术参数: 额定载荷(Kg):500g; 绝缘电阻(MΩ)>=2000(100VDC) 精度等级:C3; 激励电压(V)5~10DC 综合误差:(%F.S)0.05; 温度补偿范围(℃)-10~+40 灵敏度(mV/V)0.7+-0.1 使用温度范围(℃)-20~+50 非线性(%F.S):0.05; 零点温度影响(%F.S/10℃)0.2 滞后(%F.S):0.05; 灵敏度温度影响(%F.S/10℃)0.15 重复性(%F.S):0.05; 安全过载范围(%F.S) 150 蠕变(%F.S/30min):0.05; 极限过载范围(%F.S) 零点输出(%F.S): +-1; 输出阻抗(Ω): 1000+-50 输入阻抗(Ω):100050 电缆线: 四芯屏蔽电缆 4、接线方法:输入(电源)+:红色;输入(电源)—:黑色;输出(信号)+:绿色;输出(信号)—:白色 5、实物图: 图Ⅱ.1.1:WTP616实物图 应变传感器信号放大器单片机LED显示

电子称的设计传感器

燕山大学 课程设计说明书 题目:电子秤的设计 学院(系):电气工程学院 年级专业: 12级 学号: 学生姓名: 指导教师: 教师职称: 燕山大学《传感器原理与设计》课程设计任务书 院(系):电气工程学院基层教学单位:仪器科学与工程系

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2014年 12月 12日 摘要 称重技术是日常生活不可获缺的技术,随着科学技术的发展,称重技术和称重装置也获得了广泛的发展。基于电阻应变传感器的电子称以其制作简单、成本低、量程大、精度高等优点,得到了广泛的应用和发展。 电阻应变式传感器是以电阻应变效应为基本原理的电阻式传感器。它由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、扭矩、位移等多种物理量。

本文介绍了一种基于电阻应变式的称重传感器的电子秤的设计,其中包括惠斯通全桥电路的设计和搭建、OP07组成的放大电路的设计、AD7705组成的模数转换电路以及转换后数字采集和显示的实现。详细叙述了该称重传感器的参数设计,并验证其可行性。 关键字:传感器、电阻应变、差动电桥、放大电路、AD转换

目录 第1章概论 0 1.1 调研的意义 0 1.1.1 课题背景 0 1.1.2 调研意义 0 1.2 研究现状 (1) 1.2.1 国内外电子称的研究现状和发展趋势 (1) 1.2.2 典型电子称产品举例 (2) 1.3 为电子称设计进行的准备 (2) 第2章电子称的具体设计方案 (3) 2.1 敏感元件的介绍 (3) 2.1.1 电阻应变片的工作原理 (3) 2.1.2 弹性元件 (5)

单片机电子秤设计报告完整版样本

单片机电子秤设计报告 秤是一种在实际工作和生活中经常见到的测量器具。随着计量技术和电子技术的发展, 传统纯机械结构的杆秤、台秤、磅秤等称量装置逐步被淘汰, 电子称量装置电子秤、电子天平等以其准确、快速、方便、显示直观等诸多优点而受到人们的青睐。 和传统秤相比较, 电子秤利用新型传感器、高精度AD转换器件、单片机设计实现, 具有精度高、功能强等特点。本课题设计的电子秤具有基本称重、键盘输入、计算价格、显示、超重报警功能。该电子秤的测量范围为0-10Kg, 测量精度达到5g, 有高精度, 低成本, 易携带的特点。电子秤采用液晶显示汉字和测量记过, 比传统秤具有更高的准确性和直观性。另外, 该电子秤电路简单, 使用寿命长, 应用范围广, 能够应用于商场、超市、家庭等场所, 成为人们日常生活中不可少的必须品。 一、功能描述 1、采用高精度电阻应变式压力传感器, 测量量程0-10kg, 测量精度可达5g。 2、采用电子秤专用模拟/数字( A/D) 转换器芯片hx711对传感器信号进行调理转换, HX711 采用了海芯科技集成电路专利技术, 是一款专为高精度电子秤而设计的24 位A/D 转换器芯片。 3、采用STC89C52单片机作为主控芯片, 实现称重、计算

