当前位置:文档之家› 精氨酸

精氨酸

精氨酸
精氨酸

精氨酸被专家称为机体内运输和储存氨基酸的重要载体,在肌内代谢中极为重要,在人体内合成能力较低,需要部分从食物中补充,对于中老年人来说,它为你的健康保驾护航,同事它也是维持婴儿生长发育所必不可少的。由于精氨酸的许多新功能逐渐被人们发现,其应用变的越来越广,越来越令人瞩目。

精氨酸独特的生理功能——预防心脑血管疾病

研究发现,一氧化氮在维持血管扩张力的恒定和调节血压的稳定性中起着非常重要的作用。一氧化氮能共与动脉血管中的肌肉细胞接触并使之放松,扩张了动脉血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。

除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结(如心脏,大脑)。如果血液在心脏或脑部发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,预防中风、心脏病等心脑血管疾病。

100多年前,当硝酸甘油作为缓解心绞痛的特效药物在心脏病患者身上使用时,人们并不明白其作用机理。1986年这一百年谜团终于被美国加州大学洛杉矶分校药理学教授、药学院院长伊格纳罗博士破译,伊格纳罗博士因发现有关于一氧化氮在心血管系统中具有独特的信号分子作用,而于1998年获得诺贝尔医学奖。

伊格纳罗经过三年的研究发现,硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢称为一氧化氮。一氧化氮一旦生成之后,就与动脉中的肌肉接触并使之放松,扩张了动脉,这样就使得血压降低,从而改善血流。除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,因此,一氧化氮能有效的降低血压,预防中风和心脏病。氨基酸家族中的精氨酸,是人体内生成丰富的一氧化氮的重要来源。

精氨酸是一氧化氮的前体,补充精氨酸能够显著提高体内一氧化氮含量,一氧化氮能够与动脉中的肌肉细胞接触并使之放松,扩张血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。

精氨酸是自然的产物,是一种来自蛋白质的氨基酸,有很多来源,无论是鸡肉、鱼肉和某些蔬菜都含有精氨酸,但是普通的食物中的精氨酸往往含量较低,产生的一氧化氮数量较少,不具备相关的营养价值。

研究证实,补充富含精氨酸的食物可降低高血压和心脑血管疾病的危害,其生理机能也与精氨酸能够有效促进体内一氧化氮生成有关。高脂肪饮食会导致体内内皮依赖性血管舒张功能降低,导致血压增高,血流降低,血黏度增加。而精氨酸能够有效的促进一氧化氮在体内的生成,能够减轻体内氧化脂质对一氧化氮的降解,从而提高体内的一氧化氮的含量,减轻心脑血管疾病导致的危害。

此外,精氨酸还具有有效的改善中老年男性性功能的作用。一般男性大约从四十到五十岁开始,生殖系统机能开始老化,体内雄激素(睾酮)水平随着年龄的增加而降低,会出现许多类似于妇女更年期的症状,而精氨酸就是最佳的救星!

精氨酸可以在踢被生成大量的一氧化氮,能使血管扩张、软化、充盈、从而缓解心脏负担!原料:复合氨基酸(L-精氨酸、瓜氨酸等)、糊精、羟甲基纤维钠、轻质碳酸钙、胭脂红

作用:免疫调节。复合氨基酸中的极品,是最珍贵的氨基酸,补充人体所需。

原理:维持人体蛋白质营养的新陈代谢,在人体内合成各种酶、激素、免疫蛋白、血红蛋白等功能蛋白质,维持人体心、肝、脾、肺、肾所有器官组织细胞的正常运转。如果氨基酸的摄入能够保持均衡和充足,人体即可获得强大的自愈力和抵抗力。

