当前位置:文档之家› 纯电动物流车主要动力系统方案介绍

纯电动物流车主要动力系统方案介绍

纯电动物流车主要动力系统方案介绍
纯电动物流车主要动力系统方案介绍

纯电动物流车驱动系统方案

一、纯电动物流车驱动系统主要分类

目前纯电动的动力系统主要分几类,首先是单输出的总成,如直驱和间驱;第二类是带差速器总成,电机与差速器集成在一起,变成双输出的总成;第三类,电驱桥方案。

二、各种驱动系统的特点

1、直驱方案是目前应用比较广泛的方案,因为直驱方案结构非常简单,电机动力通过传动轴传到后桥上,可靠性比较高,维护方便。但该方案也有缺点,高速运行时噪音较大,电耗较大,同时,动力性一般,重量大。

2、同轴间驱方案也是目前比较常见的,带减速箱的间驱方案性能上和直驱差别不大,可靠性比直驱弱一点,动力性也一般。如果采用变速箱方案动力性会比较强,可以使电机更多的运行在高效区,特别是高速运行时。因此综合电耗较低。当然可靠性相对直驱略低,换挡时存在一定的动力中断。

3、U形间驱系统,通过电机传到减速箱或变速箱,再返回输出到后桥。陈友飞表示,这个系统比较适合放在后置后驱的架构上,因为这样可以节省空间,方便布置电池。性能方面和同轴间驱方案差别不大。

4、带差速器总成,取消了传动轴和传统的主减速器,可以有效提高效率。需要做成独立悬挂的形式,舒适性较好。当然对后桥的改动相对也较大。

5、电驱桥对后桥改动较小,缺点就是簧下质量重一点,对电机可靠性要求比较高,影响整车舒适性。陈友飞表示,这种方案在微面、微卡上用的比较多,大概70%~80%都是用这样的动力系统,但也有电机厂对这种方案比较担忧,主要是电机承受振动较大。

三、各种驱动系统性能对比

通过城郊综合工况计算发现,直驱的电耗会比较高,两挡和四挡的会比较低,大概低6%~7%。

1、动力性方面,直驱比较弱,四挡箱过剩,两挡箱刚刚好;

2、经济性方面,变速箱的方案比直驱好,变速箱同时具备成本优势也更明显;

3、重量方面,四挡箱稍微重一点,两档箱方案最轻;两挡箱的可靠性和平顺性接近直驱,因为两挡箱的换挡次数少。

总之,两挡箱的性能在综合情况下比较好一点,直驱主要体现在可靠性和平顺性比较优越,四挡箱只有动力性比较强,其他方面不怎么占优势。

四、驱动系统性能瓶颈

目前的直驱电机的一大瓶颈是,直驱的扭矩和转速无法兼顾,当用大扭矩时转速下降,小的扭矩转速提高,很难兼顾整车最大爬坡度和最高车速需求。

如果采用变速箱的方案就可以很轻易化解这个困境,如两挡箱的方案,采用一个峰值120kW的电机,最大输出可以到2048Nm,最高输出转速可以达到5000转,这样最高爬坡度可超过30%以上,最高车速可达到120km/h以上。

因此两档箱系统也是提高7.5吨级轻卡性能的最优选择。

四、纯电动物流车技术发展趋势

1、一体化。目前纯电动乘用车的电机、电控、减速箱等的一体化趋势比较明显,未来为了进一步降低重量、成本,纯电动物流车的动力系统也会慢慢向一体化方向发展。目前绿控等动力系统企业都在进行这方面的研发工作

2、多元化。纯电动物流车动力系统不可能只有一两种方案选型,未来肯定会多元化,针对不同车型采用最具竞争力的动力系统进行匹配。

3、高效率。提高动力系统效率,可以不降低续航里程的情况下减少电池装载量,降低整车成本,而高效率既要求把单电机的效率做得更好,也要求优化动力系统的匹配和控制。

4、轻量化。陈友飞表示,轻量化已经成为整个行业的共识,对各种零部件都有轻量化的要求。需要提高电机的扭矩和功率密度,以降低电机重量。同时选择合适的动力系统也是途径之一。