价格等主控功能。 4、采用128*64汉字液晶屏显示称重重量、单价、总价等信息。 5、采用4*4矩阵键盘进行人机交互, 键盘容量大, 操作便捷。 6、具有超量程报警功能, 能够经过蜂鸣器和LED灯报警。 7、系统经过USB电源供电, 单片机程序也可经过USB线串行下载。 二、硬件设计 1、硬件方案 单片机电子秤硬件方案如图1所示: 图1 单片机电子秤硬件方案

电子秤 课程设计.

摘要 本文设计的电子秤以单片机为主要部件,用C语言进行软件设计,硬件则以全桥传感器为主,测量0~500g电子秤,随时可改变上限阈值,并达到阈值报警的功能。本课程设计的电子秤以单片机为主要部件,利用单臂电桥测量原理,通过对电路输出电压和标准重量的线性关系,建立具体的数学模型,将电压量纲(V)改为重量纲(g)即成为一台原始电子秤。其中测量电路中最主要的元器件就是电阻应变式传感器。电阻应变式传感器是传感器中应用最多的一种。ADC0809 A/D转换的作用是把模拟信号转变成数字信号,进行模数转换,然后把数字信号输送到显示电路中去,最后由显示电路显示出测量结果。 关键字:电子秤、电子应变片、A/D转换器,显示电路

目录 摘要 (1) 目录 (2) 一、系统整体描述 (3) 二、系统模块描述 (4) 2.1 电阻应变式传感器的组成以及原理 (4) 2.2 直流电桥检测电路 (5) 2.3放大电路 (7) 2.4 A/D转换: (8) 2.5单片机系统 (9) 2.6显示电路 (10) 2.7报警电路: (11) 三:数据处理及程序的设计 (11) 3.1数据处理及程序的设计 (11) 3.2参数整定 (12) 3.2.1测量数据及误差分析 (12) 3.2.2曲线拟合及参数整定 (13) 3.3 显示子程序的设计 (16) 参考文献 (17) 总结 (17) 附录1仿真图 (18) 附录2程序 (18)

一、系统整体描述 系统由敏感元件、电桥测量电路、放大电路、模数转换电路、单片机最小系统、显示电路和报警电路构成。敏感元件产生物理量变化,由测量电路将信号转换为电信号,并放大输出。通过模数转换后将信号输入单片机中,经过处理后由显示电路显示。若变量超过限定值,则激活报警电路,由蜂鸣器发出报警信号。 应变片 电桥测量电路 放 大电 路 模数转换电 路 单片机最小系统 显 示 电路 报 警 电 路

智能压电传感器电子称设计毕业论文

题目智能电子秤设计 姓名李宏 专业电子信息工程 班级电子一班 学号 004 时间 2016年4月10日 第一章功能说明 本设计系统以单片机AT89S52为控制核心,实现电子秤的基本控制功能。在设计系统时,为了更好地采用模块化设计法,分步设计了各个单元功能模块。 系统的硬件部分包括最小系统部分、数据采集部分、人机交互界面和系统电源四大部分。最小系统部分主要包括AT89S52和扩展的外部数据存储器;数据采集部分由称重传感器,信号的前期处理和A/D转换部分组成,包括运算放大器AD620和A/D转换器ICL7135;人机界面部分为键盘输入,四位LED数码显示器,可以直观的显示重量的具体数字以及方便的输入数据,使用方便;系统电源以LM317和LM337为核心设计电路以提供系统正常工作电源。 系统的软件部分应用单片机C语言进行编程,实现了该设计的全部控制功能。该电子秤可以实现基本的称重功能(称重范围为0~9.999Kg,重量误差不大于±0.005Kg),并发挥部分的显示购物清单的功能,可以设置日期和设定十种商品的单价,还具有超量程和欠量程的报警功能。 本系统设计结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。称重传感器原理 即由非电量(质量或重量)转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。 按照称重传感器的结构型式不同,可以分直接位移传感器(电容式、电感式、电位计式、振弦式、空腔谐振器式等)和应变传感器(电阻应变式、声表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。 对称重传感器的基本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。 传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。其中敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。此外传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和

