当前位置:文档之家› 全等三角形经典证明方法归类

全等三角形经典证明方法归类

全等三角形经典证明方法归类
全等三角形经典证明方法归类

【第1部分全等基础知识归纳、?小结】

1、全等三?角形的定义:能够完全重合的两个三?角形叫全等三?角形。两个全等三?角形中,

互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的

?角叫对应?角。

概念深?入理理解:

(1)形状?一样,?大?小也?一样的两个三?角形称为全等三?角形。(外观?长的像)

(2)经过平移、旋转、翻折之后能够完全重合的两个三?角形称为全等三?角形。(位置变化)

2、

全等三?角形的表示?方法:若△ABC 和△A ′B ′C ′是全等的,记作“△ABC ≌△A ′B ′C ′”其中,“≌”读作“全等于”。记两个三?角形全等时,通常把表示对应顶点的字?母写在对应的位置上。

3、全等三?角形的性质:

全等是?工具、?手段,最终是为了了得到边等或?角等,从?而解决某些问题。

(1)全等三?角形的对应?角相等、对应边相等。

(2)全等三?角形的对应边上的?高,中线,?角平分线对应相等。

(3)全等三?角形周?长,?面积相等。

4、寻找对应元素的?方法

(1)根据对应顶点找

如果两个三?角形全等,那么,以对应顶点为顶点的?角是对应?角;以对应顶点为端点的边是对应边。通常情况下,两个三?角形全等时,对应顶点的字?母都写在对应的位置上,因此,由全等三?角形的记法便便可写出对应的元素。

(2)根据已知的对应元素寻找全等三?角形对应?角所对的边是对应边,两个对应?角所夹的边是对应边;

图3

图1图2

(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三?角形各种不不同位置关系的观察和分析,可以看出其中?一个是由另?一个经过下列列各种运动?而形成的;运动?一般有3种:平移、对称、旋转;

5、全等三?角形的判定:(深?入理理解)

①边边边(SSS)②边?角边(SAS)③?角边?角(ASA)④?角?角边(AAS)

⑤斜边,直?角边(HL)

注意:(容易易出错)

(1)在判定两个三?角形全等时,?至少有?一边对应相等(边定全等);

(2)不不能证明两个三?角形全等的是,㈠三个?角对应相等,即AAA;㈡有两边和其中?一?角对应相等,即SSA。

全等三?角形是研究两个封闭图形之间的基本?工具,同时也是移动图形位置的?工具。在平?面?几何知识应?用中,若证明线段相等或?角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三?角形的知识。

6、常?见辅助线写法:(照着辅助线说明要能做出图、养成严谨、严密的习惯)

如:⑴过点A作BC的平?行行线AF交DE于F

⑵过点A作BC的垂线,垂?足为D

⑶延?长AB?至C,使BC=AC

⑷在AB上截取AC,使AC=DE

⑸作∠ABC的平分线,交AC于D

⑹取AB中点C,连接CD交EF于G点

同?一条辅助线,可以说法不不?一样,那么得到的条件、证明的?方法也不不同。

【第2部分中点条件的运?用】

1、还原中?心对称图形(倍?长中线法)

中?心对称与中?心对称图形知识:

把?一个图形绕着某?一个点旋转180°,如果它能够与另?一个图形重合,那么就说这

两个图形关于这个点对称或中?心对称,这个点叫做对称中?心。这两个图形中的对应

点叫做关于中?心的对称点。

中?心对称的两条基本性质:

(1)关于中?心对称的两个图形,对称点所连线段都经过对称中?心,?而且被对称中?心所平分。(2)关于中?心对称的两个图形是全等图形。

中?心对称图形

把?一个图形绕着某?一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中?心对称图形,这个点就是它的对称中?心。(?一个图形)如:平?行行四边形

线段本身就是中?心对称图形,中点就是它的对称中?心,所以遇到中点问题,依托中点借助辅助线还原中点对称图形,可以把分散的条件集中起来(集散思想)。

例例1、AD是△ABC中BC边上的中线,

若AB2,AC4,则AD的取值范围是_________。

例例2、已知在△ABC中,AD是BC边上的中线,E是AD上?一点,延?长BE交AC于F,AF EF,求证:AC BE。

例例3、如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD

的中线。求证:AC=2AE

例例4△ABC中,AD、BE、CF是三边对应中线。(则O为重?心)