5、低成本。低成本不代表低品质,而是通过技术革新和批量化生产来降低动力系统成本。选择合适的动力系统方案,也是降低成本的题中之义。

纯电动物流车主要动力系统方案介绍

纯电动物流车驱动系统方案 一、纯电动物流车驱动系统主要分类 目前纯电动的动力系统主要分几类,首先是单输出的总成,如直驱和间驱;第二类是带差速器总成,电机与差速器集成在一起,变成双输出的总成;第三类,电驱桥方案。 二、各种驱动系统的特点 1、直驱方案是目前应用比较广泛的方案,因为直驱方案结构非常简单,电机动力通过传动轴传到后桥上,可靠性比较高,维护方便。但该方案也有缺点,高速运行时噪音较大,电耗较大,同时,动力性一般,重量大。 2、同轴间驱方案也是目前比较常见的,带减速箱的间驱方案性能上和直驱差别不大,可靠性比直驱弱一点,动力性也一般。如果采用变速箱方案动力性会比较强,可以使电机更多的运行在高效区,特别是高速运行时。因此综合电耗较低。当然可靠性相对直驱略低,换挡时存在一定的动力中断。 3、U形间驱系统,通过电机传到减速箱或变速箱,再返回输出到后桥。陈友飞表示,这个系统比较适合放在后置后驱的架构上,因为这样可以节省空间,方便布置电池。性能方面和同轴间驱方案差别不大。 4、带差速器总成,取消了传动轴和传统的主减速器,可以有效提高效率。需要做成独立悬挂的形式,舒适性较好。当然对后桥的改动相对也较大。 5、电驱桥对后桥改动较小,缺点就是簧下质量重一点,对电机可靠性要求比较高,影响整车舒适性。陈友飞表示,这种方案在微面、微卡上用的比较多,大概70%~80%都是用这样的动力系统,但也有电机厂对这种方案比较担忧,主要是电机承受振动较大。 三、各种驱动系统性能对比 通过城郊综合工况计算发现,直驱的电耗会比较高,两挡和四挡的会比较低,大概低6%~7%。 1、动力性方面,直驱比较弱,四挡箱过剩,两挡箱刚刚好; 2、经济性方面,变速箱的方案比直驱好,变速箱同时具备成本优势也更明显; 3、重量方面,四挡箱稍微重一点,两档箱方案最轻;两挡箱的可靠性和平顺性接近直驱,因为两挡箱的换挡次数少。 总之,两挡箱的性能在综合情况下比较好一点,直驱主要体现在可靠性和平顺性比较优越,四挡箱只有动力性比较强,其他方面不怎么占优势。

比亚迪E6纯电动汽车动力系统的结构与检修

比亚迪E6纯电动汽车使用磷酸埋钻铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1 kWh)以内,每1 00km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。 一、比亚迪E6纯电动汽车动力系统的结构 1.比亚迪E6纯电动汽车动力系统 比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。

(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。 (2)电动车的动力模块有:电动机总成、电池包体总成。

(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。 2.动力控制系统的工作原理 (1)充电过程 充电站的380V高压充电桩通过车辆上的充电口,或者220V市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直接途径应急开关后对Hv电池组充电。在充电过程当中,电源管理器一直监控着HV电池组的温度和电压,如果发现HV电池组内部某单体温度或电压过高,就会切断配电箱给HV电池组的供电。 (2)放电过程 HV电池组在电源管理器和漏电保护器的监控下,通过应急开关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控制器的信号)控制着电机控制器的工作,电机控制器主要控制流向电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换器将高压直流电转化为低压直流电,为车辆电动液压助力转向系统提供42V的电源,同时还为整车用电设备提供12V的电源。 3.动力系统各部件的作用 (1)电机控制器:负责控制电机的前进、倒退、维持电动车的正常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控制电流的工作,保证能够按照我们的意愿输出合适的电流参数。 (2)DC-DC:负责将330V高压直流转低压提供给车载低压用电设备,如

纯电动物流车技术方案及产品技术协议

纯电动物流车技术方案及产品技术协议 协议编号: 签订日期: 签订地点:

技术协议 甲方(购货方): 乙方(供货方):武汉XXXX技术有限公司 甲、乙双方本着诚实守信、互惠互利的原则,经友好协商,达成如下技术协议:一、概要 本协议为甲乙双方针对甲方H6纯电动物流车方案及乙供产品采购事宜达成的技术协议,主要就甲乙双方在此项目中的技术要求和验收规范等进行技术约定。该技术协议将作为采购乙供产品的的商务合同附件,具有相应的法律效应。 二、合作内容 乙方为甲方提供6M海狮纯电动商务客车用整车控制器、电机驱动器、辅助动力控制器,其作用为: 1.整车控制器:HK-VCUON1-03 1)接受处理驾驶员的操作指令,并向各部件发送控制指令。 2)与电机、辅助动力控制器、BMS等通过CAN进行通讯,对数据进行采集和控制。 3)接受各部件的信息,并将整车的运行状态通过仪表显示出来。 4)系统故障的判断、记录。 2.电机驱动器:HIE100-384T260-90-1S-HK 接收整车控制器指令,控制电机转速及输出转矩。 3.驱动电机:HIE170-T220-50-3S-WT

接受电机驱动器控制为整车提供可控稳定的驱动力。 4.三合一辅助动力控制器:HIEG380-3DCP-1S-HK02,包含: 1)DCDC直流电源,给车载蓄电池充电并为低压部件提供直流电源。 2)车载充电机,外接交流电源,实现动力电池的充电。 3)箱内集成高压配电柜,为车载高压电器分配电力并提供相应保护。 5.DCAC动力控制器:HIE160-D380T220-3.7-1F-12V-HK 给助力转向油泵提供交流电源。 三、引用标准及法规

详解2017电动物流车补贴政策

近段时间,新能源物流车行业用一个词语形容——“喜忧参半”。 喜:第一喜是因为新能源物流车进入第四批、第五批推广目录中。第二喜是因为2015年补贴终于下发了,缓解了企业的资金压力。第三喜是2016年补贴政策确定,2017~2020年补贴调整政策出台。虽然,政策出台有点晚,但大家的热情高涨,2016年年末都加班加点在生产车辆。 忧:第一忧,2016年,大家都在观望,年底补贴调整政策出来后,发现2016年补贴政策依然为1800元/kWh进行补贴。而2017年~2020年补贴退坡,车辆进入技术门槛提高。第二忧,好不容易,新能源物流车进入了第四批、第五批推荐目录,谁料前五批目录要打回重审,实在令人哭笑不得!第三忧,很多运营商反应说,物流车目前不赚钱,运营模式还有待提升。 如此看来,只能用一句话概括,“路漫漫其修远兮,吾将上下而求索!” 新能源物流车企三道无法跨越的坑

