当前位置:文档之家› 新型经皮给药载体-传递体

新型经皮给药载体-传递体

新型经皮给药载体-传递体
新型经皮给药载体-传递体

2019年执业药师药学专业知识一:药物递送系统(DDS)与临床应用

2019年执业药师药学专业知识一:药物递送系统(DDS)与临床应用 学习要点 1.快速释放制剂:口服速释片剂、滴丸、吸入制剂 2.缓释、控释制剂:基本要求、常用辅料,骨架片、膜控片、渗透泵片 3.经皮贴剂剂型特点 4.靶向制剂:基本要求、脂质体、微球、微囊 第一节快速释放制剂 1.口服速释片剂(分散片、口崩片) 2.滴丸 3.固体制剂速释技术与释药原理:固体分散技术、包合技术 4.吸入制剂 二、滴丸剂 1.发展了多种新剂型 2.圆整度、溶散时限 3.适用药物:液体、主药体积小、有刺激性 4.基质 水溶性:PEG/甘油明胶/泊洛沙姆/硬脂酸钠 (冷凝液:液状石蜡)

脂溶性:硬脂酸/单甘酯/氢化植物油/虫蜡/蜂蜡 三、固体制剂速释技术 3.固体分散体的速释原理 药物特殊分散状态+载体促进溶出作用—→润湿、分散、抑晶—→阻止已分散的药物再聚集粗化—→有利于溶出。 吸入制剂质量要求 ①气溶胶粒径需控制 ②多剂量:释药剂量均一性检查 ③气雾剂:泄漏检查

④定量:总揿/吸次 每揿/吸主药含量 临床最小推荐剂量的揿/吸数 抑菌剂 随堂练习 A:适用于呼吸道给药的速效剂型是 A.注射剂 B.滴丸 C.气雾剂 D.舌下片 E.栓剂 『正确答案』C 『答案解析』气雾剂是适用于呼吸道给药的速效剂型。 A:固体分散体中,药物与载体形成低共熔混合物药物的分散状态是 A.分子状态 B.胶态 C.分子复合物 D.微晶态 E.无定形 『正确答案』D 『答案解析』药物与载体形成低共熔混合物药物的分散状态是微晶态。 A:下列关于β﹣CD包合物优点的不正确表述是 A.增大药物的溶解度 B.提高药物的稳定性 C.使液态药物粉末化 D.使药物具靶向性 E.提高药物的生物利用度 『正确答案』D 『答案解析』包合物没有靶向性。

新型药物载体制剂及前体药物制剂

新型药物载体制剂及前体药物制剂 一、概述 新型药物载体制剂是将药物封于由于大分子物质形成的薄膜中 间制成一种载有药物的超策粒载体。这类新剂型特别在癌药中应用比较广泛。因为化疗药物大多存在着毒性大,缺乏药理活性的专一性,对正常组织,特别对生长肝旺盛的消化道粘膜上皮组织,骨髓造血组织以及毛襄等。同样有损害和抑制分裂.的药物有中枢性呕吐作用,使患者中用药期间引起恶心、呕吐、厌食等症状、有的发生口腔粘膜溃烂、腹泻、皮肤色素沉着、脱发、白细胞与血小板减少;有的发生严重的变态反应,因此被迫停药,贻误治疗时机。为了提高抗癌药物的疗效,降低毒副作用,除了化学结构上进行改造外,设计抗癌药物的新剂型和适宜的给药途径,这是药物剂研究与生产上必须引起重视的问题。 (一)新型药物载体制剂的载体种类繁多在生物学或医学中应用大致可归纳如以下几类: 1.大分子物质如免疫球蛋白、去唾液糖蛋白、白蛋白、纤维原、脱氧核糖核酸(DNA)、葡萄糖等。 2.细胞如红细胞、白细胞、肝细胞等。

3.合成非生物降解性大分子物质如尼龙或纤维素、半渗透微襄、聚丙烯凝胶等。 4.合成生物可降解性大分子物质脂质体、静脉乳、复合型乳剂、毫微型胶襄、微球剂、含磁性球剂、β一环糊精分子胶襄以及玉脂聚糖球等。第4类与药剂学有密切关,本章作重点讨论。 (二)在设计新型药物载体制剂时应考虑以下要求: 1.具有药理活性的专一性,使药物选择性地杀伤癌细胞或抑制细胞的繁殖。 2.对正常细胞和组织无损害或抑制作用,能降低化疗药物毒副作用,如减轻对胃肠道的剌激性、骨髓抑制作用及变态反应等。 3.增加药物的表面积和溶解度,加快溶出速度,以改善药物在内的转运过程(吸收、分布、代谢及排泄过程)。 4.增加药物对淋巴系统定向性、靶组织的滞留性、对组织和细胞膜的渗透性,使动物在靶组织中维持较高的浓度,以提高抗癌药疗效的作用。