求证:①AD、BE、CF交于点O。(类倍?长中线);②

练习

1、在△ABC中,D为BC边上的点,已知∠BAD∠CAD,BD CD,求证:AB AC

2、如图,已知四边形ABCD中,AB CD,M、N分别为BC、AD中点,延?长MN与AB、

CD延?长线交于E、F,求证∠BEM∠CFM

3、如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM (基本型:同?角或等?角的补?角相等、K型)

2、两条平?行行线间线段的中点(“?八字型”全等)

如图,∥,C是线段AB的中点,那么过点C的任何

直线都可以和?二条平?行行线以及AB构造“8字型”全等

例例1已知梯形ABCD,AD∥BC,点E是AB的中点,连接DE、CE。

求证:

例例2如图,在平?行行四边形ABCD中,AD=2AB,M是AD的中点,CE⊥AB于点E,∠CEM=40°,求∠DME的?大?小。(提示:直?角三?角形斜边中线等于斜边的?一半)

例例3已知△ABD和△ACE都是直?角三?角形,且∠ABD∠ACE=90°,连接DE,设M为DE的中点。⑴求证:MB MC;⑵设∠BAD∠CAE,固定Rt△ABD,让Rt△ACE 移?至图示位置,此时MB MC是否成?立?请证明你的结论。

练习1、已知:如图,梯形ABCD中,AD∥BC,∠ABC=90°.若BD=BC,F是CD的中点,试问:∠BAF与∠BCD的?大?小关系如何?请写出你的结论并加以证明;

2、Rt△ABC中,∠BAC=90°,M为BC的中点,过A点作某直线,过B作于点D,过C作于点E。

(1)求证:MD=ME

(2)当直线与CB的延?长线相交时,其它条件不不变,(1)中的结论是否任然成?立?

3、如图(1),在正?方形ABCD和正?方形CGEF(CG>BC)中,点B、C、G在同?一直线上,M是AE的中点,(1)探究线段MD、MF的位置及数量量关系,并证明;

(2)将图(1)中的正?方形CGEF绕点C顺时针旋转,使正?方形CGEF的对?角线CE恰好与正?方形ABCD的边BC在同?一条直线上,原问题中的其他条件不不变。(1)中得到的两个结论是否发?生变化?写出你的猜想并加以证明。(结合前?面“8字型”全等,仔细思考)

3、构造中位线

三?角形中位线定义:连接三?角形两边中点的线段叫做三?角形的中位线

三?角形中位线性质:三?角形的中位线平?行行于第三边并且等于第三边的?一半.

重点区分:要把三?角形的中位线与三?角形的中线区分开,三?角形中线是连结?一顶点和它对边的中点;?而三?角形中位线是连结三?角形两边中点的线段。

(全等法)在△ABC中,D、E分别是AB、AC边的中点,证明:DE∥BC,DE=BC

证明:延?长DE?至F点,使DE=EF,连接CF(倍?长中线)

三?角形的中位线在位置关系和数量量关系?二?方?面把三?角形有关线段联系起来,将题?目给出的分散条件集中起来(集散思想)。注:题?目中给出多个中点时,往往中点还是不不够?用的。

例例1在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。

求证:四边形EFGH是平?行行四边形。

例例2已知四边形ABCD的对?角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.

你能说出OE与OF的?大?小关系并加以证明吗?

练习1、三?角形ABC中,AD是∠BAC的?角平分线,BD⊥AD,点D是垂?足,点E是边BC的中点,如果AB=6,AC=14,求DE的?长。

2、AB∥CD,BC∥AD,DE⊥BE,DF=EF,甲从B出发,沿着BA->AD->DF的?方向运动,?乙B出发,沿着BC->CE->EF的?方向运动,如果两?人的速度是相同的,且同时从B 出发,则谁先到达F点?