前段时间,补贴调整政策吵得沸沸扬扬,还没等冷静下来思考,铺天盖地都是解读,电动汽车资源网记者也参与了解读大军中,浅略分析了“累计三万公里”政策对新能源物流车的影响分析(详细请看《累计3万公里获得补贴是否是电动物流车车企的一道硬伤?》)。刚写完不久,就有网友质疑,称笔者采访企业数据有待考量,累计三万公里指标难以达到,运营车辆平均一天只能跑30~50公里,普遍低于80公里/天。这是新能源物流车行业的一大硬伤,这道坎如果过不去,补贴也就无缘。 第二大硬伤,补贴退坡与技术门槛提高。2016年依然按照1800元/kWh计算,笔者相信1800元/kWh,绝对是赚钱了的。但是,2017年补贴退坡很大,补贴金额在1000元 /kWh~1500元/kWh。退坡这么大,企业能否赚钱?正是笔者要讨论的。此外,调整政策中,提高了技术门槛,如,装载动力电池系统质量能量密度不低于90Wh/kg,纯电动货车、运输类专用车单位载质量能量消耗量(Ekg)不高于0.5 Wh/km ˙kg,其他类纯电动专用车吨百公里电耗(按试验质量)不超过13kWh。 第三大硬伤,次年清算,给企业带来经济压力。(一)政策原文:“每年初,生产企业提交上年度的资金清算报告及产品销售、运行情况,包括销售发票、产品技术参数和车辆

纯电动物流车-VCU技术说明教程文件

纯电动物流车-V C U技 术说明

纯电动物流车VCU 技术说明 1对整车控制器的功能要求 ?驾驶意图解释:采样驾驶员操作信号并解释(加速踏板、制动踏板开关、进/退开关信号)。 ?车辆状态监测:采样车速并结合其他部件的 CAN 信号。 ?驱动控制(前进、倒车):通过进/退开关发送开关量给整车控制器,再通过 CAN 发送指令给电机控制器实现进/退。 ?能量再生控制:整车控制器通过采集制动踏板开关量用 CAN 发送指令给电机控制器让电机处于发电机模式实现制动能量回馈。(待需要时实现) ?最高车速控制(120km/h) ?剩余里程估计(结合整车及电池参数由 BMS 进行算法估算,整车控制器转发给仪表显示)?高压电源管理:预充电继电器及主高压继电器通断控制(BMS 主板控制)。 ?高压电安全管理:结合车辆和各子系统反馈的状态进行安全状态监测,进行主高压继电器的通断控制 (BMS 主板控制),安全信息输出(CAN)。 ?附件管理:收到空调面板空调 AC 开关后,驱动低速风扇工作,助力转向泵 DCAC 工作使能。 ?电机热管理:根据冷却水温控制水泵(见 CAN 协议)、实现 PWM 调速(待需要时实现),实现风扇高低速电源的继电器通断(见 CAN 协议)。 ?浪涌电流保护:电路板中有对继电器线圈断电时的浪涌电流保护,外部无需要添加带续流二极管的继电器。 ?CAN 通讯管理(见 CAN 协议) ?故障诊断:根据自诊断和各子系统诊断信息,进行故障诊断管理,输出信息供仪表显示。 ?带标定与上位机调试功能。 ?工作电源电压:12V 平台:9~16VDC 。 2与整车控制器连接的电器电子设备及附件

能源纯电动物流车计算设计书

能源纯电动物流车计算 设计书 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

最新能源纯电动物流车-计算设计书 【最新资料,WORD文档,可编辑修改】 一、设计要求 二、整车技术参数 三、驱动结构设计 四、驱动系统设计 五、供电系统设计 六、空调系统设计 七、真空助力系统设计 八、设计结果 一、设计要求 1、整车性能技术指标 A 运输类新能源专用车、货车动力电池系统总质量占整车整备质量比例不超过 25%,作业类新能源专用车、货车不超过20%。 B 吨百公里电耗不超过10kWh;M1、N1类采用工况法,其他暂采用40km/h等 速法,其中作业类专用车检测时上装部分不工作。 (1)最高车速:90km/h; (2)最大爬坡度:20%; (3)加速性能0-50 Km/h:<15s;

(4)60km/h续驶里程≥200km(等速法); (5)工况法续航里程≥180km; 二、整车技术参数 新能源厢式运输车选用长安传统载货汽车底盘(SC1031GDD43)为改装主体。 新能源厢式运输车是在长安底盘改装成纯电动可承载式底盘的基础上,加装载货物厢体而形成的一款新能源厢式运输车,该车配置5MT手动变数箱、永磁同步驱动电机及控制器、整车控制器、三元锂离子锂电池、高压配电和BMS管理系统、智能车载充电器、直流快充充电系统、冷却系统、真空助力制动系统、助力转向系统、车载冷暖空调以及远程监控系统等。驱动电机采用电机前置通过法兰固定于变速箱,变速箱固定于整车中部,控制器及车载充电器布置在车身前中部,动力锂离子电池、高压配电系统及电池管理系统布置在车体中前两侧部位,车载空调布置在车体前部,远程监控终端固定于驾驶室中控台内部,采用5MT手动变数箱/2档AT自动变速箱。 1.整车控制系统的工作原理图 2.相关设计的参数计算

