当前位置:文档之家› 材料力学第十一章

材料力学第十一章

材料力学第十一章
材料力学第十一章

材料力学复习题讲解

《材料力学复习题》 考试形式:开卷。 1.构件在外荷载作用下具有抵抗破坏的能力为材料的();具有一定的抵抗变形的能力为 材料的();保持其原有平衡状态的能力为材料的()。 答案:强度、刚度、稳定性。 2.图示圆截面杆件,承受轴向拉力F作用。设拉杆的直径为d,端部墩头的直径为D,高度 为h,试从强度方面考虑,建立三者间的合理比值。已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa。 解:由正应力强度条件 由切应力强度条件 由挤压强度条件 式(1):式(3)得 式(1):式(2)得 故D:h:d=1.225:0.333:1 3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是()。

答案:截面法。 4.工程构件在实际工作环境下所能承受的应力称为(),工件中最大工作应力不能超过 此应力,超过此应力时称为()。 答案:许用应力,失效。 5.所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是()。 (A)强度低,对应力集中不敏感; (B)相同拉力作用下变形小; (C)断裂前几乎没有塑性变形; (D)应力-应变关系严格遵循胡克定律。 答案:C 6.现有三种材料的拉伸曲线如图所示。分别由此三种材料制成同一构件,其中:1)强度 最高的是();2)刚度最大的是();3)塑性最好的是();4)韧性最高,抗冲击能力最强的是()。 答案:A,B,C,C 7.试计算图示各杆的轴力,并指出其最大值。 答案 (a)F NAB=F,F NBC=0,F N,max=F (b)F NAB=F,F NBC=-F,F N,max=F (c)F NAB=-2 kN, F N2BC=1 kN,F NCD=3 kN,F N,max=3 kN (d)F NAB=1 kN,F NBC=-1 kN,F N,max=1 kN

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

材料力学阶段练习一及答案讲解学习

材料力学阶段练习一 及答案

华东理工大学 网络教育学院材料力学课程阶段练习一 一、单项选择题 1.如图所示的结构在平衡状态下,不计自重。对于CD折杆的受力图,正确的是( ) A. B. C. D.无法确定 2.如图所示的结构在平衡状态下,不计自重。对于AB杆的受力图,正确的是( )

A. B. C. D.无法确定 3.如图所示悬臂梁,受到分布载荷和集中力偶作用下平衡。插入端的约束反力为( )

A.竖直向上的力,大小为qa qa 2;逆时针的力偶,大小为2 qa B.竖直向上的力,大小为qa 2;顺时针的力偶,大小为2 qa C.竖直向下的力,大小为qa 2;逆时针的力偶,大小为2 qa D.竖直向下的力,大小为qa 2;顺时针的力偶,大小为2 4.简支梁在力F的作用下平衡时,如图所示,支座B的约束反力为( ) A.F,竖直向上 B.F/2,竖直向上 C.F/2,竖直向下 D.2F,竖直向上 5.简支梁,在如图所示载荷作用下平衡时,固定铰链支座的约束反力为( )

A.P,竖直向上 B.P/3,竖直向上 C.4P/3,竖直向上 D.5P/3,竖直向上 6.外伸梁,在如图所示的力和力偶作用下平衡时,支座B的约束反力为( ) A.F,竖直向上 B.3F/2,竖直向上 C.3F/2,竖直向下 D.2F,竖直向上 7.如图所示的梁,平衡时,支座B的约束反力为( ) A. qa,竖直向上 B. qa,竖直向下 C. qa 2,竖直向上 D. qa 4,竖直向上 8.关于确定截面内力的截面法的适用范围有下列说法,正确的是( )。

A.适用于等截面直杆 B.适用于直杆承受基本变形 C.适用于不论基本变形还是组合变形,但限于直杆的横截面 D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况 9.下列结论中正确的是( )。 A.若物体产生位移,则必定同时产生变形 B.若物体各点均无位移,则该物体必定无变形 C.若物体无变形,则必定物体内各点均无位移 D.若物体产生变形,则必定物体内各点均有位移 10.材料力学根据材料的主要性能作如下基本假设,错误的是( )。 A.连续性 B.均匀性 C.各向同性 D.弹性 11.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为( ) A.连续性 B.均匀性 C.各向同性 D.小变形 12.如图所示的单元体,虚线表示其受力的变形情况,则单元体的剪应变γ=( )。 A.α B.2α