3、等腰Rt△ABC与等腰Rt△CDE中,∠ACB=∠EDC=90°,连AE、BE,点M为BE

的中点,连DM。

(1)当D点在BC上时,求的值

(2)当△CDE绕点C顺时针旋转?一个锐?角时,上结论是否任然成?立,试证明

4、△ABC、△CEF都为等腰直?角三?角形,当E、F在AC、BC上,∠ACB=90°,连BE、

AF,点M、N分别为AF、BE的中点

(1)MN与AE的数量量关系

(2)将△CEF绕C点顺时针旋转?一个锐?角,MN与AE的数量量关系

4、与等?面积相关的图形转换

在涉及三?角形的?面积问题时,中点提供了了底边相等的条件,这?里里有个基本?几何图形如图,△ABC中,E为BC边的中点,那么显然

△ABE和△AEC有相同的?高AD,底边也相等,故?面积相等。

例例E、F是矩形ABCD的边AB、BC的中点,连AF、CE交于点G,则=

扩展如图,等腰Rt△ACD与Rt△ABC组成?一个四边形ABCD,AC=4,对?角线BD把四边形ABCD分成了了?二部分,求的值。

【5、等腰三?角形中的“三线合?一”】

“三线合?一”是相当重要的结论和解题?工具,它告诉我们等腰三?角形与直?角三?角形有着极为亲密的关系。

例例△ABC中,AB=AC,BD⊥AC于D,问∠CBD和∠BAC的关系?

分析:∠CBD和∠BAC分别位于不不同类型的三?角形中,可以考虑转为同类三?角形。

例例在△ABC中,AB=AC=5,BC=6,点M为BC中点,

MN⊥AC于点N,则MN=_____

【6、直?角三?角形斜边上的中线等于斜边的?一半】

这可以作为?一个定理理直接运?用,关于这个定理理的证明有多种?方法,包括利利?用前?面所讲中点的?一些知识。

例例如图Rt△ABC中,∠ACD=90°,CD为斜边AB上的中线

求证:CD=AB

(1)利利?用垂直平分线的性质:垂直平分线上任?一点到线段

的?二个端点的距离相等。

取AC的中点E,连接DE。则DE∥BC(中位线性质)

∠ACB=90°BC⊥AC,DE⊥AC

则DE是线段AC的垂直平分线AD=CD

(2)全等法,证法略略。

例例在三?角形ABC中,AD是三?角形的?高,点D是垂?足,点E、F、G分别是BC、AB、AC 的中点,求证:四边形EFGD是等腰梯形。

练习1、在Rt△ABC中,∠A=90°,AC=AB,M、N分别在AC、AB上,且AN=BM。

O为斜边BC的中点。试判断△OMN的形状,并说明理理由。

2、ΔABC中,∠A=90°,D是BC的中点,DE⊥DF。求证:

(集散思想)

3、ΔABC中,AB=AC,点D在BC上,E在AB上,且BD=DE,点P、M、N分别为AD、

BE、BC的中点

(1)若∠BAC=90°,则∠PMN=_______,并证明

(2)若∠BAC=60°,则∠PMN=_______

(3)若∠BAC=,则∠PMN=_______

【中点问题练习题】

1、假设给出如下定义:有?一组相邻内?角相等的四边形叫做等邻?角四边形.请解答下列列问题:(1)写出?一个你所学过的特殊四边形中是等邻?角四边形的图形的名称;

(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延?长交AB于点G.求证:四边形AGEC是等邻?角四边形;(3)如图2,若点D在△ABC的内部,(2)中的其他条件不不变,EF与CD交于点H,是否存在等邻?角四边形,若存在,是哪个四边形,不不必证明;若不不存在,请说明理理由.

2、已知:△ABC和△ADE都是等腰直?角三?角形,∠ABC=∠ADE=90°,点M是CE的中

点,连接BM

(1)如图①,点D在AB上,连接DM,并延?长DM交BC于点N,可探究得出BD与BM的数量量关系为_________________,写出证明过程。

(2)如图②,点D不不在AB上,(1)中的结论还成?立吗?如果成?立,请证明;如果不不成?立,说明理理由。

3、在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.