小型电动物流车项目可行性分析报告

小型电动物流车项目可行性分析报告 规划设计/投资方案/产业运营

小型电动物流车项目可行性分析报告 根据高工产研电动车研究所(GGII)数据显示,2018年我国电动物流车市场渗透率约为为20%。在全国快递物流行业快速发展的背景下,GGII预计到2020年全国电动物流车产量市场渗透率有望达到21.9%。对比发达国家电动物流车市场渗透率来看,我国物流车电动化还有一段距离追赶! 该小型电动物流车项目计划总投资4858.29万元,其中:固定资产投资3568.08万元,占项目总投资的73.44%;流动资金1290.21万元,占项目总投资的26.56%。 达产年营业收入9146.00万元,总成本费用7145.01万元,税金及附加88.91万元,利润总额2000.99万元,利税总额2365.90万元,税后净利润1500.74万元,达产年纳税总额865.16万元;达产年投资利润率41.19%,投资利税率48.70%,投资回报率30.89%,全部投资回收期4.74年,提供就业职位134个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后

续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ......

电动汽车结构与原理

电动汽车结构与原理 名词解释 1.纯电动汽车:指由蓄电池或其他储能装置作为电源的汽车。 2.再生制动:指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 3.续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶的最大距离。 4.逆变器:指将直流电转化为交流电的变换器。 5.整流器:指将交流电变化为直流电的变换器。 6.D C/DC变换器:指将直流电源电压转换成任意直流电压的变换器。 7.单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。

8.蓄电池放电深度:指称为“ DOD,表示蓄电池的放电状态的参数,等于实际放电量与额定容量的百分比。 9.蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用C表示。 10.荷电状态:称为"SOC,指蓄电池放电后剩余容量与全荷电容量的百分比。 11.蓄电池完全充电:指蓄电池内所有的活性物 质都转换成完全荷电的状态。 12.蓄电池的总能量:指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度:指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度:指从蓄电池的单位质量或单位体积所获取的输出功率。 15.蓄电池充电终止电压:指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压:指蓄电池标定停止放电时的电压。 17.蓄电池能量效率:指放电能量与充电能量之比值。

18.蓄电池自放电:指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现象。 19.车载充电器:指固定安装在车上的充电器。 20.恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21.感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22.放电时率:电流放至规定终止电压所经历的时间。 23.连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数次完全充放电循环后可恢复的现象? 25.蓄电池的循环寿命:在一定的充放电制度下,电池容量下降到某一规定值时,电池所能经受的循环次数。 26.蓄电池内阻:指蓄电池中电解质、正负极群、隔板等电阻的总和。 27.汽车悬架:指车身(或车架)与车轮(或车桥)之间的一切传动连接装置的总称。

纯电动物流车简介

北京中元智盛市场研究有限公司

目录 纯电动物流车简介 (2) 1.1 纯电动物流车定义及其特征 (2) 1.1.1 纯电动物流车定义 (2) 1.1.2 纯电动物流车门类 (2) 1.1.3 纯电动物流车特征 (2) 1.1.4 纯电动物流车工作原理 (3) 1.2 纯电动物流车的目标用户 (11) 1.3 纯电动物流车产业链 (12) 1

纯电动物流车简介 1.1 纯电动物流车定义及其特征 1.1.1 纯电动物流车定义 纯电动物流车是车载电源为动力的运送与储存物料单元移动集装设备。又名电动车物流车、电动物流转运车、电动货物周转车。 1.1.2 纯电动物流车门类 根据电机驱动原理,纯电动物流车还可以分为直流纯电动驱动车和变频纯电动物流车两种。 1.1.3 纯电动物流车特征 经过几年的发展,特别是在“三电”性能上的提升,以及加快步伐基础设施布局,使得纯电动物流车续驶里程性能有所改善。纯电动物流车作为新能源汽车产品类型之一,担负起运输的职责,尤其是在轻物流方面不容小觑。很多纯电动物流车技术还是挺成熟的,电动物流车目前都是纯电动车,没有混合动力、没有增程(插电)等过渡产品。这类车的“三电”部件,技术上已经基本成熟,目前是量还没有上来,成本偏高。 纯电动物流车产品特征千奇百怪,因为各大厂家的设计风格不尽相同,技术含量不一样,导致产品特征的不一样。比如纯电动物流车平均售价、续驶里程、最高时速、爬坡度、载重质量、综合能耗、零部件质保、充电要求等这些都会影响纯电动物流车的好坏。现在纯电动物流车平均售价一般不会很高,高中档纯电动物流车也只在十来万,低档车型也只有三五万;而续驶里程大约在100~200km 范围居多;最高时速60~100km/h范围,爬坡度25%以上,载重质量500g以上,综合能耗为16--20kWh/100km,零部件质保承诺为8年或15万km。充电设施的多为家用三相插座。 在快递行业,一般快递从外地运输到县市区后,都会把货物集中到分拨中心统一管理,然后分拨到各个小网点再分配,然后再安排快递员把货物运到用户手 2