基于51单片机的电子秤的设计

学号: G RADUATE T HESIS 论文题目:基于51 单片机的电子秤的设计 学生姓名: 专业班级: 学院: 指导教师: 2017 年06 月12 日

第一章功能说明 本设计系统以单片机AT89S52为控制核心,实现电子秤的基本控制功能。在设计系统时,为了更好地采用模块化设计法,分步设计了各个单元功能模块。 系统的硬件部分包括最小系统部分、数据采集部分、人机交互界面和系统电源四大部分。最小系统部分主要包括AT89S52和扩展的外部数据存储器;数据采集部分由称重传感器,信号的前期处理和A/D 转换部分组成,包括运算放大器AD620和A/D 转换器ICL7135;人机界面部分为键盘输入,四位LED数码显示器,可以直观的显示重量的具体数字以及方便的输入数据,使用方便;系统电源以LM317和LM337为核心设计电路以提供系统正常工作电源。 系统的软件部分应用单片机C 语言进行编程,实现了该设计的全部控制功能。该电子秤可以实现基本的称重功能(称重范围为0~9.999Kg ,重量误差不 大于± 0.005Kg), 并发挥部分的显示购物清单的功能,可以设置日期和设定十种商品的单价,还具有超量程和欠量程的报警功能。 本系统设计结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。 称重传感器原理 即由非电量(质量或重量)转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。 按照称重传感器的结构型式不同,可以分直接位移传感器(电容式、电感式、电位计式、振弦式、空腔谐振器式等)和应变传感器(电阻应变式、声表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。对称重传感器的基本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。 传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 。其中敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。此外传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 称重传感器在电子秤中占有十分重要的位置,被喻为电子秤的心脏部件,它的性能好坏很大程度上决定了电子秤的精确度和稳定性。通常称重传感器产生的误差约占电子秤整机误差的50%~70%。若在环境恶劣的条件下(如高低温、湿热),传感器所占的误差比例就更大,因此,在人们设计电子秤时,正确地选用称重传感器非常重要。 称重传感器的种类很多,根据工作原理来分常用的有以下几种:电阻应变式、电容式、压磁式、压电式、谐振式等。(本设计采用的是电阻应变式) 电阻应变式称重传感器包括两个主要部分,一个是弹性敏感元件:利用它将

应变式传感器电子称的设计

基于应变式传感器的电子称设计 08电科2班 08040211王昊

专业电子科学与技术专业 姓名王昊班级电科08-2 学号08040211 题目基于应变式传感器的电子称设计 基于应变式传感器的电子称设计 1.概述 社会不断发展,技术不断提高,家电设备日新月异,但初高中实验室的设备却依然是那样陈旧,最明显的当是称重设备,依然是天平,天平构造和制作简单,但读数容易出现误差,且容易损坏和老化,调节平衡时过于麻烦,浪费时间,而数显电子称则很好地避免了这些不足,放上物体即可读数,准确而快速,方便实用,易于携带,不受场所制约。目前国际化的趋势是小型化、模块化、集成化、智能化等,技术性能则趋于速率高、准确度高、稳定性高等,可以说靠天平比较两物体的轻重很方便,但说到快、准则是电子称更优。 传感器技术是现代科技的前沿技术,随着工业自动化、信息化的发展,以往称重的器械已跟不上时代的潮流,我们应跟上世界的步伐,往小里说,方便,往大了说,解放人类劳动力,称重行业也需要一种在称重过程中准确计量且具有极高的灵敏度、具有较强的环境适应能力的称重器械,不受大气压力等外界干扰的影响,更易于普遍,加上比以往传感器更长的寿命,通过试验和创新后的应变式传感器电子称将会够受欢迎。 此外,利用应变式传感器制作的数显电子称,易于制作、简单实用、成本低廉、体积小巧等多个优点,所以在市场上也有很大的上升和推广空间。本次设计的基于应变式传感器的数显电子称,主要用于实验室小件物体的称重,给老师和学生提供方便,节省时间,由于是实验室的设备,不需要每人配一件,只需有3-10台,够用即可,因此要满足小巧可移动性,方便从这一实验桌到另一实验桌的搬动。通过分析和讨论各个部分的电路原理、控制策略、实现方法等,达到使商用称重还是实验室称重的实用目的。 合理应用所学的知识,充分发挥电阻应变式传感器的功能,灵活搭配各个元器件,就能组装出一个电子称,需要各方面的能力包括理论知识和动手操作等,因此需要在课程设计前做好充分的准备,从选课题到付出实际行动都要认真仔细的思考仔细得做,遇到问题,就分析解决问题,直至连接成功。 数显电子称的量程可调,可通过换用应变片和电路的总增益,来调节量程,达到称重范围广,小件测量精确的效果,当然,今日我发现也可以用于到校门口购买水果称重(可能有点异想天开),因为每次到学校门口买水果和地瓜,总是缺斤少两,很是不痛快,物价可以贵,