瑞年精氨酸片三大国际顶尖技术:肠溶、缓释、螯合

精氨酸

精氨酸 精氨酸在体内起生理作用的主要是左旋精氨酸。正常情况下,体内精氨酸一部分来源于膳食,一部分通过几个器官间的协同作用由鸟氨酸通过瓜氨酸合成,其前体物质是谷氨酸或谷氨酰胺。机体中所有组织均利用精氨酸合成细胞浆蛋白和核蛋白,同时精氨酸也是脒基的唯一提供者,进而合成肌酸。精氨酸是碱性氨基酸,可广泛参与机体组织代谢,与机体免疫功能、蛋白质代谢、创面愈合等密切相关。它还能促进血氨进入尿素循环,防止氨中毒,其代谢中间产物多胺是重要的胃肠粘膜保护剂,能促进粘膜增殖。精氨酸也是合成一氧化氮的唯一底物,可参与免疫和血管张力调节。 精氨酸不仅是机体蛋白质的组成成分,而且还是多种生物活性物质的合成前体,如多胺和NO等,通过刺激部分激素分泌,参与内分泌调节和机体特异性免疫调节等生物学过程,因而L-Arg被科学家誉为“神奇分子”。L-Arg还是内生性一氧化氮(NO)的唯一前体。精氨酸为条件性必需氨基酸,对胎儿期和哺乳期动物来说是一种必需氨基酸,而对成年动物来说是非必需氨基酸,在体内能自身合成,但体内生成速度较慢,有时需要部分从食物中补充。精氨酸的多种生物学功能引起了营养和医学科研工作者的广泛关注,从而成为目前氨基酸研究的热点之一。 精氨酸是幼龄哺乳动物的必需氨基酸,是组织蛋白中最丰富的氮载体。精氨酸是碱性氨基酸,在动物体内有重要的生理生化功能,其不仅是细胞质和核酸蛋白的主要成分,还是将天门冬氨酸、谷氨酸、脯氨酸、羟脯氨酸、聚胺(腐胺、精脒、精胺)等转换为高能磷酸化合物肌酸磷酸的中间体,是肌酐酸唯一的氨来源;还作为尿素循环的中间体,通过尿素循环解除氨中毒,避免由于氨过量造成的代谢紊乱;在机体的匀质代谢方面也起着重要的作用,可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶(AGAT)、精氨酰-tRNA 合成酶等。另外,精氨酸不仅作为蛋白质合成的重要原料,同时也是机体内肌酸、多胺和一氧化氮(NO)等物质的合成前体,在动物体营养代谢与调控过程中发挥着重要作用,是新生哺乳动物的必需氨基酸,也是成年哺乳动物的条件性必需氨基酸。近年来,研究者对精氨酸营养和生理功能的研究日益增多,且不断突破。 一、概述 1、发现