若A、O、C三点在同?一直线上,∠ABO=60°,则△PMN

的形状是___________,此时=____________

4、已知:如图①,正?方形ABCD中,E为对?角线BD上?一点,过E点作EF⊥BD交BC于

F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45o,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成?立?若成?立,请给出证明;若不不成?立,请说明理理由.

(3)将图①中△BEF绕B点旋转任意?角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成?立?通过观察你还能得出什什么结论?(均要求证明)

全等三?角形综合?二

知识点:

1、全等三?角形的判定及性质:

2、?角平分线的性质与判定:

3、常?用辅助线:

例例题讲解

例例1、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交

BC于E,F是BE上?一点,且BF=CE,

求证:FK∥AB.

例例2、如图1,△ABC中,∠BAC=90°,BA=AC,

(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求证:∠ADB=∠CDF.

(2)若D,M为AC上的三等分点,如图2,连BD,过A作AE⊥BD于点E,交BC于点F,连MF,判断

∠ADB与∠CMF的?大?小关系并证明.

例例3、如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,

求证:MD=AM.

例例4、在△ABC中,∠ACB为锐?角,动点D(异于点B)在射线BC上,连接AD,以AD 为边在AD的右侧作正?方形ADEF,连接CF.

(1)若AB=AC,∠BAC=90°那么

①如图?一,当点D在线段BC上时,线段CF与BD之间的位置、?大?小关系是_________(直接写出结论)

②如图?二,当点D在线段BC的延?长上时,①中的结论是否仍然成?立?请说明理理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF 与BD之间的位置关系仍然成?立.请画出相应图形,并说明理理由.

例例5、如图①所示,已知A,B为直线l上两点,点C为直线l上?方?一动点,连接AC、BC,分别以AC、BC为直?角边向△ABC外作等腰直?角△CAD和等腰直?角△CBE,满?足∠CAD=∠CBE=90°,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.

(1)如图②,当点E恰好在直线l上时,试说明DD1=AB;

(2)在图①中,当D,E两点都在直线l的上?方时,试探求三条线段DD1,EE1,AB之间的数量量关系,并说明理理由.

例例6、如图1,已知点A(a,0),点B(0,b),且a、b满?足

(1)求A、B两点的坐标;

(2)若点C是第?一象限内?一点,且∠OCB=45°,过点A作AD⊥OC于点F,求证:FA=FC;(3)如图2,若点D的坐标为(0,1),过点A作AE⊥AD,且AE=AD,连接BE交x轴于点G,求G点的坐标.

巩固:

1、如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.

2、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理理由;

(2)如果AB=5,AC=3,求AE、BE的?长.

3、如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上?一点,且EA=EC。求证:EB⊥AB.

4、如图,在△ABC中,∠ACB=90゜,P为AC上?一点,PQ⊥AB于Q,AM⊥AB交BP的延?长线于M,MN⊥AC于N,AQ=MN.

(1)求证:AP=AM;

(2)求证:PC=AN.

5、如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分

别是∠BAC,

∠ABC的平分线,

求证:BQ+AQ=AB+BP.

6、将两个全等的直?角三?角形ABC和DBE按图(1)?方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.

(1)求证:CF=EF;

(2)若将图(1)中的△DBE绕点B按顺时针?方向旋转?角a,且0°<a<60°,其他条件不不变,如图(2).请你直接写出AF+EF与DE的?大?小关系:AF+EF______DE.(填“>”或“=”或“<”)(3)若将图(1)中△DBE的绕点B按顺时针?方向旋转?角β,且60°<β<180°,其他条件不不变,如图(3).请你写出此时AF、EF与DE之间的关系,并加以证明.

7、如图,在平?面直?角坐标系中,点O为坐标原点,△ABC的三点坐标分别为A(0,5),B (-5,0),

C(2,0),BD⊥AC于D且交y轴于E,连接CE.

(1)求△ABC的?面积;

(2)求的值及△ACE的?面积.

8、如图1,在平?面直?角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S 四边形OBAC=16.