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(Battery Electric Vehicle,BEV)与混合动力汽车(Hybrid Electric Vehicle,HEV)和燃料电池汽车(Fuel Cell Electric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1 传统汽车与纯电动汽车综合能量效率比较(单位:%)(2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车动力匹配计算要求规范(纯电动)

电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 2015-10-15发布2015-11-1实施 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为

能源纯电动物流车计算设计书

一、 设计要求 二、 整车技术参数 三、 驱动结构设计 四、 驱动系统设计 五、 供电系统设计 六、 空调系统设计 七、 真空助力系统设计 八、 设计结果 一、 设计要求 1、整车性能技术指标 A 运输类新能源专用车、货车动力电池系统总质量占整车整备质量比例不超过25%,作业 类新能源专用车、货车不超过20%。 B 吨百公里电耗不超过10kWh ;M1、N1类采用工况法,其他暂采用40km/h 等速法,其中 作业类专用车检测时上装部分不工作。 (1)最高车速:90km/h ; (2)最大爬坡度:20%; (3)加速性能0-50 Km/h :<15s ; (4)60km/h 续驶里程≥200km (等速法); (5) 工况法续航里程≥180km ; 最新能源纯电动物流车-计算设计书 【最新资料,WORD 文档,可编辑修改】

二、整车技术参数 新能源厢式运输车选用长安传统载货汽车底盘(SC1031GDD43)为改装主体。 新能源厢式运输车是在长安底盘改装成纯电动可承载式底盘的基础上,加装载货物厢体而形成的一款新能源厢式运输车,该车配置5MT手动变数箱、永磁同步驱动电机及控制器、整车控制器、三元锂离子锂电池、高压配电和BMS管理系统、智能车载充电器、直流快充充电系统、冷却系统、真空助力制动系统、助力转向系统、车载冷暖空调以及远程监控系统等。驱动电机采用电机前置通过法兰固定于变速箱,变速箱固定于整车中部,控制器及车载充电器布置在车身前中部,动力锂离子电池、高压配电系统及电池管理系统布置在车体中前两侧部位,车载空调布置在车体前部,远程监控终端固定于驾驶室中控台内部,采用5MT手动变数箱/2档AT自动变速箱。 1.整车控制系统的工作原理图 2.相关设计的参数计算 1)整车技术参数及常数值标定

纯电动汽车动力系统及驱动技术

纯电动汽车动力系统及驱动技术 一、电动汽车简介及现状 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车和混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。 大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。和传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。 国内电动汽车发展现状 我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力和财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。 2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车和纯电动汽车为“三纵”,以多能源动力总成、驱动电机和动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂和北京理工大学,承担纯电动轿车研发的是上海汽车、上海交通大学、天津汽车集团等。 自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。 国外电动汽车发展现状 在电动汽车的发展进程中,各国和各地区都依据自己的国情和特点择了不同的技术路线,而处在技术领先位置的仍然是日本、美国和欧洲,他们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别是在当地政府部门。但是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本和美国,所以其注意力更多地转向了其它清洁能源车的开发。下表是国外几种电动汽车的技术指标。

2018年7月纯电动轻客物流车市场四特点简析

2018年7月纯电动轻客物流车市场四特点解析 纯电动轻客物流车是指在轻型客车平台基础上改装而成的纯电动物流车,是纯电动物流车的一个细分市场。根据电动汽车资源网数据统计,2018年7月纯电动物流车销量6022辆,同比下降32%,1-7月累计销售纯电动物流车近24000辆,同比下降27%;其中纯电动轻客物流车7月销量为843辆,同比下降近20%,1-7月累计销量为2390辆,同比下降近30%,现将2018年7月纯电动轻客物流车市场特点简析之。 特点一: 7月纯电动轻客物流在纯电动物流车市场中占比为14%,1-7月占比12%;处于最小地位 根据电动汽车资源网数据统计,2018年7月及1-7月,纯电动轻客物流车及纯电动物流车销量及占比情况统计表

解析: 在2018年7月纯电动物流车市场中,纯电动轻客物流车销量占比为14%,在2018年1-7月累计销量中,纯电动轻客物流车占比只有12%,总之,纯电动轻客物流车在纯电动物流车市场这块大蛋糕中占据的份额最小。

特点二、纯电动轻客物流车权重与2017年比减少较多,轻客物流车地位越来越弱。 根据数据统计,2018年1-7月与2017年纯电动轻客物流占据纯电动物流车市场的权重表: 解析: 从总体来看,2018年前7月纯电动轻客物流车占据纯电动物流车的权重与2017年比下了近13个百分点。也就是说,在纯电

根据电动汽车资源网数据统计,2018年7月及1-7月纯电动轻客物流车车型主要是欧系轻客凌特车型,主要企业凌特车型销量如下表 月及1-7月欧系轻客凌特纯电动轻客物流车车型占据纯电动轻客物流车权重

解析: 1、欧系轻客凌特车型是2018年7月及1-7月纯电动轻客物流车的主要车型,其次是其他欧系轻客车型。主要是因为凌特车型车身宽大,货仓容积较大,能多拉货物,比较实用,性价比较高,因此目标客户比较喜欢。 2、上图表中的其他欧系轻客车型主要指江铃特顺、南京依维柯等,大海狮车型主要指九龙汽车、华晨金杯等主流企业的日系大海狮轻客物流车车车型。 特点四:广东、安徽、陕西是纯电动轻客物流车流向最多的前三甲区域市场,前10名区域市场集中度达到82.7%,垄断程度较强