基于霍尔式传感器的电子秤

基于霍尔式传感器的电子秤

————————————————————————————————作者:————————————————————————————————日期:

霍尔式传感器的电子秤的创新设计 姓名:徐志远 班级:理工10-3班 学号:22100832

一、创新的背景 称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。电子秤是电子衡器中的一种,衡器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,衡器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。 电子秤的发展过程与其它事物一样,也经历了由简单到复杂、由粗糙到精密、由机械到机电结合再到全电子化、由单一功能到多功能的过程。特别是近30年以来,工艺流程中的现场称重、配料定量称重、以及产品质量的监测等工作,都离不开能输出电信号的电子衡器。这是由于电子衡器不仅能给出质量或重量信号,而且也能作为总系统中的一个单元承担着控制和检验功能,从而推进工业生产和贸易交往的自动化和合理化。 通过分析近年来电子衡器产品的发展情况及国内外市场的需求,电子衡器总的发展趋势是小型化、模块化、集成化、智能化;其技术性能趋向是速率高、准确度高、稳定性高、可靠性高;其功能趋向是称重计量的控制信息和非控制信息并重的“智能化”功能;其应用性能趋向于综合性和组合性,伴随着高科技的发展,电子秤的功能将会日趋完善。因此,一种能够在未来更方便、更准确的普及型电子秤的发展受到人们的重视,设计一种重量轻、计量准确、读数直观的民用电子秤迫在眉睫。 二、电子称创新的思路 电子秤是利用物体的重力作用来确定物体质量(重量)的测量仪器,也可用来确定与质量相关的其它量大小、参数、或特性。不管根据什么原理制成的电子秤均由以下三部分组成: A、承重传力复位系统; 它是被称物体与转换元件之间的机械、传力复位系统,又称电子秤的秤体,一般包括接受被称物体载荷的承载器、秤桥结构、吊挂连接部件和限位减振机构等。

基于电子应变式传感器电子称的制作

基于电子应变式传感器电子称的制作设计(论文) 基于电子应变式传感器 电子称制作 姓名: 指导教师: 专业名称: 所在系部: 2011年5月

摘 要 电 阻应 变式 传感 器具 有测 量范 围 广、 精度 高、 误差小和线性特性等优点,且能在恶劣环境下工作,在力、压力和重要测试中 有非常广泛应用,力传感器具有结构简单、体积小、重量轻、使用寿命长 等优异特点。所以电阻应变式力传感器制作数显电子称具有准确度高易于 制作,简单实用、成本低廉、体积小巧、携带方便等特点。 本文从数显电子称要求分析入手,将整个系统分成四个部分,分析和讨论了各个部分电路原理、控制策略、实现方法。详细讨论了系统各种 工况及信号传递情况,并得到了系统各个部分在不同工况工作状态。数显