(1)∠COA的值为________;

(2)求∠CAB的度数;

(3)如图2,点M、N分别是x轴正半轴及射线OA上?一点,且OH⊥MN的延?长线于H,满?足∠HON=∠NMO,请探究两条线段MN、OH之间的数量量关系,并给出证明.

9、在平?面直?角坐标系中,点A(2,0),点B(0,3)和点C(0.2);

(1)请写出OB的?长度:OB=________;

(2)如图:若点D在x轴上,且点D的坐标为(-3,0),求证:△AOB≌△COD;(3)若点D在第?二象限,且△AOB≌△COD,则这时点D的坐标是________(直接写答案).

10、已知,在△ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,∠MON=∠A=45°

(1)如图1,若点M、N分别在边AC、BC上,求证:CN+MN=AM;

(2)如图2,若点M在边AC上,点N在BC边的延?长线上,试猜想CN、MN、AM之间的数量量关系,请写出你的结论(不不要求证明).

11、(1)如图1,以△ABC的边AB、AC为边分别向外作正?方形ABDE和正?方形ACFG,连

接EG,试判断△ABC与△AEG?面积之间的关系,并说明理理由.

(2)园林林?小路路,曲径通幽,如图2所示,?小路路由?白?色的正?方形理理?石和?黑?色的三?角形理理?石铺成.已知中间的所有正?方形的?面积之和是a平?方?米,内圈的所有三?角形的?面积之和是b平?方?米,这条?小路路?一共占地多少平?方?米.

12、如图,将两个全等的直?角三?角形△ABD、△ACE拼在?一起(图1).△ABD不不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.

(2)若将图1中的CE向上平移,∠CAE不不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量量关系.

(3)在(2)中,若∠CAE的?大?小改变(图4),其他条件不不变,则(2)中的MB、MC的数量量关系还成?立吗?说明理理由.

13、如图,△ABC中,D是BC的中点,过点D的直线MN交AC于N,交AC的平?行行线BM于M,

PD⊥MN,交AB于点P,连接PM、PN.

(1)求证:BM=CN;

(2)请你判断BP+CN与PN的在数量量上有何关系,并说明你的理理由.

14、如图,在平?面直?角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、

B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P运动时间为t秒.

(1)求OA、OB的?长;

(2)连接PB,若△POB的?面积不不?大于3且不不等于0,求t的范围;

(3)过P作直线AB的垂线,垂?足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不不存在,请说明理理由.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形证明判定方法分类总结

全等三角形(一)SSS 【知识要点】 1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质: (1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等 3.全等三角形:两个能够完全重合的三角形称为全等三角形 (1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于”如DEF ABC? ?与全等,记作ABC ?≌DEF ? (2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等. (3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角. (4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”. 如图,在ABC ?和DEF ?中 ? ? ? ? ? = = = DF AC EF BC DE AB ABC ? ∴≌DEF ? 【典型例题】 例1.如图,ABC ?≌ADC ?,点B与点D是对应点, ? = ∠26 BAC,且? = ∠20 B,1 = ?ABC S,求 A C D D C A D∠ ∠ ∠, ,的度数及ACD ?的面积. 例2.如图,ABC ?≌DEF ?,cm CE cm BC A5 , 9 , 50= = ? = ∠,求EDF ∠的度数及CF的长. A D

例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠ 例4.如图AB=DE ,BC=EF ,AD=CF ,求证: (1)ABC ?≌DEF ? (2)AB//DE ,BC//EF

七年级全等三角形证明经典题

七年级数学下册《全等三角形》专题练习 1、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C(做AB=AE交AC于E点) 6、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE(做AD=AF交AB于F点) 8. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求 证:BC=AB+DC。 C D B A

9、已知:AB 知:如图所示,AB = AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。 35.在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ?≌CEB ?;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由. A B C D D C B A F E P E D C B A D C B A M F E C B A F E D C B A F D C B F E D C B A D B C A F E

46. 如图, AB=12, CA⊥AB于A, DB⊥AB于B, 且AC=4m, P点从B向A运动, 每分钟走1m, Q 点从B向D运动, 每分钟走2m,P、Q两点同时出发, 运动几分钟后△CAP≌△PQB 试说明理由. 47、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E. (图1) (图2) (图3) (1)试说明: BD=DE+CE. (2) 若直线AE绕A点旋转到图(2)位置时(BDCE), 其余条件不变, 问BD与DE、CE的关系如何请直接写出结果, 不需说明.