东风牌EQ5020XXYLBEV1纯电动厢式运输车技术条件

Q/EQ 东风汽车公司企业标准 EQC-025-2015 东风牌EQ5020XXYLBEV1 纯电动厢式运输车技术条件 2015-08-12发布2015-08-12实施东风汽车公司技术标准化委员会发布

编制说明 1、任务来源 依照东风公司2015年工作计划,编制本标准。 2、标准内容的说明 2.1 标准名称 本标准命名为《EQ5020XXYLBEV1纯电动厢式运输车技术条件》。 2.2 适用范围 本标准适用于EQ5020XXYLBEV1纯电动厢式运输车的出厂检验,也可作为上级主管部门进行质量定期检查和用户验收产品的技术依据。 2.3 主要内容 本标准规定了EQ5020XXYLBEV1系列纯电动厢式运输车的主要总成结构、性能参数及技术要求、试验方法、检验规范、标志、出厂准备和质量保证。

前言 本标准由东风汽车公司技术中心提出。 本标准由东风汽车公司技术标准化委员会归口。 本标准起草单位:东风襄阳旅行车有限公司。 本标准起草人:刘俊、周东河,宫文体 本标准从2015年08月12日起实施。

整车技术条件 1、范围 本标准规定了EQ5020XXYLBEV1纯电动厢式运输车的要求、检验规范、标志、出厂准备和质量保证。 本标准适用于东风汽车公司生产的EQ5020XXYLBEV1系列纯电动厢式运输车。 2、引用标准 下列文件中的各条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB1495-2002 汽车加速行驶车外噪声的测量方法 GB1589-2004 汽车外廓尺寸限界 GB4094-1999 汽车操纵件、指示器及信号装置的标志 GB/T4094.2-2005电动汽车操纵件、指示器及信号装置的标志 GB4599-2007 汽车前照灯配光性能 GB4660-2007 汽车前雾灯配光性能 GB4785-2007 汽车及挂车外部照明和信号装置的安装规定 GB5920-2008 汽车及挂车前位灯、后位灯、示廓灯和制动灯配光性能 GB7258-2012 机动车运行安全技术条件 GB8410-2006 汽车内饰材料的燃烧特性 GB9744-2007 载重汽车子午线轮胎 GB11554-2008 汽车及挂车后雾灯配光性能 GB11555-1994 汽车风窗玻璃除雾系统的性能要求及试验方法 GB11556-1994 汽车风窗玻璃除霜系统的性能要求及试验方法 GB11562-1994 汽车驾驶员前方视野要求及测量方法 GB11564-2008 机动车回复反射器 GB12676-1999 汽车制动系统结构、性能和试验方法 GB14166-2003 汽车安全带性能要求及试验方法 GB14167-2006 汽车安全带安装固定点 GB15082-2008 汽车用车速表 GB15083-2006 汽车座椅系统强度要求及试验方法 GB15084-2006 汽车后视镜的性能和安装要求 GB15085-1994 汽车风窗玻璃刮水器、洗涤器的性能要求及试验方法 GB15235-2007 汽车倒车灯配光性能 GB15741-1995 汽车和挂车号牌板(架)及其位置 GB15742-2001 汽车电喇叭性能要求及试验方法 GB17509-2008 汽车及挂车转向信号灯配光性能

基于某款纯电动汽车动力系统计算与仿真分析

基于某款纯电动汽车动力系统计算与仿真分析 摘要动力系统参数的选择与匹配对电动汽车的动 力性和经济性会产生很大的影响。文章在理论计算和系统分析的基础上,对电机、电池以及传动系传动比进行了参数匹配,分析了纯电动汽车动力系统参数的选择对电动汽车性能的影响。GT-suite 仿真结果表明,所选动力总成部件与整车匹配后能够满足纯电动轿车动力性的要求。为纯电动汽车动力系统参数选择与匹配提供了参考。 关键词电动汽车动力系统参数匹配动力性仿真 中图分类号:U463. 23 文献标识码:A 电动汽车是解决当前能源短缺和环境污染问题可行的 技术之一。电动汽车是由车载动力电池作为能量源的零排放汽车。近些年来,电动汽车的研制热潮在全世界范围内兴起,尤其是在我国,逐步向小批量商业化生产的方向发展。电动汽车技术的发展依赖于多学科技术的进步,尤其需要解决的问题是进一步提高动力性能,增加续驶里程,降低成本。考虑开发经费和开发周期,建立计算机仿真模型对电动汽车的性能进行仿真分析是很有意义的。 1电动汽车动力系统参数要求电动汽车的动力性主要取决于动力及传动系统参数匹配,包括动力电池、驱动电机及传动系统控制器等部 件。 根据设计要求,本电动汽车设计参数为:最高车速 150km/h,最大爬坡度》30%,续驶里程》180km。0100km/h 的时间为: < 15s。相关的车辆参数为:汽车整备质量: 1600kg ;迎风面积:2.19m2;长?卓?赘呤滴?631?? 790?? 470 m m ;轴距为:2650;滚动阻力为:0.0015;风阻系数: 0.296 。 2电机参数匹配电机作为电动汽车主要动力源,电机的匹配对电动汽车