精氨酸

精氨酸被专家称为机体内运输和储存氨基酸的重要载体,在肌内代谢中极为重要,在人体内合成能力较低,需要部分从食物中补充,对于中老年人来说,它为你的健康保驾护航,同事它也是维持婴儿生长发育所必不可少的。由于精氨酸的许多新功能逐渐被人们发现,其应用变的越来越广,越来越令人瞩目。 精氨酸独特的生理功能——预防心脑血管疾病 研究发现,一氧化氮在维持血管扩张力的恒定和调节血压的稳定性中起着非常重要的作用。一氧化氮能共与动脉血管中的肌肉细胞接触并使之放松,扩张了动脉血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。 除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结(如心脏,大脑)。如果血液在心脏或脑部发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,预防中风、心脏病等心脑血管疾病。 100多年前,当硝酸甘油作为缓解心绞痛的特效药物在心脏病患者身上使用时,人们并不明白其作用机理。1986年这一百年谜团终于被美国加州大学洛杉矶分校药理学教授、药学院院长伊格纳罗博士破译,伊格纳罗博士因发现有关于一氧化氮在心血管系统中具有独特的信号分子作用,而于1998年获得诺贝尔医学奖。 伊格纳罗经过三年的研究发现,硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢称为一氧化氮。一氧化氮一旦生成之后,就与动脉中的肌肉接触并使之放松,扩张了动脉,这样就使得血压降低,从而改善血流。除此之外,一氧化氮还能预防血液在一些危险的部位发生凝结,病人就会罹患心脏病或中风。只要人体产生足够的一氧化氮,那么就会大大降低心脑血管疾病的风险,因此,一氧化氮能有效的降低血压,预防中风和心脏病。氨基酸家族中的精氨酸,是人体内生成丰富的一氧化氮的重要来源。 精氨酸是一氧化氮的前体,补充精氨酸能够显著提高体内一氧化氮含量,一氧化氮能够与动脉中的肌肉细胞接触并使之放松,扩张血管,使得血压降低,从而改善血流,因此能够有效降低心脑血管疾病的风险。 精氨酸是自然的产物,是一种来自蛋白质的氨基酸,有很多来源,无论是鸡肉、鱼肉和某些蔬菜都含有精氨酸,但是普通的食物中的精氨酸往往含量较低,产生的一氧化氮数量较少,不具备相关的营养价值。 研究证实,补充富含精氨酸的食物可降低高血压和心脑血管疾病的危害,其生理机能也与精氨酸能够有效促进体内一氧化氮生成有关。高脂肪饮食会导致体内内皮依赖性血管舒张功能降低,导致血压增高,血流降低,血黏度增加。而精氨酸能够有效的促进一氧化氮在体内的生成,能够减轻体内氧化脂质对一氧化氮的降解,从而提高体内的一氧化氮的含量,减轻心脑血管疾病导致的危害。 此外,精氨酸还具有有效的改善中老年男性性功能的作用。一般男性大约从四十到五十岁开始,生殖系统机能开始老化,体内雄激素(睾酮)水平随着年龄的增加而降低,会出现许多类似于妇女更年期的症状,而精氨酸就是最佳的救星! 精氨酸可以在踢被生成大量的一氧化氮,能使血管扩张、软化、充盈、从而缓解心脏负担!原料:复合氨基酸(L-精氨酸、瓜氨酸等)、糊精、羟甲基纤维钠、轻质碳酸钙、胭脂红 作用:免疫调节。复合氨基酸中的极品,是最珍贵的氨基酸,补充人体所需。 原理:维持人体蛋白质营养的新陈代谢,在人体内合成各种酶、激素、免疫蛋白、血红蛋白等功能蛋白质,维持人体心、肝、脾、肺、肾所有器官组织细胞的正常运转。如果氨基酸的摄入能够保持均衡和充足,人体即可获得强大的自愈力和抵抗力。 瑞年精氨酸片三大国际顶尖技术:肠溶、缓释、螯合

精氨酸酶缺乏症-罕见病诊疗指南

精氨酸酶缺乏症 一、疾病概述 精氨酸酶缺乏症(arginase deficiency)也称精氨酸血症(argininemia),或高精氨酸血症,属常染色体隐性遗传病,是先天性尿素循环障碍中较少见的类型。1969年由Terheggen等[1]首次报道。精氨酸血症患者的临床表现与其他类型的尿素循环障碍有所不同,多数患儿在婴儿早期智力运动发育正常,随着疾病进展,在婴儿晚期出现进行性智力运动发育倒退、癫痫等神经系统损害。除一般高氨血症所导致的症状外,可有步态异常、痉挛性瘫痪、小脑性共济失调等。 国内外关于精氨酸血症发病率的研究资料较少,据报道其发病率为1/350 000~1/2 000 000不等。国内韩连书等从4 981名临床疑似遗传代谢病患者中检查出了1例精氨酸血症患者[2];杨艳玲教授团队曾报道7例精氨酸血症患者[3]。精氨酸酶(EC3.5.3.1)有两种同工酶,Ⅰ型存在于肝脏,为精氨酸酶的主要类型;Ⅱ型存在于肝外组织,含量较少。精氨酸血症是由于Ⅰ型精氨酸酶缺乏导致的一种疾病。精氨酸酶缺乏导致精氨酸不能顺利转化为瓜氨酸,血液及尿液中精氨酸浓度增高,尿素生成障碍,引起神经、肝脏、肾损伤等多脏器损害,引起一系列临床表现。 编码Ⅰ型精氦酸酶的基因(ARGl)位于6q23,长11.5 kb,包括8个外显子和7个内含子,编码由322个氨基酸组成的精氨酸酶同工酶Ⅰ蛋白。迄今已报道了至少30种ARG1基因突变。 二、临床特征 精氨酸血症患者临床表现复杂,个体差异较大,包括痉挛、震颤、舞蹈样运动、多动、共济失调、痉挛性四肢瘫痪、抽搐、精神发育迟缓等进行性神经系统损害,以及肝病、周期性呕吐和小头畸形。患儿早期可表现出厌食蛋白倾向及蛋白不耐受,进食高蛋白食物后血氨增高,导致呕吐或嗜睡,易合并营养不良。 进行性神经系统损害是精氨酸血症患者主要的临床特点,病情严重者可于新生儿早期发病,出生后数日出现惊厥,病死率高。患儿于2岁内出现“剪刀”步态、痉挛性双侧瘫、惊厥、严重智力低下、脑电图异常。婴儿期至学龄期发病的患者以智力运动障碍、惊厥、痉挛性瘫痪、共济失调为主要表现,因此易被误诊为脑