全等三角形证明100题(经典)

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C B A C D F 2 1 E

5:已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE : 6:.:如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 11:如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA : F A E D C B

12:如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 13:已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明): 14:如图:DF=CE ,AD=BC ,∠D=∠C 。求证:△AED ≌△BFC 。 O E D C B A F E D C B A

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 1. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 B C D F A D B C B C

已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 8.已知:AB知:AB=CD,∠A=∠D,求证:∠B=∠C A D B C B A C D F 2 1 E C D B D C B A F E A B C D A

10. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

15.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 16.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 17.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若 AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由. P E D C B A D C B A

全等三角形经典证明方法归类

【第1部分全等基础知识归纳、?小结】 1、全等三?角形的定义:能够完全重合的两个三?角形叫全等三?角形。两个全等三?角形中, 互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的 ?角叫对应?角。 概念深?入理理解: (1)形状?一样,?大?小也?一样的两个三?角形称为全等三?角形。(外观?长的像) (2)经过平移、旋转、翻折之后能够完全重合的两个三?角形称为全等三?角形。(位置变化) 2、 全等三?角形的表示?方法:若△ABC 和△A ′B ′C ′是全等的,记作“△ABC ≌△A ′B ′C ′”其中,“≌”读作“全等于”。记两个三?角形全等时,通常把表示对应顶点的字?母写在对应的位置上。 3、全等三?角形的性质: 全等是?工具、?手段,最终是为了了得到边等或?角等,从?而解决某些问题。 (1)全等三?角形的对应?角相等、对应边相等。 (2)全等三?角形的对应边上的?高,中线,?角平分线对应相等。 (3)全等三?角形周?长,?面积相等。 4、寻找对应元素的?方法 (1)根据对应顶点找 如果两个三?角形全等,那么,以对应顶点为顶点的?角是对应?角;以对应顶点为端点的边是对应边。通常情况下,两个三?角形全等时,对应顶点的字?母都写在对应的位置上,因此,由全等三?角形的记法便便可写出对应的元素。 (2)根据已知的对应元素寻找全等三?角形对应?角所对的边是对应边,两个对应?角所夹的边是对应边; 图3 图1图2

(3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三?角形各种不不同位置关系的观察和分析,可以看出其中?一个是由另?一个经过下列列各种运动?而形成的;运动?一般有3种:平移、对称、旋转; 5、全等三?角形的判定:(深?入理理解) ①边边边(SSS)②边?角边(SAS)③?角边?角(ASA)④?角?角边(AAS) ⑤斜边,直?角边(HL) 注意:(容易易出错) (1)在判定两个三?角形全等时,?至少有?一边对应相等(边定全等); (2)不不能证明两个三?角形全等的是,㈠三个?角对应相等,即AAA;㈡有两边和其中?一?角对应相等,即SSA。 全等三?角形是研究两个封闭图形之间的基本?工具,同时也是移动图形位置的?工具。在平?面?几何知识应?用中,若证明线段相等或?角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三?角形的知识。 6、常?见辅助线写法:(照着辅助线说明要能做出图、养成严谨、严密的习惯) 如:⑴过点A作BC的平?行行线AF交DE于F ⑵过点A作BC的垂线,垂?足为D ⑶延?长AB?至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点 同?一条辅助线,可以说法不不?一样,那么得到的条件、证明的?方法也不不同。