材料力学讲解作业(2)

1、 轴向拉伸的等直杆,杆内任一点处最大剪应力的方向与轴线成 ___________。 2、 一空心圆截面直杆,其内、外径之比为α=0.8,两端承受轴向拉 力作用,如将内、外径增加一倍,则其抗拉刚度将是原来的________倍。 3、 在减速箱中,转速低的轴的直径比转速高的轴_____________。 4、 若梁上某段内的弯矩值全为零,则该段的剪力值为 _____________。 5、 梁的截面为对称的空心矩形,如图1所示,这时,梁的抗弯截面 模量W 为_______________。 6、 在梁的变形中挠度和转角之间的关系是____________。 7、 减小梁变形的主要途径有:_______________ 、 __________________ 、_________________。 8、 二向应力状态(已知x σ,y σ ,xy τ)的应力圆圆心的 横坐标值为_____________________,圆的半径为_____________。 9、与图2所示应力圆对应的单元体是____________向应力状态。 图1 图2 10、 将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将 ________,临界应力将________。 工程上通常把延伸率δ>________的材料称为塑性材料。 b b h h 1 2

低碳钢经过冷作硬化处理后,它的_________极限得到了明显的提高。 图1正方形单元体ABCD ,变形后成为AB `C`D`。单元体的剪应变为_________。 简支梁全梁上受均布荷载作用,当跨长增加一倍时,最大剪力增加一倍,最大弯矩增加了_______________倍。 如图2所示截面的抗弯截面模量Wz =_________________。 运用叠加原理求梁的变形时应满足的条件是:___________________________。 已知梁的挠曲线方程为)3(6)(2 x l EI Px x y -= ,则该梁的弯矩方程是______________________。 图1 图2 单向受拉杆,若横截面上的正应力为σ0,则杆内任一点的最大正应力为_______,最大剪应力为____________。 图3应力圆,它对应的单元体属______________________应力状态。 细长杆的临界力与材料的____________________有关, 为提高低碳钢压杆的稳定性,改用高强刚不经济,原因是 _______________________________。 图3 z h b d τ σ

材料力学11-第十一章静不定结构解析

第十一章静不定结构

目录 第十一章静不定结构 (3) §11.1 静不定结构概述 (3) 一、基本构件 (3) 二、静不定结构 (3) §11.2 用力法解静不定结构 (4) 一、只有一个多余约束的情况 (4) 二、有多个多余约束情况 (5) §11.3 对称及反对称性质的利用 (7) §11.4 连续梁及三弯矩方程 (8)

第十一章 静不定结构 §11.1 静不定结构概述 一、 基本构件 1. 桁架:直杆通过铰节点连接,何载作用在节点上,每一杆件只承受拉伸或压缩。 2. 刚架:直杆通过刚节点连接,每一杆件可以承受拉伸、压缩、弯曲和扭转。 3. 连续梁:连续跨过若干支座的梁。 二、 静不定结构 1. 静不定结构:支座反力不能完全由静力平衡方程求出的结构。分外力静不定结构和内力静不定结构。 2. 几何(运动)不变结构:结构只存在由变形所引起的位移。 3. 多余约束:结构中超过使体系保持几何不变结构的最少约束的约束。 桁架(内力静不定结构) 刚架1(内力静不定结构) 连续梁(外力静不定结构) 维持结构几何不几何可变

多余约束 多余约束用 4. 静不定次数的判断:去掉多余约束使原结构变成静定结构,去掉多余约束的个数为静不定的次数。 多余约束 R R 解除一个活动铰,相当于解除一个约束;解除一连杆,相当于解除一个约束;解除单铰,相当解除两个约束 5. 基本静定系:解除静不定结构的某些约束后得到的静定结构。 6. 静不定结构的基本解法:力法和位移法。 §11.2 用力法解静不定结构 一、只有一个多余约束的情况 如图所示结构,求其约束反力 解:1. 将约束解除得到基本静定系 B 1X F R2F R2