纯电动汽车的基本结构和原理

纯电动汽车的基本结构和原理 与燃油汽车相比,纯电动汽车的结构特点是灵活,这种灵活性源于纯电动汽车具有以下几个独特的特点。首先,纯电动汽车的能量主要是通过柔性的电线而不是通过刚性联轴器和转动轴传递的,因此,纯电动汽车各部件的布置具有很大的灵活性。其次,纯电动汽车驱动系统的布置不同,如独立的四轮驱动系统和轮毂电动机驱动系统等,会使系统结构区别很大;采用不同类型的电动机,如直流电动机和交流电动机,会影响到纯电动汽车的重量、尺寸和形状;不同类型的储能装置,如蓄电池,也会影响纯电动汽车的重量、尺寸及形状。另外,不同的能源补充装置具有不同的硬件和机构,例如,蓄电池可通过感应式和接触式的充电机充电,或者采用更换蓄电池的方式,将替换下来的蓄电池再进行集中充电。 纯电动汽车的结构主要由电力驱动控制系统、汽车底盘、车身以及各种辅助装置等部分组成。除了电力驱动控制系统,其他部分的功能及其结构组成基本与传统汽车相同,不过有些部件根据所选的驱动方式不同,已被简化或省去了。所以电力驱动控制系统既决定了整个纯电动汽车的结构组成及其性能特征,也是纯电动汽车的核心,它相当于传统汽车中的发动机与其他功能以机电一体化方式相结合,这也是区别于传统内燃机汽车的最大不同点。 1、电力驱动控制系统 电力驱动控制系统的组成与工作原理如图5.1所示,按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。 1)车载电源模块 车载电源模块主要由蓄电池电源、能源管理系统和充电控制器三部分组成。

(1)蓄电池电源。蓄电池是纯电动汽车的唯一能源,它除了供给汽车驱动行驶所需的电能外,也是供应汽车上各种辅助装置的工作电源。蓄电池在车上安装前需要通过串并联的方式组合成所要求的电压一般为12V或24V的低压电源,而电动机驱动一般要求为高压电源,并且所采用的电动机类型不同,其要求的电压等级也不同。为满足该要求,可以用多个12V或24V的蓄电池串联成96~384V高压直流电池组,再通过DC/DC转换器供给所需的不同电压。也可按所需要求的电压等级,直接由蓄电池组合成不同电压等级的电池组,不过这样会给充电和能源管理带来相应的麻烦。另外,由于制造工艺等因素,即使同一批量的蓄电池其电解液浓度和性能也会有所差异,所以在安装电池组之前,要求对各个蓄电池进行认真的检测并记录,尽可能把性能接近的蓄电池组合成同一组,这样有利于动力电池组性能的稳定和延长使用寿命。 (2)能源管理系统。能源管理系统的主要功能是在汽车行驶中进行能源分配,协调各功能部分工作的能量管理,使有限的能量源最大限度地得到利用。能源管理系统与电力驱动主模块的中央控制单元配合在一起控制发电回馈,使在纯电动汽车降速制动和下坡滑行时进行能量回收,从而有效地利用能源,提高纯电动汽车的续程能力。能源管理系统还需与充电控制器一同控制充电。为提高蓄电池性能的稳定性和延长使用寿命,需要实时监控电源的使用情况,对蓄电池的温度、电解液浓度、蓄电池内阻、电池端电压、当前电池剩余电量、放电时间、放电电流或放电深度等蓄电池状态参数进行检测,并按蓄电池对环境温度的要求进行调温控制,通过限流控制避免蓄电池过充、放电,对有关参数进行显示和报警,其信号流向辅助模块的驾驶室显示操纵台,以便驾驶员随时掌握并配合其操作,按需要及时对蓄电池充电并进行维护保养。 (3)充电控制器。充电控制器是把电网供电制式转换为对蓄电池充电要求的制式,即把交流电转换为相应电压的直流电,并按要求控制其充电电流。充电器开始时为恒流充电阶段。当电池电压上升到一定值时,充电器进入恒压充电阶段,输出电压维持在相应值,充

能源纯电动物流车计算设计书

一、 设计要求 二、 整车技术参数 三、 驱动结构设计 四、 驱动系统设计 五、 供电系统设计 六、 空调系统设计 七、 真空助力系统设计 八、 设计结果 一、 设计要求 1、整车性能技术指标 A 运输类新能源专用车、货车动力电池系统总质量占整车整备质量比例不超过25%, 作业类新能源专用车、货车不超过20%。 B 吨百公里电耗不超过10kWh ;M1、N1类采用工况法,其他暂采用40km/h 等速法, 其中作业类专用车检测时上装部分不工作。 (1)最高车速:90km/h ; (2)最大爬坡度:20%; 最新能源纯电动物流车-计算设计书 【最新资料,WORD 文档,可编辑修改】