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 A D B C

∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) B A C D F 2 1 E

全等三角形证明经典题及答案

) 含答案题(全等三角形证明经典50 ADAD是整数,求D是BC中点,1.已知:AB=4,AC=2,A CB D 使AD=DE解:延长AD到E,BC中点∵D是∴BD=DC BDE中在△ACD和△AD=DE ADC∠BDE=∠BD=DC BDE∴△ACD≌△AC=BE=2∴ ABE中∵在△AB+BEAE<AB-BE<AB=4∵<4+2即4-2<2AD<31<AD∴AD=2 1ABCD?是AB中点,∠°,求证:ACB=90D2.已知:2A D BC 中点。连接AP,BP为与CDP,使DCP延长∵DP=DC,DA=DB为平行四边形∴ACBP又∠ACB=90为矩形ACBP∴平行四边形. ∴AB=CP=1/2AB 2 ∠中点,求证:∠1=,∠DF是CD3.已知:BC=DE,∠B=∠E,∠C=A 1E B DF C EFBF和证明:连接∠EDF BC=ED,CF=DF,∵∠BCF=边角边)三角形BCF全等于三角形EDF(∴∠DEF∴ BF=EF,∠CBF=连接BE中,BF=EF在三角形BEF。EBF=∠BEF∠∴ 。ABC=∠AED∵∠。∠AEB∠∴ ABE=。∴ AB=AE中和三角形AEF在三角形ABF AB=AE,BF=EF,∠AEFAEB+∠BEF=∠∠ABF=∠ABE+∠EBF= 全等。ABF和三角形AEF ∴三角形2)∠。BAF=∠EAF (∠1= ∴∠ A21F C D E B,EFCD=DE,2∠1=∠:知已.

A A A CB1CDB AB?CD2A A 2121F E B C D E D F C B C DB、ABC、CE分别平分∠AB∥DC,BEABCD如图,四边形中,。上。求证:BC=AB+DCBCD,且点E在AD∠ ,连接EF在BC上截取BF=AB平分∠ABC∵BE FBE∴∠ABE=∠BE=BE又∵)(SAS∴⊿ABE≌⊿ FBE∠BFE∴∠A=DA ED C F C B B AAB知:AB∵ PC-PBAB,求证:14.P是∠BAC C A DP B ,E在AC上取点。使AE=ABAB ∵AE=AP = AP ∠EAP=∠BAE, ∴△EAP≌△BAP 。∴PE=PBPE +PC<ECPB )+AC-AE∴PC<(-AB。∴PC-PB<AC ,求证:AC-AB=2BE2,BE⊥AEABC=315.已知∠∠C,∠1=∠ 证明:D,使得角DBC=AC上取一点角C 在∵∠ABC=3∠C ∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

全等三角形证明经典50题(含答案)

1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 4.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA 5.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线 交AP 于D .求证:AD +BC =AB . P E D C B A F A E D C B

6.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F , 若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立 请给予证明;若不成立请说明理由. 7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积 相等的三角形.(直接写出结果,不要求证明): 8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线 垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE . O E D C B A F E D C B A

全等三角形三种证明方法经典例题

全等三角形经典例题 典型例题: 知识点一:全等三角形判定1 例1:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,有下面四个论断:(1)AD =CB ;(2)AE =CF ;(3)DF =BE ;(4)AD ∥BC 。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。 思路分析: 1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。 ; 解答过程: 已知:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,AD =CB ,AE =CF ,DF =BE 。求证:AD ∥BC 。 证明:∵AE =CF ∴AE +EF =CF +EF ∴AF =CE 在△AFD 和△CEB 中, ∵ & ∴△AFD ≌△EBC (SSS ) ∴∠A =∠C ∴AD ∥BC 解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。 小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。 知识点二:全等三角形判定2 AD CB AF CE DF BE =??=? ?=?

例2:已知:如图,是和的平分线,。 * 求证:(1)△OAB ≌△OCD ;(2)。 思路分析: 1)题意分析:本题主要考查全等三角形判定2中的对应关系。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。 解答过程:证明:(1)∵OP 是和的平分线, ∴∠AOP =∠COP ,∠BOP =∠DOP ∴∠AOP -∠BOP =∠COP -∠DOP < ∴∠AOB =∠COD 在△OAB 和△OCD 中, ∵ ∴△OAB ≌△OCD (SAS ) (2)由(1)知△OAB ≌△OCD ∴AB =CD 解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。 . 例3:已知:如图,AB ∥CD ,AB =CD ,求证:AD ∥BC ,AD =BC 思路分析: 1)题意分析:本题主要考查全等三角形判定2的应用。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先将用于证明三角形全等的条件准备好。即如何由已知条件证明出两边和一角相等,以及如何用上AB ∥CD 这个条件。 解答过程: 连接BD ∵ AB ∥CD 、 OP AOC ∠BOD ∠OA OC OB OD ==,AB CD =AOC ∠BOD ∠OA OC AOB COD OB OD =?? ∠=∠??= ?