材料力学作业习题讲解

第二章 轴向拉伸与压缩 1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。 (1) (2) 2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2 。如以α表示斜截面与横 截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。 3、一木桩受力如图所示。柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。如不计柱的自重,试求: (1)作轴力图; (2)各段柱横截面上的应力; (3)各段柱的纵向线应变; (4)柱的总变形。 4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的 线应变d ε。 (2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。 (3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。试求: (1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律); (2) 钢丝在C点下降的距离?; (3) 荷载F的值。 6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组 [σ=170MPa。试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力] 条件? 7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。 ] E

工程力学材料力学答案-第十一章解析

11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的 最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。 解:(1) 画梁的弯矩图 (2) 最大弯矩(位于固定端): max 7.5 M kN = (3) 计算应力: 最大应力: K 点的应力: 11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。 试求梁内的最大弯曲拉应力与最大弯曲压应力。 解:(1) 查表得截面的几何性质: 4020.3 79 176 z y mm b mm I cm === (2) 最大弯曲拉应力(发生在下边缘点处) ()30max 8 80(7920.3)10 2.67 17610x M b y MPa I σ -+-?-?-?===? 6max max max 22 7.510176 408066 Z M M MPa bh W σ?====?6max max 33 7.51030 132 ******** K Z M y M y MPa bh I σ????====? x M 1 z M M z

(3) 最大弯曲压应力(发生在上边缘点处) 30max 8 8020.3100.92 17610 x M y MPa I σ ---???===? 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底 边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。 解:(1) 求支反力 31 44 A B R qa R qa = = (2) 画内力图 (3) 由胡克定律求得截面C 下边缘点的拉应力为: 49max 3.010******* C E MPa σε+-=?=???= 也可以表达为: 2 max 4C C z z qa M W W σ+== (4) 梁内的最大弯曲正应力: 2 max max max 993267.5 8 C z z qa M MPa W W σσ+ = === q x x F S M

材料力学第10章答案

第10章 疲劳强度的概念 思考题 10-1 什么是交变应力?举例说明。 答 随时间作周期性变化的应力称交变应力。如下图所示的圆轴以角速度ω匀速转动,轴上一点A 的位置随时间变化,从A 到A ′,再到A ′′,再到A ′′′,又到A 处,如此循环往复。 轴上该点的正应力A σ也从0到,再到0,再到,又到0,产生拉压应力循环。该点的应力即为交变应力。 +max σ?max σ 10-2 疲劳失效有何特点?疲劳失效与静载失效有什么区别?疲劳失效时其断口分成几个区域?是如何形成的? 答 (1)疲劳失效时的应力σ远低于危险应力u σ(静载荷下的强度指标);需要经过一定的应力循环次数;构件(即使是塑性很好的材料)破坏前和破坏时无显著的塑性变形,呈现脆性断裂破坏特征。 (2)疲劳失效的最大工作应力σ远低于危险应力u σ;静载失效的最大工作应力σ为危险应力u σ。 (3)疲劳失效时其断口分成2个区域:光滑区域和颗粒状粗糙区域。 (4)构件在微观上,其内部组织是不均匀的。在足够大的交变应力下,金属中受力较大或强度较弱的晶粒与晶界上将出现滑移带。随着应力变化次数的增加,滑移加剧,滑移带开裂形成微观裂纹,简称“微裂纹”。另外,构件内部初始缺陷或表面刻痕以及应力集中处,都可能最先产生微裂纹。这些微裂纹便是疲劳失效的起源,简称“疲劳源”。 微裂纹随着应力交变次数的继续增加而不断扩展,形成了裸眼可见的宏观裂纹。在裂纹的扩展过程中,由于应力交替变化,裂纹两表面的材料时而互相挤压、时而分离,这样就形成了断口表面的光滑区。宏观裂纹继续扩展,致使构件的承载截面不断被削弱,类似在构件上形成尖锐的“切口”。这种切口造成的应力集中,使局部区域内的应力达到很大数值。最终在较低的应力水平下,由于累积损伤,致使构件在某一次载荷作用时突然断裂。断口表面的颗粒状区域就是这种突然断裂造成的,所以疲劳失效的过程可以理解为裂纹产生、扩展直至构件断裂的一个过程。 10-3 什么是对称循环?什么是脉冲循环? 答 对称循环是指最大应力与最小应力大小相等, 正负号相反的应力循环。如下图所示: 脉冲循环是指最小应力值等于零,应力的正负号不发生变化的应力循环,如下图所示:

复合材料力学笔记

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。 根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒复合材料、纤维增强复合材料(fiber-reinforced composite)、层和复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶瓷。 (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。 按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高) 碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

材料力学柴国鈡第10章答案

10.1 一端固定一端铰支的工字形截面细长压杆,已知弹性模量GPa 208=E ,截面尺寸200mm×100mm ×7mm ,杆长m l 10=,试确定压杆的临界压力。 解:43 37.16796532121869312200100mm I x =?-?= 43 32.117198312 71861210072mm I y =?+?= 因为x y I I <,故y I I = ()() kN N l EI F cr 1.49101.49100007.02.11719831020832 3222=?=????==πμπ 10.2 两端固定的圆截面钢质压杆,直径为50mm ,受轴向压力F 作用。已知GPa 210=E 和MPa 200=p σ,试确定能够使用欧拉公式的最短压杆长度l 。 解:8.101200 10210505.0443 22=??==≥??===πσπλμμλp p E l d l i l 可得:mm l 2545≥ 10.3 截面为矩形h b ?的压杆,两端用柱销联接(在y x -平面内弯曲时,可视为两端铰支;在z x -平面内弯曲时,可视为两端固定)。已知GPa 200=E ,MPa 200=p σ,试求:(1)当mm 30=b ,mm 50=h 时,压杆的临界压力;(2)若使压杆在两个平面(y x -和z x -面)内失稳的可能性相同时,求b 和 h 的比值。 解:43 331250012503012mm bh I z =?==,1=z μ,故 ()()kN N l EI F z z cr 11710117230013125001020032322 2 1=?=????==πμπ 43 311250012305012mm hb I y =?==,5.0=y μ,故 ()()kN N l EI F y y cr 1681016823005.011250010200323222 2=?=????= =πμπ 故kN F cr 117=。 若使压杆在两个平面(y x -和z x -面)内失稳的可能性相同,则要求 ()()21 124124332 2 22=?=?=?=h b hb bh I I l EI l EI y z y y z z μπμπ 10.4 两端铰支的细长压杆,圆形横截面的直径为d 。假设压杆只发生弹性变形,材料的热膨胀系数为α。若温度升高T ?,求临界压力与T ?的关系。 解:T E Tl EA l F N ?=??=ασα cr T E σασ≤?= 4 2 d T E F cr πα?≥ 10.5 图示圆截面压杆mm 40=d ,材料M P a 235 =s σ。试求可用经验公式λσ12.1304-=cr 计算临界应力时的最小杆长。 解:s cr σλσ≤-=12.1304

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

材料力学习题答案讲解学习

第二章 轴向拉伸与压缩 2-1 试求图示直杆横截面1-1、2-2、3-3上的轴力,并画出轴 F N (kN) F N1= -2kN F N2 = 0kN F N3= 2kN (a (b ) 2-2 图示中部对称开槽直杆,试求横截面1-1和2-2上的正应力。 解: 1.轴力 由截面法可求得,杆各横截面上的轴力为 kN 14N -=-=F F 2.应力 4 201014311N 11??-==--A F σMPa 175-=MPa ()4 10201014322N 2 2?-?-==--A F σMPa 350-=MPa

2-3 图示桅杆起重机,起重杆AB 的横截面是外径为mm 20、内径为mm 18的圆环,钢丝绳BC 的横截面面积为2mm 10。试求起重杆AB 和钢丝绳 =2kN 解: 1.轴力 取节点B 为研究对象,受力如图所示, 0=∑x F : 045cos 30cos N N =++οοF F F AB BC 0=∑y F : 045sin 30sin N =--οοF F AB 由此解得: 83.2N -=AB F kN , 04.1N =BC F kN 2.应力 起重杆横截面上的应力为 () 223 N 18204 1083.2-??-= =πσAB AB AB A F MPa 4.47-=MPa 钢丝绳横截面上的应力为 10 1004.13N ?==BC BC BC A F σMPa 104=MPa 2-4 图示由铜和钢两种材料组成的等直杆,铜和钢的弹性模量分别为GPa 1001=E 和GPa 2102=E 。若杆的总伸长为 mm 126.0Δ=l ,试求载荷F 和杆横截面上的应力。 解: 1.横截面上的应力 由题意有 ???? ??+=+= ?+?=?221 1221121E l E l A E Fl A E Fl l l l σ 由此得到杆横截面上的应力为 33221110210400 10100600126 .0?+?= + ?=E l E l l σMPa 9.15=MPa 2.载荷 2404 9.15??==π σA F N 20=kN