脂质体—神奇药物递送系统汇总

Hans Journal of Medicinal Chemistry 药物化学, 2016, 4(3), 19-24 Published Online August 2016 in Hans. https://www.doczj.com/doc/0a4865936.html,/journal/hjmce https://www.doczj.com/doc/0a4865936.html,/10.12677/hjmce.2016.43003 文章引用: 王继波, 刘继民, 袁红梅. 脂质体—神奇的药物递送系统[J]. 药物化学, 2016, 4(3): 19-24. Liposome—A Novel Drug Delivery System Jibo Wang 1, Jimin Liu 2, Hongmei Yuan 3 1 School of Pharmacy, Medical Department of Qingdao University, Qingdao Shandong 2Division of Microbiology, Medical Department of Qingdao University, Qingdao Shandong 3Pharmacy Department, Qingdao Municipal Hospital, Qingdao Shandong Received: Oct. 27th , 2016; accepted: Nov. 12th , 2016; published: Nov. 15th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/0a4865936.html,/licenses/by/4.0/ Abstract The study of liposome has become a focus in physical pharmacy recently and showed the prospec-tive value of application in many ways. The summarization of origin, basic concept, types, prepa-ration, in vivo characteristics, quality control and application of liposome was made. The stability and target design of liposome are the fundamentality of its application. The future development of liposome was viewed. Keywords Liposome, Drug Delivery System, Stability, Lipid Bilayer, Target 脂质体—神奇的药物递送系统 王继波1,刘继民2,袁红梅3 1 青岛大学医学部药学院,山东 青岛 2青岛大学医学部微生物教研室,山东 青岛 3青岛市立医院药剂科,山东 青岛 收稿日期:2016年10月27日;录用日期:2016年11月12日;发布日期:2016年11月15日 摘 要 近年来,脂质体已成为物理药学领域研究的热点,并且已经在许多方面显示出其潜在的应用价值。本文Open Access

脂质体透皮给药研究

脂质体透皮给药研究 摘要:经皮给药制剂是通过皮肤使药物吸收入体内发挥全身作用的新剂型,是药剂学研究的重点和难点领域,众多学者致力于这方面的研究,以达到治疗水平上的经皮和黏膜透过量。本文查阅国内外文献,笔者综述脂质体的制备方法,脂质体经皮给药的渗透促进作用机制、透皮影响因素、最近脂质 体用于经皮给药的研究进展 关键词:脂质体;透皮给药系统;透皮吸收 引言:经皮给药系统指在皮肤或粘膜表面给药,使药物以恒定速度(或接近恒定速度)通过皮肤各层或粘膜,进入体循环,产生全身或局部治疗作用的新制剂1.经皮给药系统有以下优势:保持血药浓度稳定在治疗窗范围;避免药物口服经胃肠道及肝的首过效应,经皮传递比口服给药更稳定地直接进入血液;改善患者顺应性,不必频繁给药;提高安全性,如发现不良反应,可立即移去,减少口服或注射给药的危险性。脂质体是由磷脂和其他两亲性物质分散于水中,由一层或多层同心的脂质双分子膜包封而成的球状体。脂质体以其低毒性、相对易制备,可避免药物的降解和可实现靶向性给药等优点,而被广泛作为药物载体使用。脂质体作为经皮给药的载体,应用于动物实验和临床观察,结果显示具有显著的促渗透效果。脂质体药物经皮传递中具有更好的性能2,如:①可使用的赋形剂广泛,无需使用高浓度表面活性剂;②较高载药量;③提高药物稳定性,避免药物降解或泄漏,并减少药物对皮肤的刺激性;④可使药物突释或缓释,药物突释可提高药物对皮肤的通透性;由于药物存在于固体基质中,也可缓释,使皮肤表面及皮肤组织中长时间保持较高药物浓度;⑤纳米粒尺寸较小,能够与角质层紧密接触,而且其较高的表面积,大大地增加药物与角质层的接触时间和面积,有利于药物经皮吸收;⑥能够在皮肤表面成膜,起到包封作用,减少表皮水分流失,有利于药物对皮肤经皮通透。固体脂质纳米粒应用于经皮给药具有较大潜力,其具有良好的粘附性,在皮肤表面形成闭塞效应膜,增加角质层水合作用,增加皮肤角质层流动性,提高经皮给药效率3。 1.脂质体的制备方法 脂质体常用的制备方法有乙醇注入法、逆向蒸发法、乙醚注入法、pH 梯度法、散法、冻融法、超声分散法、冷冻干燥法4等。近几年又产生几种新的方法。 1.1 超临界二氧化碳法超临界二氧化碳是一种无毒、惰性且对环境无害的介质,较传统制备方法安全,且包封率较高。文震5等利用超临界CO2 技术先将膜材和药物制成脂质体混悬液,再真空干燥制备脂质体,影响脂质体包封率和粒径的因素有压力(脂质体的包封率、载药量均随着压力的升高而增大)、温度[当温度低于323 K(磷脂相变温度)Tm 时,包封效果较差;当温度高于323 K,包封率、载药量随温度增加而增大;再继续增高就会下降]、共溶剂。测得脂质体平均包封率为87.2%,平均载药量为5.9%,平均粒径448nm。 1.2 微乳法用微乳法制备脂质体包封率比较高,粒径较大。用有机溶剂溶解磷脂和胆固醇后加入待包封的药物溶液,乳化得W/O 乳液;再加入大量的水中 1 2 3 4