八年级全等三角形证明经典题

全等三角形证明经典题 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = 3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 5. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = A D B C C D B B A C D F 2 1 E A

6. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 7. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 8. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 一:如果abc=1,求证 11++a ab +11++b bc +11 ++c ac =1 二:已知a 1+b 1= )(29b a +,则a b +b a 等于多少? B B A C D F 2 1 E C D B A

9. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

全等三角形题型归类及解析

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5, AC=8,求DC 的长。 A B C D E P D A C B M N

二、中点型 由中点应产生以下联想: 1、想到中线,倍长中线 2、利用中心对称图形构造8字型全等三角形 3、在直角三角形中联想直角三角形斜边上的中线 4、三角形的中位线 2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:1 2 CE BF =

D A E F C H G B 3、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关 系,并证明你的结论。 4、如图,已知在△ABC中,AD是BC边上的

全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长. 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠ 2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 A D B C

3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又,EF ∥AB ∴,∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2 ∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E B A C D F 2 1 E A

(完整word版)专题研究:全等三角形证明方法归纳及典型例题,推荐文档

全等三角形的证明 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3)边边边定理(SSS):三边对应相等的两个三角形全等. (4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 专题1、常见辅助线的做法 典型例题 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种:

全等三角形证明经典题(含答案解析)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE < AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠ CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。∴ A D B C

∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又EF∥AB ∴∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG ∴EF =AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 7. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证: BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCE CE 平分∠BCD CE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF B A C D F 2 1 E A

全等三角形证明经典试题50道

全等三角形证明经典试题50道 1. (已知:如图,E,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF . 【答案】∵AD ∥CB ∴∠A=∠C 又∵AD=CB ,∠D=∠B ∴△ADF ≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF 2. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC 证明:在△ABC 与△DCB 中 (ABC DCB ACB DBC BC BC ∠=∠?? ∠=∠??=? 已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB ∴AB =DC 3. 如图,点D ,E 分别在AC ,AB 上.

(1) 已知,BD=CE,CD=BE,求证:AB=AC; (2) 分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的命题,命题2是命题.(选择“真”或“假”填入空格). 【答案】 (1) 连结BC,∵ BD=CE,CD=BE,BC=CB. ∴△DBC≌△ECB (SSS) ∴∠DBC =∠ECB ∴ AB=AC (2) 逆,假; 4. 如图,在□ABCD中,分别延长BA,DC到点E,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G。求证:△AEF≌△CHG. 【答案】证明:∵□ABCD ∴ AB=CD,∠BAD=∠BCD AB∥CD ∴∠EAF=∠HCG ∠E=∠H ∵ AE=AB,CH=CD ∴ AE=CH

全等三角形证明经典50题

1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 2.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 8.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 10.已知:∠1=∠2,CD=DE,EF//AB,求证: EF=AC A D B C B B A C D F 2 1 E C D B A A D B C

11.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 12.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。求证:BC=AB+DC。 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 14.已知:AB=CD,∠A=∠D,求证:∠B=∠C 15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

七年级下册-全等三角形证明经典题

七年级数学下册《全等三角形》专题练习 1、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2、已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = 3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,证21∠=∠ 4、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC B A C D F 2 1 E A D B C

5、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 6、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE 7、已知:AB=6,AC=2,D 是BC 中线,求AD 的取值范围。 8. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 9、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C D C B A F E C D B A D B C A

10、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证: AC-AB=2BE 12.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 13.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA 14.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 15.如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B,求证:AB=AC+CD P E D C B A D C B A

相关主题
文本预览
相关文档 最新文档