材料力学(金忠谋)第六版答案第10章

第十章 组合变形的强度计算 10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲哪些为斜弯曲并指出截面上危险点的位置。 (a ) (b) (c) (d) 斜弯曲 平面弯曲 平面弯曲 斜弯曲 弯心 () () 弯心 弯心 ()() 斜弯曲 弯扭组合 平面弯曲 斜弯曲 “×”为危险点位置。 10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成?=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa 100.14 ?=E 。试确定①截面上中性轴的位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。

解:66.915cos 10cos =?== ?P P y KN 59.215sin 10sin =?== ?P P z KN 43 1012 2015=?= z J 4cm 3 310cm W z = 33 562512 1520cm J y =?= 3750cm W y = 25.74 3 66.94 max =?= = l P M y z KN-M 94.14 3 59.24m ax =?== l P M z y KN-M MPa W M W M y y z z 84.9107501094.110101025.76 3 633max max max =??+??=+= --σ 中性轴: 47.2515tan 562510tan tan tan 411=??? ? ??-=?? ?? ??-=--?αy z J J 2 8 49333 105434.0101010104831066.948--?=??????==z y y EJ l P f m 2 8 933310259.010 562510104831059.248--?=??????==y z z EJ l P f m 602.0259.05434.022=+=f cm 方向⊥中性轴: 47.25=α

材料力学讲解作业(2)

1、 轴向拉伸的等直杆,杆任一点处最大剪应力的方向与轴线成 ___________。 2、 一空心圆截面直杆,其、外径之比为α=0.8,两端承受轴向拉力 作用,如将、外径增加一倍,则其抗拉刚度将是原来的________倍。 3、 在减速箱中,转速低的轴的直径比转速高的轴_____________。 4、 若梁上某段的弯矩值全为零,则该段的剪力值为_____________。 5、 梁的截面为对称的空心矩形,如图1所示,这时,梁的抗弯截面 模量W 为_______________。 6、 在梁的变形中挠度和转角之间的关系是____________。 7、 减小梁变形的主要途径有:_______________ 、 __________________ 、_________________。 8、 二向应力状态(已知x σ,y σ ,xy τ)的应力圆圆心的 横坐标值为_____________________,圆的半径为_____________。 9、与图2所示应力圆对应的单元体是____________向应力状态。 图1 图2 10、 将圆截面压杆改成面积相等的圆环截面压杆,其它条件不变,其柔度将 ________,临界应力将________。 工程上通常把延伸率δ>________的材料称为塑性材料。 低碳钢经过冷作硬化处理后,它的_________极限得到了明显的提高。 b b h h 1 2

图1正方形单元体ABCD ,变形后成为AB `C`D`。单元体的剪应变为_________。 简支梁全梁上受均布荷载作用,当跨长增加一倍时,最大剪力增加一倍,最大弯矩增加了_______________倍。 如图2所示截面的抗弯截面模量Wz =_________________。 运用叠加原理求梁的变形时应满足的条件是:___________________________。 已知梁的挠曲线方程为)3(6)(2 x l EI Px x y -= ,则该梁的弯矩方程是______________________。 图1 图2 单向受拉杆,若横截面上的正应力为σ0,则杆任一点的最大正应力为_______,最大剪应力为____________。 图3应力圆,它对应的单元体属______________________应力状态。 细长杆的临界力与材料的____________________有关, 为提高低碳钢压杆的稳定性,改用高强刚不经济,原因是 _______________________________。 图3 z h b d τ σ