刺激响应性药物传递载体的研究进展

刺激响应性药物传递载体的研究进展 智能、可控、高效的刺激响应性药物传递载体是当今药物传递系统的研究及临床实验的热点。本文以”基于体内微环境”与”利用环境外加刺激激发”为主线,综述了几类重要的刺激响应性的药物传递载体材料。介绍了体内微环境信号如pH、温度、氧化还原电势、葡萄糖及酶响应性载体,环境外加刺激如电信号、光信号及超声信号响应性等体系及多响应性载体在药物传递系统中的应用。总结了药物传递系统的发展方向及亟待解决的问题,从科学研究及临床治疗角度介绍了药物传递系统的发展方向。 标签:药物传递;刺激响应;体内环境;外加刺激 药物传递系统(Drug Delivery System DDS)是现今科学领域的重点攻关项目,在各类生物医用材料研究中,大多数与药物(或者基因)传递相关。目前,药物传递系统研究的主要任务是:①控制药物在体内的持续作用时间及作用等级。②将药物靶向引导到人体中特定的区域或细胞。③克服某种不可避免的组织(如肺、皮肤和小肠等)对药物的阻碍作用。 为了实现这些目标,医学科学家设计了一系列的药物释放载体并取得了一定的效果。若想取得更加理想的效果,智能型药物传递载体显示出了更大的潜力。本文主要分别从”基于体内微环境的响应性载体”和”基于外加刺激信号的响应性载体”来综述目前刺激响应载体的研究进展。 1基于体内微环境的响应性载体 1.1 pH响应性载体人体的消化道有着明显的pH值变化,胃部的pH在2~3而在小肠出pH值升至8左右。基于此变化,简单的以聚丙烯酸PAA类水凝胶为载体包载胰岛素,由于在胃部pH较低,PAA的羧基不发生电离,整个水凝胶紧紧包裹着胰岛素,保护其不被胃液消化。一旦水凝胶来到小肠,pH升高致使PAA的羧基开始电离,整个体系溶胀,便可以通过简单的设计将胰岛素特异性的释放在小肠环境中。目前,大多数针对肿瘤治疗的pH响应性载体是基于肿瘤外部酸性微环境及内部溶酶体酸性微环境的,其中以”质子海绵效应”类载体为代表(可以在酸性下吸收氢离子,使得细胞浆大量渗透进入溶酶体中,最终使溶酶体破裂将药物释放入细胞浆中的一种机理。)发展出了一系列高效的药物及基因载体。 1.2温度响应性载体对于局部温度较高的区域如炎症与肿瘤组织附近,研究人员设计了一种存在低临界共溶温度(LCST)的聚N-异丙基丙酰胺(PNIPAm)类材料。通过调控其分子链的链段结构,使其在人体较高温度下产生亲水-疏水转变。利用材料的亲水-疏水转变,可以成功的控制载体聚集起效的位置,从而定点的释放出药物。利用温度响应性材料与光热试剂的有机整合体为治疗基体,利用外加辐射作为辅助治疗方法,将可以定点定量的对病灶进行清除。

新型药物载体-醇质体的特点及研究进展

中国药物应用与监测 2014年4月第11卷第2期Chinese Journal of Drug Application and Monitoring, V ol.11, No.2, April 2014 对于很多皮肤外用药来说,皮肤组织深层、表皮和真皮都是其发挥作用的靶组织,然而由于角质层阻碍药物的传输,使局部用药很难达到作用深度。实验表明,亲脂性的小分子可直接透过角质层,而有治疗作用的大分子聚合物则需要促渗剂才能到达皮肤深层[1-2]。目前,大多采用物理或化学的方法促进药物吸收,但化学促渗剂会干扰皮肤细胞的结构,且对大分子药物无显著作用,而物理方法的缺点在于其高成本和皮肤伤害性[3]。因此,临床更需要安全、有效的载体协助药物达到最佳渗透效果。醇质体[1]是一种新型的脂质体,本文主要对其特点、经皮吸收以及研究应用等方面进行综述。 1 醇质体的特点 1.1 形态观察及粒径大小 用2%磷脂酰胆碱、30%乙醇和水制成的醇质体采用动态光散射、透射电子显微镜、扫描电子显微镜等方法进行观察,结果表明醇质体为单层或多层脂质囊泡结构,其直径大小及结构可随环境转变,粒径范围从30 nm到几微米[4-7]。实验[8]发现,乙醇浓度对醇质体粒径的影响显著,一般随乙醇含量的增大而减小,且乙醇含量高时醇质体变形性也大。同时,醇质体浓度增加使药物囊泡粒径分布范围变窄、更均匀。1.2 包封率 醇质体的包封率比普通脂质体更高,由于乙醇的加入,使得囊泡有高度延展性及可变形性,可包封亲脂性、亲水性的小分子和蛋白类大分子药物。亲水性药物盐酸苯海索醇质体和脂质体的包封率分别为(75±8)%和(36±1.6)%[6]。在脂溶性药物他克莫司醇质体与脂质体性质比较中,醇质体包封率为78.7%, 新型药物载体—醇质体的特点及研究进展 林碧雯1,王文娟1,王洪权2,周 勇1,李恒进1(1.解放军总医院皮肤科,北京 100853;2.军事医学科学院5所药学室,北京100071) [摘要] 醇质体作为一种新型脂质体,具有包封率高、变形性好、皮肤刺激性小、透皮效果佳、皮肤滞留量大、可以进行细胞内传递药物等优点,使其在经皮给药过程中更加有效。本文根据国内外文献,对醇质体的特点、透皮吸收性及在抗感染药、激素透皮给药、关节炎用药及大分子药物透皮递送等方面的应用进行综述,结果表明醇质体具有良好的应用前景和开发价值。 [关键词] 醇质体;脂质体;经皮给药 [中图分类号] R944.9 [文献标识码] A [文章编号] 1672 – 8157(2014)02 – 0121 – 04 Characteristics and research progress of ethosomes—a new drug delivery carrier LIN Bi-wen1, WANG Wen-juan1, WANG Hong-quan2, ZHOU Yong1, LI Heng-jin1(1. Department of Dermatology, PLA General Hospital, Beijing 100853, China; 2. Department of Pharmacy, Academy of Military Medical Sciences, Beijing 100071, China) [ABSTRACT] As a new kind of liposome, ethosomes have some advantages, such as high encapsulation efficiency, good deform ability, low skin irritation, good transdermal permeation, massive skin retention as well as increasing the drug concentration in the skin and providing effective intracellular transmission. Ethosomes have been found to be much more efficient in delivering drug to the skin than other drug delivery system (DDS), and have caught lots of research interest in the transdermal DDS. According to some domestic and overseas literatures, the characteristics, transdermal absorption, transdermal delivery in terms of anti-infection, hormone, arthritis and macromolecular drugs of ethosomes were reviewed. The results indicated that the ethosomes have a good application prospect and development value as drug carrier in transdermal DDS. [KEY WORDS] Ethosomes; Liposomes; Transdermal drug delivery [基金项目] 解放军总医院苗圃基金(13KMM06) [通信作者] 李恒进,男,主任医师,主要从事皮肤病理、皮肤肿 瘤、皮肤美容等治疗工作。E-mail:lhengjin@https://www.doczj.com/doc/0a4865936.html, [作者简介] 林碧雯,女,主治医师,主要从事皮肤真菌病的诊治、 皮肤变态反应性疾病的诊疗等工作。E-mail:linbw.lily@https://www.doczj.com/doc/0a4865936.html, ·药学进展· · 121 ·