电子秤根据弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面电阻应变片(转换元件)也随同变形,电阻应变片变形后,它阻值将发生变化(增大或减小),再经相应测量电路把这一电阻变化转换为电信号(电压或电流),将电信号通过数码显示器显示出来,从而完成了将外力变换为电信号过程。 关键词:灵敏度、电阻应变式传感器 引言 电子秤是日常生活中常用带子衡器,广泛应用于超市。大中型商场。物流配送中心。电子秤在结构和原理上取代了以杠杆平衡为原理传统机械式称重工具。相比传统机械式称量工具,电子秤具有称量精度高、装机体

积小、应用范围广、易于操作使用等优点,在外形布局、工作原理、结构和材料上都是全新计量衡器。电子秤设计首先是通过压力传感器采集到被测物体重量并将其转换成电压信号。输出电压信号通常很小,需要通过前端信号处理电路进行准确线性放大。放大后模拟电压信号A/D转换电路转换成数字量被送到主控电路单片机中,在经过单片机控制译码显示器,从而显示出被测物理重量。 目前市场上使用称重工具,或者是结构复杂,或者运行不可靠,且成本高,精度稳定性不好,调正时间长,易易损件多,维修困难,装机容量大,能源消耗大,生产成本高。而且目前市场上电子秤产品整体水平不高,部分小型企业产品质量差且技术力量薄弱,设备不全,缺乏产品开发能力,产品质量在低水平徘徊。因此,有针对性地开发一套有实用价值电子秤系统,从技术上克服上述诸多缺点,改善电子城系统在应用中不足。 目录 摘要 (3) 引言 (4)

基于压力传感器的电子秤设计

传感器及测试技术 课程设计 课题名称:基于压力传感器的电子秤设计小组成员: 姓名: 学号: 班级: 指导教师:

说明:为满足实用电子称的设计要求,进行了各单元电路方案的比较论证及确定 统以AT89S52控制核心,选用了压力传感器,该传感器灵敏度高、线性度和复性好; 对于关键的ADC,经过充分比较、论证,最终选用了高分辨率信号调理ADC--AD7714,该芯片内集成了缓冲器、时钟发生器、可编程增益放大器、数字滤波器、∑-Δ调制 器以及电荷平衡式A/D转换器等电路,由于AD7714采用了∑-Δ技术实现A/D转换,具有线性度好、功耗低、增益可编程,无须前端信号调理等优点;系统选用DS12C887 作为日历时钟芯片,并存储标定系数,8279作为键盘管理芯片,采用内藏显示控制器 T6963C的点阵图形式显示器MGLS-240128T,接口简单,编程容易,美观大方。最后 的实验表明,系统完全达到了设计要求,不但完成了基本要求,发挥部分的要求,还 增加了标定、时钟和过载提示三个创新功能。 1 设计方案包括基本要求,发挥部分及其它创新部分 1.1 基本要求 (1)能用简易键盘设置单价,加重后能同时显示重量、金额和单价; (2)重量显示:单位为公斤;最大称重为9.999公斤,重量误差不大于±0.005公斤;(3)单价金额及总价金额显示:单价金额和总价金额的单位为元,最大金额数值为9999.99元,总价金额误差不大于0.01元; (4)具有去皮功能和总额累加计算功能。 1.2 发挥部分 能显示购物清单,自拟10种商品名称或代号,清单内容包括:商品名称,数量,单价,金额,本次购物总金额。 (1)清单内容的商品名称等可使用代号显示; (2)清单内容增加购货日期和收银员编号; (3)清单内容在(2)的基础上增加售货单位名称,且全部内容采用中文显示。 1.3 创新部分 在完成基本要求和题目所提出的发挥部分要求的情况下,考虑到电子称实际应 用的需要,又增加了标定和时钟功能,另外由于实际当中,称可以有一定量的过载, 但不能超出要求的范围,为此我们还设计了过载提示功能。

称重传感器的原理及应用

称重传感器的原理及应用 随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。 1.高速定量分装系统 本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。 系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。 图1 原理框图 在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直