材料力学习题讲解

一、填空题(请将答案填入划线内。) 1、材料力学是研究构件 强度 , 刚度 , 稳定性 计算的科学。 2、构件在外力作用下,抵抗_破坏_的能力称为强度 , 抵抗__变形__的能力称为刚度,保持___稳定性平衡__的能力称为稳定性 。 3、在强度计算中,根据强度条件可以解决三方面的问题:即 校核强度 、 设计截面尺寸 、 和 计算许可载荷 。 4、杆件变形的基本形式有拉伸(压缩)、__剪切_、_扭转__、_弯曲__。 5、研究杆件内力的基本方法是__截面法_________。 6、材料的破坏通常分为两类,即_脆性断裂______和_塑性屈服___。 7.杆件沿轴向方向伸长或缩短,这种变形形式称为 拉伸或压缩 。 8. 在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的现象称为 屈服 。 9.因截面形状尺寸突变而引起局部应力增大的现象,称为 应力集中 。 10、低碳钢拉伸图可以分为四个阶段,它们分别是 __弹性__阶段,_屈服__阶段,_强化__阶段和 _局部收缩_阶段。 11.扭转的变形特点是截面绕轴线发生相对 转动 12.直杆受力后,杆件轴线由直线变为曲线,这种变形称为 弯曲 。 13.梁的弯矩方程对轴线坐标x 的一阶导数等于__剪力__________方程。 14、描述梁变形通常有 挠度 和 转角 两个位移量。 15.静定梁有三种类型,即, 简支梁 、 外伸梁 和 悬臂梁 16、单元体内切应力等于零的平面称为 主平面 ,该平面上的应力称为 主应力 17.由构件内一点处切取的单元体中,正应力最大的面与切应力最大的面夹角为_45_ 度。 18、构件某点应力状态如右图所示,则该点的主应力分别为τ、0、-τ。 19.横力弯曲时,矩形截面梁横截面中性轴上各点处于__纯剪切____应力状态。 20.圆轴弯扭组合变形时,除轴心外,各点处的三个主应力σ1,σ2,σ3中,等于零的主应力是_____σ2___。 21、压杆的柔度,综合反映了影响压杆稳定性的因素有约束、_杆的长度_、杆截面形状和尺寸_。 22、简支梁承受集中载荷如图所示,则梁内C 点处最大正应力等于_________ 。 τ 24pa bh

材料力学习题第10章

材料力学习题 第10章 10-1 试判断下列平面结构的静不定次数。 10-2 如图所示结构,已知梁AB 的抗弯刚度为EI ,BC 杆的抗拉刚度为EA ,试求BC 杆所受的拉力及B 点沿铅垂方向的位移。 10-3 图示悬臂梁AD 和BE 的抗弯刚度皆为26m N 1024??=EI ,连接杆DC 的截面面积 24m 103-?=A ,材料弹性模量2GN/m 200=E ;若外力kN 50=F ,试求梁AD 在D 点的挠度。 10-4 木梁ACB 两端铰支,中点C 处为弹簧支承。若弹簧刚度kN/m 500=k ,且已知m 4=l ,mm 60=b ,mm 80=h , MPa 100.14?=E ,均布载荷kN/m 10=q ,试求弹簧 的约束反力。 10-5 抗弯刚度为EI 的直梁ABC 在承受载荷前安装在支 座A 、C 上,梁与支座B 间有一间隙?。承受均布载荷后,梁发 生弯曲变形并与支座B 接触。若要使三个支座的约束反力均相等, 则间隙?应为多大? 10-6 若刚架各部分的抗弯刚度均为常量EI ,Fa M =0 , 试作刚架的弯矩图。 10-7 图示圆弧形小曲率杆,抗弯刚度EI 为常量。试求约束反力。对于题b),并计算A 的水平位移。 10-8 图(a)所示在任意载荷作用下的对称结构,若选用对称的基本结构时(如图(b )所示),试证其正则方程为

00 333322221211212111=?+=?++=?++F F F X X X X X δδδδδ 10-9 图示刚架各部分的抗弯刚度皆为EI (常量),试作各刚架的弯矩图。 10-10 图示正方形桁架,各杆的抗拉刚度均为EA 。试求杆BC 的轴力。 10-11 图示结构,试求:1)杆BC 的轴力;2)对于a)题求节点B 的水平位移;对于b)题求节点B 的铅垂位移。 10-12 图示杆件结构,各杆的抗拉刚度均为EA 。试用力法求各杆的内力。

复合材料力学大作业

二零一六年——二零一七年第一学期复合材料力学实验报告 实验名称:层合板的强度分析 班级:工程力学13-2班 姓名:刘志强 学号: 02130857 指导教师:董纪伟