新生仔猪精氨酸营养及调控研究进展

新生仔猪精氨酸营养及调控研究进展1 何子双1,印遇龙2,胡元亮1 1南京农业大学动物医学院,南京(210095) 2中国科学院亚热带农业生态研究所,长沙(410125) E-mail:hezishuang@https://www.doczj.com/doc/0a1109718.html, 摘要:精氨酸是新生仔猪的必需氨基酸,具有许多重要的生理生化功能。7~21日龄哺乳仔猪精氨酸不足和极限下生长的主要原因是母猪乳汁精氨酸浓度低及仔猪小肠上皮细胞内源性合成的精氨酸/瓜氨酸减少。小肠上皮细胞线粒体N-乙酰谷氨酸水平下降是仔猪内源性精氨酸/瓜氨酸合成减少的潜在机理。N-氨基甲酰谷氨酸和皮质醇在调控新生仔猪内源性精氨酸/瓜氨酸合成方面具有重要作用。 关键词:仔猪;精氨酸;营养;调控 精氨酸是幼龄哺乳动物(包括仔猪)的必需氨基酸[1]、组织蛋白中最丰富的氮载体及细胞合成肌酸、脯氨酸、谷氨酸、多胺和一氧化氮等的前体;可用于多种代谢途径,包括精氨酸酶、一氧化氮合酶、精氨酸/甘氨酸胍基转移酶、精氨酰-tRNA合成酶等[2]。新生仔猪生长迅速,代谢功能旺盛,对精氨酸的需求特别高,而精氨酸不足是影响仔猪快速生长的主要因素。 1.新生仔猪精氨酸营养研究进展 新生仔猪是指出生后到断奶期的哺乳仔猪。美国NRC(national research council)指出3~5 kg仔猪的精氨酸需要量总计为1.5 g/day[3]。虽然传统的观点认为,母猪乳汁可以提供适当的氨基酸以促进仔猪的生长,但是,近年来的研究表明,哺乳仔猪实际上为极限下生长(Sub-maximal growth)。人工喂养的资料表明,新生仔猪的生物学生长潜力≥400g/d(出生至21日龄),或者说要高于哺乳期生长(230g/d)的74%[4]。哺乳仔猪极限下生长的代谢依据还不明了,有学者认为,精氨酸不足是主要因素[2]。 1.1 新生仔猪精氨酸不足 新生仔猪精氨酸不足指的是其体内精氨酸供给不足,不能保持仔猪最快生长和最佳代谢功能的需要。推测其原因可能是多方面的,包括日粮精氨酸供给不足、肠道精氨酸/瓜氨酸合成减少、精氨酸合成酶遗传缺陷、肠道精氨酸输送障碍、肠道精氨酸酶基因过度表达、肾脏转化瓜氨酸为精氨酸的功能障碍等。以前的研究主要集中在母猪乳汁精氨酸不足和仔猪内源性精氨酸合成减少两个方面。 1.1.1 母猪乳汁精氨酸不足根据母猪乳汁和仔猪的氨基酸模式、乳汁精氨酸供给量与估计的仔猪需要量之间的差异证明了母猪乳汁精氨酸不足。精氨酸/赖氨酸质量比在母猪乳汁(哺乳第7 d)和7日龄仔猪体内平均值分别为0.35和0.97,说明有一定数量的精氨酸由仔猪体内合成。根据仔猪精氨酸摄入量和精氨酸存积和代谢量计算结果表明,母猪乳汁供给1周龄仔猪的精氨酸≤需要量的40%。因此,体内合成的精氨酸对哺乳仔猪具有重要意义[5~7]。对婴儿、新生小鼠的研究结果与此一致[8, 9]。 1.1.2 仔猪内源性精氨酸合成减少仔猪小肠上皮细胞合成精氨酸/瓜氨酸,称为内源性精氨酸/瓜氨酸合成。1~7日龄以精氨酸、7日龄后以瓜氨酸为主。肠源瓜氨酸主要在肾脏被转 1本课题得到国家自然科学基金(编号:30528006)的资助。