经皮给药系统习题及答案

经皮给药系统 练习题: 一、名词解释 1.离子导入技术 2.压敏胶 二、选择题 (一)单项选择题 1.下列因素中,不影响药物经皮吸收的是 A.皮肤因素 B.经皮吸收促进剂的浓度 C.背衬层的厚度 D.基质的pH E.药物相对分子质量 2.药物透皮吸收是指 A.药物通过表皮到达深层组织 B.药物主要作用于毛囊和皮脂腺 C.药物在皮肤用药部位发挥作用 D.药物通过表皮,被毛细血管和淋巴吸收进入体循环的过程 E.药物通过破损的皮肤,进入体内的过程 3.下列有关药物经皮吸收的叙述中,错误的为 A.皮肤破损时,药物的吸收增加 B.当药物与组织的结合力强时,可能在皮肤内形成药物的储库 C.水溶性药物的穿透能力大于脂溶性药物 D.非解离型药物的穿透能力大于离子型药物 E.同系药物中相对分子质量小的药物的穿透能力大于相对分子质量大的 4.透皮吸收制剂中加入“Azone”的目的是 A.增加贴剂的柔韧性 B.使皮肤保持润湿 C.促进药物经皮吸收 D.增加药物的稳定性 E.使药物分散均匀 5.下列关于透皮给药系统的叙述中,正确的是 A.药物分子量大,有利于透皮吸收 B.药物熔点高,有利于透皮吸收 C.透皮给药能使药物直接进入血流,避免了首过效应 D.剂量大的药物适合透皮给药 E.透皮吸收制剂需要频繁给药 6.以下各项中,不是透皮给药系统组成的是 A.崩解剂 B.背衬层 C.粘胶剂层(压敏胶) D.防粘层 E.渗透促进剂 7.药剂中TDS或TDDS的含义为 A.药物靶向系统 B.透皮给药系统 C.多单元给药系统 D.主动靶向给药系统 E.智能给药系统 8.适于制备成经皮吸收制剂的药物是 A.在水中及油中的溶解度接近的药物 B.离子型药物 C.熔点高的药物 D.每日剂量大于10mg的药物 E.相对分子质量大于600的药物 9.下列物质中,不能作为经皮吸收促进剂的是 A.乙醇 B.山梨酸 C.表面活性剂 D.二甲基亚砜(DMSO) E.月桂氮酮 10.下列各项叙述中,错误的是 218

药物递送系统

第五章药物递送系统(DDS)与临床应用学习要点 1.快速释放制剂:口服速释片剂、滴丸、吸入制剂 2.缓释、控释制剂:基本要求、常用辅料,骨架片、膜控片、渗透泵片 3.经皮贴剂剂型特点 4.靶向制剂:基本要求、脂质体、微球、微囊 第一节快速释放制剂 1.口服速释片剂(分散片、口崩片) 2.滴丸 3.固体制剂速释技术与释药原理:固体分散技术、包合技术 4.吸入制剂 二、滴丸剂 1.发展了多种新剂型 2.圆整度、溶散时限 3.适用药物:液体、主药体积小、有刺激性 4.基质 水溶性:PEG/甘油明胶/泊洛沙姆/硬脂酸钠 (冷凝液:液状石蜡)