层合板的强度分析 问题: 有三层对称正交铺设层合板,总厚度为t ,外层厚12t ,内层厚t 6 5,材料为硼/环氧,受轴向拉力x N 作用,MPa E 51100.2?=,MPa E 42100.2?=, 30.021=v ,MPa G 312106?=,MPa X t 3100.1?=,MPa X c 3100.2?=,MPa Y t 2100.6?=,MPa Y c 200=,MPa S 60=,试求层合板极限载荷)/(t N x 。 解: 1,开始破坏时的“屈服”强度值: (1)计算ij ij Q A 和: 由:)(t)(1051.71,3341'得MPa A A A ?==- (2)求000,,xy y x γεε (3)求各层应力 (4)用Hill-蔡强度理论求第一个屈服载荷强度理论表达式: 将上述数据代入解得: 显然第一、三层先破坏,即N x /t=为第一屈服载荷,此时: 各层应力为: 2、进行第二次计算: (1)求削弱后的复合板刚度: 其中第一、三层板材料第一主方向破坏后,不能抗剪,故Q 66=0,继续计算复合板刚度A : []MPa Q 43,11000002.01810000 ????? ??????=

(2)、求应变和应力: (3)、由Hill-蔡强度理论得: /t=代入第二层求得应力: 将N x 方向全部破坏,层合板不能继续承即第二层第二主方向破坏,因此层合板在N x 受载荷。 三层对称正交铺设层合板轴向拉伸ANSYS模拟 1,定义单元类型: 进入前处理,选择添加shell linear layer 99单元,如图: 图1:定义shell99单元 2,设置单元属性: 关闭Labrary of Element Types窗口,打开options设置单元属性:在k8的下拉窗口选择All layers,如图: 图2:设置单元属性 3,添加单元实常数: 关闭添加单元窗口,打开添加实常数窗口,给shell99添加厚度、层合信息。 4,定义层合信息: 打开Setions下Shell-Lay-up,添加层合信息,如图: 图3:定义层合信息 点击ok关闭Create and Modify Section 窗口,然后打开Plot Section

第二章材料力学选择题剖析讲解学习

第二章材料力学 材料力学中研究的物体是________。 A.刚体 B.可变形固体 C.流体 D.A+B B 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,材料的这种性质称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 A 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,去除载荷后能够消失的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 当载荷不超过某一定范围时,多数材料在去除载荷后能恢复原有的形状和尺寸,材料的这种性质称为______;去除载荷后能够消失的变形称为______。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 A 材料力学研究的变形主要是________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 材料在弹性阶段的变形即弹性变形________。 A.通常是很小的可复原的变形 B.通常是很小的不可复原的变形 C.通常是很大的可复原的变形 D.通常是很大的不可复原的变形 A 材料在弹性阶段的变形即弹性变形,在研究构件的刚度问题时________,在研究构件的静力平衡问题时________。 A.必须考虑/必须考虑 B.可以忽略/必须考虑 C.必须考虑/可以忽略 D.可以忽略/可以忽略 C 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,

材料的这种性质称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 C 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,不能复原而残留下来的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 D 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,材料的这种性质称为________;不能复原而残留下来的变形称为________。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 B 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,恢复的变形称为________。 A.弹性 B.弹性变形 C.塑性 D.塑性变形 B 当载荷超过某一定范围时,在去除载荷后,变形只能部分恢复而残留下一部分变形不能消失,材料的这种性质称为________;复原的变形称为______。 A.弹性/弹性变形 B.塑性/塑性变形 C.弹性/塑性变形 D.塑性/弹性变形 D 杆件在受到外力作用后,产生的塑性变形实际上就是________。 A.超出弹性范围的变形 B.外力去除后不能消失而残留下来的变形 C.因外力去除而产生的变形 D.使自身形状、尺寸发生改变的变形 B 构件的强度就是指________。 A.构件在载荷作用下抵抗破坏的能力 B.构件在载荷作用下抵抗变形的能力 C.构件在载荷作用下抵抗破坏和变形的能力 D.构件在载荷作用下保持其原有平衡状态、抵抗失稳的能力 A 以下工程实例中,属于强度问题的是________。 A.起重钢索被重物拉断 B.车床主轴变形过大

相关主题
文本预览
相关文档 最新文档