接影响电子称的测量精度,所以要求桥压很稳定。毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。 定时器1的计数值反映了测量电压大小即物料的重量。在显示的同时,计算机还根据设定值与测量值进行定值判断。测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。 图2所示为自动称重和装料装置。每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。装料系统开始下一个装料的循环。当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。必要时,*作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。

应用传感器设计电子称

应用传感器设计电子秤 环境工程12-1 1230000122 刘绍博 摘要: 本实验的主要内容是通过对霍尔氏传感器的应用,设计出一款电子秤,并通过本实验得到该电子秤与标准电子秤之间的误差度。 关键词: 霍尔氏传感器、电子秤、传感器应用、设计、误差度 引言: 传感器的定义是能感受规定的被测量,并按照一定的规律转化成可用输出信号的器件或装置。传感器起到信息收集、信息数据的转化作用。本实验采用的是霍尔氏传感器,利用霍尔传感器将被测物体的质量转化成电信号,由电信号与质量间的线性关系从而得出被测物体的质量。 实验原理: 设计电子秤的基本原理是:不同质量的被测物,会引起传感器不同的反应,把这种反应通过特定的方法或电路转换为电压。一般情况下是利用它们的线性变化关系,在被测物的质量与电压之间建立起对应关系,测出电流电压值,从而就可以得到被测物的质量。霍尔传感器是有两个产生梯度磁场的环形磁钢和位于梯度磁场中的霍尔元件组成。霍尔元件通过恒定电流时,霍尔电势的大小正比于磁场强度,当霍尔元件在梯度磁场中上、下移动时,输出的霍尔电压U取决于其在磁场中的位移量,所以测得霍尔电压的大小便可获知霍尔元件的静位移。若将一个圆盘(即称重平台)和霍尔元件相连,就把霍尔元件的静位移和圆盘上的物体的质量对应起来,也就是说把霍尔电压的大小和圆盘上的物体的质量对应起来,据此就可以设计一种电子秤。

由公式可以看出电压U也是关于位移x的函数,不同质量的物体放在传感器的托盘上所引起的位移是不同的,因而可以通过不同位移的所显示的电压值来确定这个位移所代表的质量。

实验内容与步骤: 1)首先将差动放大器调零,用连线将差动放大器在正(+)负(—)、地短接。将差动放大器的输出端与F/V表的输入插口相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮式F/V表显示为零,关闭主、副电源。调好后,增益旋钮可以动,但调零旋钮不可再动。 2)根据图1连线,W1、r为电桥单位的直流电桥平衡网络的一部分。装好测微头与振动台吸合,并使霍尔片置于半圆磁钢上下正中位置。

应用传感器设计电子秤

应用传感器设计电子秤 名字:汤崚云学号: 1207000328班级:给排水3班 摘要: 科学技术的发展对称重技术提出了更高的要求,尤其是微处理技术和传感技术 的巨大进步,大大加速了这个进程。目前,电子秤在商业销售中的使用已相当普遍,但在市场上仍广泛使用的电子秤又很大局限性。这些电子秤面积的、成本高,又不便随身携带,而目前市场上流行的便携称又大都采用杆式称或以弹簧 压缩、拉伸不安性来实现计量的弹簧秤等,其计量误差大,又容易损坏,杆式称和 弹簧秤的计量器械将逐渐被淘汰。因此,一种能够在未来更方便、更准确的普及 型电子秤的发展受到人们的重视,设计一种重量轻、计量准确、读书直观的民用 电子秤迫在眉睫。 本设计过程充分利用传感器的有关知识,利用霍尔式传感器设计的简单电子 秤很大程度上满足了此应用需求,并从简单电子秤的基本构造进一步了解大型电 子秤的构造原理。 关键词: 霍尔氏传感器、电子秤、传感器应用、差动放大器、 CSY传感器试验仪引 言: 传感器的定义是能感受规定的被测量,并按照一定的规律转化成可用输出信号 的器件或装置。传感器起到信息收集、信息数据的转化作用。本实验采用的是霍 尔氏传感器,利用霍尔传感器将被测物体的质量转化成电信号,由电信号与质量 间的线性关系从而得出被测物体的质量。 实验原理: 设计电子秤的基本原理是:不同质量的被测物,会引起传感器不同的反应,吧 这种反应通过特定的方法或电路转换为电流(或电压)。一般情况下是利用它们 的线性变化关系,在被测物的质量与电流(或电压)之间建立起对应关系,测出电 流(或电压)值,从而就可以得到被测物的质量。 霍尔传感器是有两个产生梯度磁场的环形磁钢和位于梯度磁场中的霍尔元 件组成。霍尔元件通过恒定电流时,霍尔电势的大小正比于磁场强度,当霍尔元 件在梯度磁场中上、下移动时,输出的霍尔电压U 取决于其在磁场中的位移量,所 以测得霍尔电压的大小便可获知霍尔元件的静位移。若将一个圆盘(即称重平