精氨酸激酶的表达及纯化

精氨酸激酶(AK)的表达及其纯化 生物学实验教学中心

目录 引言 (4) 1实验材料、试剂、仪器 (7) 2 实验方法 (9) 2.1配制LB液体培养基 (9) 2.2 活化菌种 (9) 2.3 扩大培养 (9) 2.4 IPTG诱导AK的表达 (9) 2.5蛋白质提取 (9) 2.6 His-tag Ni亲和层析法纯化融合蛋白 (10) 2.7 上样和洗脱 (10) 2.8 SDS-PAGE电泳鉴定纯化程度 (10) 3 结果与分析 (11) 3.1层析谱图 (11) 3.2 SDS-PAGE电泳带型分析 (12) 总结 (13) 参考文献 (14)

精氨酸激酶(AK)的表达及其纯化 指导老师: 摘要:精氨酸激酶(ATP:N-精氨酸磷酸转移酶EC2.7.3.3)存在无脊椎动物中,是参与细胞代谢的磷酸激酶。重组有AK基因的E. coli Rosetta,在含有50 μg/ml 的卡纳霉素的LB培养基中培养。当A600达到0.6-0.8时,用终浓度为0.2 mM 的异丙基硫代-β-D-半乳糖苷(IPTG)诱导培养3小时。加裂解液后用超声破 壁离心取上清,得到精氨酸激酶粗提液。通过CM-Cellulose阳离子交换层析, SephacrylTM-100凝胶过滤层析,Q-Sepharose阴离子交换层析分离纯化得到电 泳纯的精氨酸激酶。 关键词:精氨酸激酶表达与纯化 Expression and Purification of Arginine Kinase Abstract:Arginine kinase(ATP:L-arginine phosphotransferase EC 2.7.3.3),plays an important role in cellular energy metabolism in invertebrate. E. coli Rosetta which 2

精氨酸激酶的折叠及其部分结构的研究_1[1].1精氨酸激酶_11_15

第一章引言 1.1 精氨酸激酶  精氨酸激酶(Arginine kinase,AK)(E.C.2.7.3.3)是一种磷酸原胍基化合物的激酶。它的作用是催化如下可逆反应:将ATP上的磷酸基团转移到精氨酸上,从而形成一种具有高能键的储能分子――磷酸精氨酸。反应方程式如下: 精氨酸+ATP? 磷酸精氨酸+ADP?Mg + H+ AK被发现已经超过70年的历史了, 它属于磷酸原(胍基化合物)激酶这个大家族中的一员。现在已经在许多种无脊椎动物中发现了AK, 例如有鳌节肢动物(chelicerate arthropod) Limulus polyphemus[1], 腹足动物(gastropod) Cellana grata 和Aplysia kurodai [2],海参Stichopus japonicus[3],头足类动物Nautilus pompilius[4],龙虾(lobster) Homarus vulgaris[5],海葵(sea anemone)Anthopleura japonicus[6],海湾对虾(gulf shrimp)penaeus aztecus[7]等无脊椎动物中都已经分离得到了AK。 尽管说基本功能都是催化同样的高能磷酸键转移反应,但是从不同的无脊椎动物体内得到的AK的结构和分子量大小却存在着很大的差异。这些不同的精氨酸激酶结构和大小有以下类别:(1)单亚基,如海湾对虾(gulf shrimp)penaeus aztecus 的AK[7],是一种相对分子量约为40 kDa的单亚基的蛋白质。单亚基的AK是目前研究最多的一种AK。本论文中用到的AK就是单亚基,相对分子量约为40 kDa。(2)双亚基,如海参Stichopus japonicus中分离得到的AK就是一种相对分子量约为84 kDa的双亚基蛋白质[3]。(3)四个亚基,如环节动物(annelid)Sabella pavonina中具有相对分子量在150~160 kDa之间的四亚基AK[8]。 来自于某些物种的精氨酸激酶的晶体结构现在已经被解析了出来。早在1998年, Zhou等人已经利用来自于马蹄蟹(horseshoe crab)Limulus polyphemus 的单亚基的AK解出了结合有过渡态类似物的AK的过渡态的晶体结构(分辨率:1.86 ?)[9]。结果显示AK由一个小的全α-螺旋的N端结构域和一个大的C 端结构体(112号-357号残基)组成。C端结构域和谷氨酸合成酶的C端结构域相似,8股反平行β-折叠被7个α-螺旋包绕着(见图1-1)。 - 1 -