脂溶性: 硬脂酸/单甘酯/氢化植物油/虫蜡/蜂蜡 三、固体制剂速释技术 3.固体分散体的速释原理 药物特殊分散状态+载体促进溶出作用—→润湿、分散、抑晶—→阻止已分散的药物再聚集粗化—→有利于溶出。 吸入制剂质量要求 ①气溶胶粒径需控制 ②多剂量:释药剂量均一性检查

③气雾剂:泄漏检查 ④定量:总揿/吸次 每揿/吸主药含量 临床最小推荐剂量的揿/吸数 抑菌剂 随堂练习 A:适用于呼吸道给药的速效剂型是 A.注射剂 B.滴丸 C.气雾剂 D.舌下片 E.栓剂 『正确答案』C 『答案解析』气雾剂是适用于呼吸道给药的速效剂型。 A:固体分散体中,药物与载体形成低共熔混合物药物的分散状态是 A.分子状态 B.胶态 C.分子复合物 D.微晶态 E.无定形 『正确答案』D 『答案解析』药物与载体形成低共熔混合物药物的分散状态是微晶态。 A:下列关于β﹣CD包合物优点的不正确表述是 A.增大药物的溶解度 B.提高药物的稳定性 C.使液态药物粉末化

脂质体药物载体的研究进展

脂质体药物载体的研究进展 摘要 当两性分子如磷脂和鞘脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分子层结构的封闭囊泡,称为脂质体。脂质体的直径为25-1000nm不等,因为其与细胞膜有良好的融合性,所以可以利用脂质体将药物送入细胞内。脂质体作为药物载体已有很长时间,本文首先描述了脂质体作为药物载体研究的最新进展,如免疫脂质体、长循环脂质体、长循环免疫脂质体;然后本文对脂质体作为药物载体的靶向作用进行了介绍,有抗体介导靶向,叶酸介导靶向,转铁蛋白介导靶向等;最后总结了各种有药物控释作用的脂质体,主要有pH敏感型,温度敏感型,光敏感型和磁敏感型。 关键词:脂质体,靶向,控释,免疫,长循环。

1 脂质体给药的最新进展 过去30多年脂质体作为药物载体引起了人们的极大关注1。最近,脂质体作为药物载体又有了新的发展。脂质体作为药物载体存在的严重缺点是脂质体很容易被淋巴和网状内皮系统从血液中清除,致使能达到病灶的药物很少。针对这个缺点,科学家们研发了几种新的脂质体。 1.1 免疫脂质体 在偶联剂的作用下,将天然或修饰的抗体分子偶联到含有适当功能基因的脂质体上,可形成免疫脂质体。免疫脂质体携带药物具有靶向性强、毒副作用小、半衰期长、运载量大等优点2。免疫脂质体的发展经历了三个阶段,如图1。第一代免疫脂质体,是指连有单克隆抗体的脂质体。通过单克隆抗体与靶细胞的特异结合,将脂质体包载的药物导向靶组织,赋予脂质体主动靶向性,但由于巨噬细胞的吞噬会很快被血液清除。第二代免疫脂质体,此技术包括PEG含有的长循环脂质体,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低。第三代免疫脂质体,为了增加长效脂质体的靶向性,将抗体或其它配体连接于长效脂质体表面上的聚合物(如PEG)链的末端上,从而避免了PEG链对靶位识别的干扰,得到一种新型脂质体。免疫脂质体具有制备工艺简便,无毒、无免疫原性及可被生物膜利用的特点,它携带、保护及释放药物的能力高于Mab(单克隆抗体),是现阶段抗体靶向治疗的研究热点。 图1 三代免疫脂质体 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类3。抗体介导的免疫脂质体是利用抗原-抗体特异性结合反应,将单抗与脂质体偶联。Audrey Roth4等研究了抗体介导的免疫脂质体anti-CD166 scFv(H3)在前列腺癌细胞的药物输送,用anti-CD166 scFv包覆topotecan, vinorelbine和doxorubicin三种抗癌药物作用于三种前列腺癌细胞Du-145, PC3, LNCaP。结果显示脂质体包覆的药物的细胞毒性远大于未包覆的药物,如图2。受体介导的脂质体是利用受体与配体结合的专一性,针对体内某些组织和器官中存在的特殊受体能选择性识别配体,将脂质体与配体共价结合3。张小文5等人研究了整合素受体