传感器应用之电子称

传感器应用——电子称 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 传感器的分类有很多,其中称重传感器是一种能够将重力转变为电信号的力→电转换装置,是电子称的一个关键部件。称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阻应变式等8类,以电阻应变式使用最广。传感器就好比电子称的“心脏”,其精确度和稳定性直接影响电子称的性能。 1.电子称结构 电子秤属于衡器的一种,利用胡克定律或力的杠杆平衡原理测定物体质量的工具。随着现代化生产的发展,电子秤在许多商业活动中已成为不可缺少的计量工具。电子秤主要由承重系统(如秤盘、秤体)、传力转换系统(如杠杆传力系统、传感器)和示值系统(如刻度盘、电子显示仪表)三部分组成。 电子秤作为一个典型的自动检测系统,也可归纳为由三大环节所组成。

如图1所示一次仪表通常指的是传感器,它是由敏感元件、电路、机构等组成,是利用某些特殊材料对某些物理量具有一定的敏感,然后转换成电量、电压、电流。通常来自一次仪表的电信号比较弱小,不足以驱动显示器,为此采用二次仪表对信号进行放大,来自一次仪表的电信号往往还夹带外部的干扰信号,必须把它去除,一般二次仪表还包括滤波电路用以消除干扰。传感器的转换关系往往并不服从线性关系,所以有时还需要进行适当的线性补偿处理。故称二次仪表为测量与显示部件。二次仪表的输出信号可能是模拟量,也可能是数字量。三次仪表是采用了计算机技术,所以要求二次仪表的输出信号必须是数字信号,三次仪表将进一步对信号进行处理并形成控制量输出。作为规模较小的仪表系统,三次仪表主要是以中央处理器为核心的数字电路,组成智能化仪表。使整个测量系统的性能与功能大大提高。 各种各样形式的电子秤的仪表结构都是大同小异的,都必须利用称重传感器来采集重量信号并变换成相应大小的电信号。 2.电子称工作原理 当物体放在秤盘上时,压力施给传感器,该传感器发生形变,从而使阻抗发生变化,同时使用激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器。转换成便于处理的数字信号输出到CPU运算控制。CPU根据键盘命令以及程序将这种结果输出到显示器,直至显示结果。 3.电子称中传感器的选用 (1)称重传感器的构成 ①敏感元件 直接感受被测量(质量)并输出与被测量有确定关系的其他量的元件。如电阻应变式称重传感器的弹性体,是将被测物体的质量转变为形变;电容式称重传感器的弹性体将被测的质量转变为位移。 ②变换元件 又称传感元件,是将敏感元件的输出转变为便于测量的信号。如电阻应变式称重传感器的电阻应变计(或称电阻应变片),将弹性体的形变转换为电阻量的变化;电容式称重传感器的电容器,将弹性体的位移转变为电容量的变化。有时某些元件兼有敏感元件和变换元件两者的职能。如电压式称重传感器的压电材料,

相关主题
文本预览
相关文档 最新文档