(3)加速性能0-50 Km/h:<15s; (4)60km/h续驶里程≥200km(等速法); (5)工况法续航里程≥180km; 二、整车技术参数 新能源厢式运输车选用长安传统载货汽车底盘(SC1031GDD43)为改装主体。 新能源厢式运输车是在长安底盘改装成纯电动可承载式底盘的基础上,加装载货物厢体而形成的一款新能源厢式运输车,该车配置5MT手动变数箱、永磁同步驱动电机及控制器、整车控制器、三元锂离子锂电池、高压配电和BMS管理系统、智能车载充电器、直流快充充电系统、冷却系统、真空助力制动系统、助力转向系统、车载冷暖空调以及远程监控系统等。驱动电机采用电机前置通过法兰固定于变速箱,变速箱固定于整车中部,控制器及车载充电器布置在车身前中部,动力锂离子电池、高压配电系统及电池管理系统布置在车体中前两侧部位,车载空调布置在车体前部,远程监控终端固定于驾驶室中控台内部,采用5MT手动变数箱/2档AT自动变速箱。 1.整车控制系统的工作原理图 2.相关设计的参数计算 1)整车技术参数及常数值标定

纯电动汽车传动系统

第一章绪论 1.1课题的目的意义: 1.1.1 纯电动汽车的背景 当前,我国电动汽车发展已经进入关键时期,既面临重大的发展机遇,也面临着严峻的挑战。我国电动汽车发展中还存在很多需要解决的问题,如核心技术还不具备竞争力,企业投入不足,政府的统筹协调能力还没有充分发挥等。总体上看来,我国电动汽车产业,起步不晚,发展不慢,但是由于传统汽车及相关产业基础相对薄弱、投入不足,差距仍然存在,中高端技术竞争压力越来越大,因此,必须加大攻坚力度,推动我国汽车产业向创新驱动转型,提高核心技术竞争力,确保我国汽车行业的可持续发展。 纯电动汽车使用电动机作为传动系统的动力源,缓解了能源紧缺的压力,实现了人们长期以来对汽车零尾气排放的期盼,传动系统作为汽车的核心组成部分,其技术创新是纯电动汽车发展的必经之路。 1.1.2纯电动汽车的意义 近年来,关于纯电动汽车的研究主要集中在能量存储系统、电驱动系统和控制策略的开发研究三方面。 能量存储系统相当于纯电动汽车的发动机,是纯电动汽车电动机所需电能的提供者。目前,铅酸蓄电池是使用最为广泛的,但其充电速度较慢,使用寿命短,节能环保差。随着电动汽车技术的发展,其他电池正在渐渐取代着铅酸蓄电池。目前发展的新电源有纳硫电池、锂电池、镍镉电池、飞轮电池、燃料电池等,尽管这些新电源投入应用,但是短时间内还是无法解决纯电动汽车电源充电缓慢,电量存储低续航里程短的问题。 纯电动汽车整车控制策略的开发研究一直在紧锣密鼓的进行着,整车控制系统是纯电动汽车实现整车控制和管理的关键,是实现和提高整车控制功能和性能水平的一个重要技术保证。其核心技术主要体现在整车控制软件的架构设计、转矩控制策略以及对整车和各系统得能量管理上。尽管控制策略的开发研究一直没有间断,但是,系统开发较为复杂,进度较慢。 1.2近年来国内外研究现状: 1.2.1国内发展现状: 我国正式对电动汽车的研制始于1981年,当时全球对电动汽车的宣传和需求并不强烈,对电动汽车的研究也相当零散,投入很少。近年来,我国电动汽车的研究、开发进入了有组织。有领导的全面发展阶段,国家在电动汽车研制开发方面也采取了积极有效的宏观引导措施。

纯电动物流车_VCU技术说明

纯电动物流车VCU 技术说明 1对整车控制器的功能要求 驾驶意图解释:采样驾驶员操作信号并解释(加速踏板、制动踏板开关、进/退开关信号)。 车辆状态监测:采样车速并结合其他部件的CAN 信号。 驱动控制(前进、倒车):通过进/退开关发送开关量给整车控制器,再通过CAN 发送指令给电机控制器实现进/退。 能量再生控制:整车控制器通过采集制动踏板开关量用CAN 发送指令给电机控制器让电机处于发电机模式实现制动能量回馈。(待需要时实现) 最高车速控制(120km/h) 剩余里程估计(结合整车及电池参数由BMS 进行算法估算,整车控制器转发给仪表显示) 高压电源管理:预充电继电器及主高压继电器通断控制(BMS 主板控制)。 高压电安全管理:结合车辆和各子系统反馈的状态进行安全状态监测,进行主高压继电器的通断控制(BMS 主板控制),安全信息输出(CAN)。 附件管理:收到空调面板空调AC 开关后,驱动低速风扇工作,助力转向泵DCAC 工作使能。 电机热管理:根据冷却水温控制水泵(见CAN 协议)、实现PWM 调速(待需要时实现),实现风扇高低速电源的继电器通断(见CAN 协议)。 浪涌电流保护:电路板中有对继电器线圈断电时的浪涌电流保护,外部无需要添加带续流二极管的继电器。 CAN 通讯管理(见CAN 协议) 故障诊断:根据自诊断和各子系统诊断信息,进行故障诊断管理,输出信息供仪表显示。 带标定与上位机调试功能。 工作电源电压:12V 平台:9~16VDC 。 2与整车控制器连接的电器电子设备及附件

.

VCU 接插件的pin 脚图(AMP1241434-1):

相关主题
文本预览
相关文档 最新文档