新型药物载体脂质微球

新型药物载体:脂质微球 Washinton C et al 摘要 脂质微球(L M)在组织分布上与脂质体相似,可以选择性地在肿瘤及炎症部位蓄积,改变了药物的体内生物分布。研究表明,与抗肿瘤药1,3-双(2-氯乙基)-1-亚硝基脲(B CNU)溶液剂相比,B CNU-LM制剂体外被肿瘤细胞摄取明显增加,体内抗肿瘤活性显著增强,毒性降低。非甾体抗炎药氟比洛芬易引起胃粘膜损伤等副作用,将氟比洛芬乙酸乙酯前药制成LM制剂,临床试验表明,与药物口服剂型相比,L M制剂起效快,可迅速止痛,不良反应发生率低,该制剂已在日本上市。另外,还讨论了影响L M分散系稳定性的各种因素。 关键词 脂质微球;脂质毫微球;稳定性;靶向给药 1 前言 脂质体、用对肿瘤特异性抗原导向的单克隆抗体包衣的微囊等新型药物输送系统可以对肿瘤细胞或组织定位给药,减少抗肿瘤药的毒性,增强抗癌效果。但这些载体系统制备过程复杂,在安全性及稳定性方面还存在一定的问题,临床使用效果也不理想。将药物溶于脂肪油中经乳磷脂乳化分散于水相后制成脂质乳剂,是一种以脂肪油为软基质而被磷脂膜包封的微粒体分散系,其中平均粒径200和50nm 的乳粒分别被称为脂质微球(lipid microspheres, LM)及脂质毫微球(lipid nanospheres,LN)。L M 与L N在组织分布上与脂质体相似,可选择性地在肿瘤及炎症部位蓄积,是新型药物靶向治疗载体。脂质乳剂制备工艺简单,药物包封率高,安全性及稳定性好,给药方便。 2 抗肿瘤药脂质微球及脂质毫微球 亚硝基脲是一类亲脂性药物,可以穿透血脑屏障,对神经组织原发性脑肿瘤及恶性淋巴瘤显示较强的抗癌活性。但长期使用该类药物可因药物蓄积导致骨髓抑制、肾毒性及肺毒性等毒副作用。1,3-双(2-氯乙基)-1-亚硝基脲(B CNU)是临床使用的亲脂性最强的亚硝基脲类药物,作者将BCNU制成B CNU-LM及B CNU-LN,对其组织分布及抗肿瘤活性进行了研究。 2.1 L M体外被肿瘤细胞摄取实验 用磷脂酰肌醇、磷脂酰丝氨酸或卵磷脂为乳化剂制备LM,其平均粒径为200nm。将〔14C〕三油酸甘油酯标记的L M与L1210等肿瘤细胞在37℃培育4h后,测定肿瘤细胞的放射性来估算肿瘤细胞摄取LM的数量。同游离〔14 C〕三油酸甘油酯相比,〔14C〕三油酸甘油酯标记的L M被L1210细胞的摄取增加3倍以上, LM被其他肿瘤细胞的摄取也高于游离的〔14C〕三油酸甘油酯。但这一摄取过程与L M粒径有关,当LM粒径减小至140nm时,其被肿瘤细胞的摄取仅为较大粒径LM的1/10。 2.2 BCNU-L M的稳定性 在4℃放置3个月,BC NU-LM混悬液药物残留率为80%,而B CNU生理盐水溶液药物4周后仅剩余38.9%。在室温下,B CNU-LM放置5d后剩余80%的药物,而BC NU水溶液3d后药物仅剩余3.5%。在37℃放置时,BC NU-LM 及BC NU溶液的药物含量均快速下降;在人血清中37℃浸泡5min,BC NU-L M分散系即被破坏,油水相分离,LM可释放90%的药物。 2.3 LM体内分布实验 将1×106MM46肿瘤细胞在C3H/He小鼠胁腹皮下接种后,用〔14C〕三油酸甘油酯标记的LM经尾静脉给药,定时采集血浆,杀死小鼠后取出肿瘤及其他组织,加入1mL组织增溶剂和异丙醇溶解后,测定组织溶解液的放射性。结 · 305 · 国外医学药学分册 1997年10月 第24卷第5期DOI:10.13220/https://www.doczj.com/doc/0a4865936.html, ki.j ipr.1997.05.012

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

经皮给药系 统

经皮给药系统——贴剂 (2010-12-31 20:00:31) 转载▼ 分类:学习资料 标签: 热熔压敏胶 经皮给药 药物 贴剂 校园 摘要:本文主要介绍了贴剂的研究近况,综述了贴剂的基质,促进药物渗透的新方法和技术。 关键词:贴剂;基质;透皮促进;制备工艺;粘着力测定;临床应用 前言:经皮给药系统(Transdermal drug delivery system,TDDS)是一种研究得较为广泛的给药系统,是指在皮肤或黏膜表面给药,使药物以恒定速度(或接近恒定速度)通过皮肤各层或黏膜,进入体循环,产生全身或局部治疗作用的新制剂,其给药剂型一般为贴剂(Patch)。透皮贴剂系指可粘贴在皮肤上,药物经皮肤吸收产生全身或局部治疗作用的薄片状制剂。[1] 贴剂的优势在于: (1)延长作用时间,减少用药次数。 (2)维持恒定的血药浓度,减少胃肠道副作用。 (3)避免口服给药发生的肝脏首过作用及胃肠灭活,不受胃排空速率等的影响。 (4)用药方便,患者可以随时撤销或中断治疗。、 (5)药物的靶向性好。 缺点: 贴剂一般载药量较小 ,只适合于活性高 ,用量少的药物 1.贴剂的基质 在传统的中药经皮给药中 ,主要采用天然橡胶作为胶粘层基质。此类贴膏透气性差、载药量小 ,极易引发皮肤过敏和刺激反应 ,严重制约了我国中药透皮制剂的发展。因此 ,研发新型的胶粘剂基质替代天然橡胶已成为中药现代化的当务之急。 常用的基质主要是压敏胶,是指在轻微压力下即可实现黏贴同时又容易剥离的一类胶黏材料。主要有聚异丁烯类压敏胶、丙烯酸类压敏胶、硅橡胶压敏胶、硅酮压敏胶、热熔压敏胶。现代最常应用和研究的是硅酮压敏胶合热熔压敏胶。 1.1硅酮压敏胶:硅酮压敏胶(silicone PSA)是硅酮的二级结构与其三级结构树脂的缩合反应产物。这种压敏胶是由聚二有机基硅氧烷聚脲共聚物、10%(质量)以上的稀释剂和 40 % ~ 60% (质量 )的硅酸酯增粘树脂(如 MQ、 MQD 和 MQT增粘树脂 )组成的无反应活性的混合物。聚二有机基硅氧烷聚脲共聚物是下列组分的反应产物:至少 1种多元胺,如聚二有机基硅氧烷二胺; 至少 1种多异氰酸酯;如果需要, 可以加入多官能度的扩链剂,如有机胺

第05章 药物递送系统(DDS)与临床应用

第5章药物递送系统(DDS)与临床应用 一、最佳选择题 1、属于主动靶向制剂的是 A、糖基修饰脂质体 B、聚乳酸微球 C、静脉注射用乳剂 D、氰基丙烯酸烷酯纳米囊 E、pH敏感的口服结肠定位给药系统 2、将微粒表面加以修饰作为“导弹”载体,使药物选择性地浓集于病变部位的靶向制剂称为 A、被动靶向制剂 B、主动靶向制剂 C、物理靶向制剂 D、化学靶向制剂 E、物理化学靶向制剂 3、药物透皮吸收是指 A、药物通过表皮到达深层组织 B、药物主要通过毛囊和皮脂腺到达体内 C、药物通过表皮在用药部位发挥作用 D、药物通过破损的皮肤,进入体内的过程 E、药物通过表皮,被毛细血管和淋巴吸收进入体循环的过程 4、口服缓控释制剂的特点不包括 A、可减少给药次数 B、可提高患者的服药顺应性 C、可避免或减少血药浓度的峰谷现象 D、有利于降低肝首过效应 E、有利于降低药物的不良反应 5、控制颗粒的大小,其缓控释制剂释药所利用的原理是 A、扩散原理 B、溶出原理 C、渗透泵原理 D、溶蚀与扩散相结合原理 E、离子交换作用原理 6、微囊的特点不包括 A、防止药物在胃肠道内失活 B、可使某些药物迅速达到作用部位 C、可使液态药物固态化 D、可使某些药物具有靶向作用 E、可使药物具有缓控释的功能 7、关于微囊技术的说法错误的是 A、将对光、湿度和氧不稳定的药物制成微囊,可防止药物降解 B、利用缓释材料将药物微囊化后,可延缓药物释放 C、挥发油药物不适宜制成微囊 D、PLA 是可生物降解的高分子囊材 E、将不同药物分别包囊后,可减少药物之间的配伍变化

8、滴丸的脂溶性基质是 A、明胶 B、硬脂酸 C、泊洛沙姆 D、聚乙二醇4000 E、聚乙二醇6000 二、多项选择题 1、脂质体的基本结构脂质双分子层的常用材料有 A、胆固醇 B、硬脂醇 C、甘油脂肪酸酯 D、磷脂 E、纤维素类 2、下列制剂具有靶向性的是 A、前体药物 B、纳米粒 C、微球 D、全身作用栓剂 E、脂质体 3、经皮给药制剂的优点为 A、减少给药次数 B、无肝首过效应 C、有皮肤贮库现象 D、药物种类多 E、使用方便,适合于婴儿、老人和不宜口服的病人 4、以减少溶出速度为主要原理的缓、控释制剂的制备工艺有 A、制成溶解度小的酯或盐 B、控制粒子的大小 C、制成微囊 D、将药物包藏于溶蚀性骨架中 E、将药物包藏于亲水性高分子材料中 5、影响微囊中药物释放速率的因素有 A、制备工艺条件 B、溶出介质离子强度 C、PH值的影响 D、附加剂 E、药物的性质 答案部分

经皮给药

经皮给药是药物通过皮肤给药方法的一种新方法,药物应用于皮肤上后,以恒定速度(或接近恒定速度)穿过角质层,扩散通过皮肤,由毛细血管吸收进入体循环, 产生全身或局部治疗作用。通常文献上称为经皮治疗系统(transdermal therapeutic system, 简称TTS)或经皮给药系统(transdermal drug delivery system, TDDS)。经皮给药制剂可以是软膏、硬膏、贴片,还可以是膜剂、涂剂和气雾剂等。经皮给药的新制剂一般是指皮肤贴片(patch),而广义的经皮给药系统可以包括以上这些经皮给药制剂。 下降,特别适合于婴儿、老人或不宜口服的病人。 经皮给药系统的研究主要集中于心血管药物、抗组织胺药、平喘药、非甾体抗炎镇痛药和激素类药物,除了已上市的药物之外,正在研究开发的有噻吗洛尔、布拉洛尔、氯苯那敏、阿扎他定、曲普立啶、普萘洛尔、沙丁胺醇、丙咪嗪和氯硝西泮等。 二、皮肤的结构特点 皮肤由表皮(epidermis)、真皮(dermis)和皮下组织(subcutaneous tissue)三部分组成,此外还有汗腺、皮脂腺、毛囊等附属器。表皮由内向外可分为五层,即基层(stratum germinativum)、棘层(stratum spinosum,prickle cell layer)、粒层(stratum granulosum,granular layer)、透明层(stratum lucidum)和角质层(stratum corneum),如图2所示,其中表皮中的角质层性质与其它各层有较大差异,是药物透皮吸收的主要屏障,而表皮的其它四层统称为活性表皮。 图2 皮肤结构模式图 (一)表皮 表皮由各种形态、大小不同的上皮细胞构成,这些细胞从基层发育而成,该层细胞不断地进行分裂、产生新的细胞,逐渐向外推移分化成棘层、粒层、透明层和角质层,这个过程即为角化过程。角化过程的后一阶段,粒层细胞的细胞核趋向退化,其它结构消失,变为扁平角质细胞,最后脱离体表。 皮肤最外层的角质层是由死亡的角化细胞组成,角化细胞形状似扁平的小片,长约30μm,宽约0.8μm。角质层由10~12层角化细胞构成,细胞间依靠变性的结缔组织粘连,最外2~3层疏松易剥落,内层致密,能起到很好的屏障作用。角质层细胞内细胞器消失,内含有直径为6~8nm的α角蛋白丝及镶嵌在无定形基质中的纤维蛋白。每个细胞有一个类脂厚膜,细胞间充满类脂,构成有效的保护部分。角质层细胞相互重叠与吻合,可以看作亲水性成分与类脂形成的镶嵌体。它可以防止角质层以下各层和全身的水分过度地向外渗出,使机体与周围环境保持平衡,防止有害物质的吸收和体内营养物质的丧失。角质层约含40%蛋白质、40%水和15%~20%的类脂。蛋白质主要由角蛋白组成,类脂有磷脂、胆固醇和甘油三酯。 角质层的厚度随身体不同部位而异,眼睑、包皮、额部、腹部、肘部和腘窝等部位较薄,而掌和跖部最厚。表皮中活性表皮的厚度亦随身体部位而不同,一般厚度为50~100μm,它持续更新形成角质层细胞。活性表皮中含有酶,能降解通过皮肤的药物。 (二)真皮 真皮位于表皮和皮下脂肪组织之间,厚约1~2mm,主要由结缔组织构成,含有胶原纤维、弹力纤维、网状纤维和无定形基质,并有皮肤附属器及神经、血管和淋巴管。由于毛细血管网存在于真皮上部,所以药物渗透到达真皮后,就很快被吸收。 三、药物在皮肤内的转运

趋磁细菌——新型的靶向药物载体

趋磁细菌——新型的靶向药物载体 wade 由于肿瘤组织的血管生长无法跟上肿瘤细胞的增殖速度,因此肿瘤内部氧气的消耗要大于供给,从而导致了肿瘤酸性和缺氧的微环境。目前治疗肿瘤常用的靶向载体有脂质体、聚合物胶束、纳米粒子等,但是这些载体在体内具有循环时间短、渗透能力弱、缺少对缺氧区域的靶向能力等特点,从而很难对肿瘤缺氧区域进行靶向治疗。 近日,加拿大蒙特利尔综合理工学院Sylvain Martel教授领衔的研究团队在《Nature Nanotechnology》杂志上介绍了肿瘤缺氧区域靶向治疗的解决方法。他们通过与蒙特利尔大学、麦吉尔大学的研究团队进行合作,在趋磁细菌的基础上成功研制出了纳米机器人。 趋磁细菌是指能够在体内合成具有磁性(主要成分为四氧化三铁的磁小体)物质的一类细菌,其特点是在地球磁场的作用下,可以凭借磁力的导向作用向更适宜其生存的缺氧区域移动。基于该特点,研究人员联想到是否可以利用这类细菌将药物运送到肿瘤的缺氧区移动呢?最终研究结果表明,在趋磁细菌基础上研制出的纳米机器人可以借助于外加磁场的导向作用以及细菌本身对缺氧的感知和趋向性作用,可有效地将药物运载到肿瘤缺氧区域进而达到治疗肿瘤的作用。 研究人员把绿色荧光标记的细菌注射到肿瘤周围并对肿瘤组织的缺氧区域进行染色,通过

荧光共聚焦观察该类细菌在肿瘤区域中的分布情况,发现细菌主要分布的位置与缺氧区域相重合,这表明细菌能够主动地向肿瘤缺氧区域移动并富集。研究人员将所观察到的现象归结为三个主要的原因:1.外界磁场对于趋磁细菌的导向作用;2.细菌本身对于缺氧区域的自我推进;3.细菌对于缺氧区域的敏感性和靶向作用。通过与聚合物微球以及死细菌对比,发现后两者在肿瘤内的扩散尤其是向着缺氧区域的靶向作用受到了极大的限制。 研究人员还利用可断裂的化学键将载有抗肿瘤药物的脂质体连接到细菌表面,进而构建成为以趋磁细菌为载体的新型药物运输系统。在外界磁场以及细菌本身对于缺氧区域的靶向性作用下,更好地将抗肿瘤药物运送到肿瘤组织的深层缺氧区域,并取得了更优的抗肿瘤治疗效果。 研究人员还解释到:“这种载体不仅可以运载抗肿瘤药物,还可以成为诸如成像试剂以及其他治疗试剂的新型运载工具”。

相关主题
文本预览
相关文档 最新文档