补充精氨酸与运动能力关系的研究进展_熊正英

第43卷2007年第3期 西 北 师 范 大 学 学 报(自然科学版) Vo l 143 2007 No 13 Jo ur nal of No rthw est N o rmal U niversit y (Natura l Science) 收稿日期:2006O 12O 03;修改稿收到日期:2007O 03O 28 作者简介:熊正英(1952)))),男,陕西商南人,教授.主要从事运动生物化学与营养的研究. E O ma il:x zy5201@yahoo 1com 1cn 补充精氨酸与运动能力关系的研究进展 熊正英,李润红 (陕西师范大学体育学院,陕西西安 710062) 摘 要:采用文献资料法,论述了运动对精氨酸代谢的影响以及补充精氨酸提高运动能力的机制.在运动应激状态下,机体对精氨酸的需求量明显增加,提供充足的精氨酸能明显减少氮丢失,有益于机体蛋白质合成,促进肌糖原的储备及恢复;同时可增加冠状动脉流量和改善心脏功能,增强和调节机体的免疫功能,因此对延缓疲劳的发生和促进恢复有一定的作用. 关键词:精氨酸;肌糖原;心肌;免疫;运动 中图分类号:G 80717 文献标识码:A 文章编号:1001-988ú(2007)03-0107-05 T he development of researching on arginine supplement and exercise ability XIONG Zheng O y ing,LI Run O hong (Colleg e of Phy sical Educatio n,Shaanx i No rmal U niversity,Xi p an 710062,Shanxi,China) Abstract:T he m ethod of literature is applied to setting forth the effect o f exercise on the m etabolic of ar ginine and mechanism of supplementing arg inine fo r enhancing the exercise ability.In the state of ex ercise stress,the body r equirement for arginine increases no tably,therefore enough supply of arginine can decr ease the lo ss of nitrog en and be g ood for the synthesis of body pro tein and the recov er y of muscle gly cog en.M eantime arg inine helps to increase coronary bloo d flow and improv e heart function,and has the functions of streng thening and nur sing immune ability,so arginine has functio ns o f delaying ex ercise fatigue and promo ting the r ecovery of ex ercise fatig ue. Key words:arginine;m uscle g lycogen;m yocar dial;imm unity ;ex ercise 精氨酸(Ar g)在体内起生理作用的主要是左旋精氨酸(L-Arg ).正常情况下,体内精氨酸一部分来源于膳食,一部分通过几个器官间的协同作用由鸟氨酸通过瓜氨酸合成,其前体物质是谷氨酸(Glu)或谷氨酰胺(Gln).机体中所有组织均利用精氨酸合成细胞浆蛋白和核蛋白,同时精氨酸也是脒的唯一提供者,进而合成肌酸[1] .精氨酸是碱性氨基酸,可广泛参与机体组织代谢,与机体免疫功能、蛋白质代谢、创面愈合等密切相关.它还能促进血氨进入尿素循环,防止氨中毒,其代谢中间产物多胺是重要的胃肠粘膜保护剂,能促进粘膜增殖.精氨酸也是合成一氧化氮的唯一底物,可参与免疫和血管张力调节[2].近年来,一氧化氮对骨 骼肌中葡萄糖转运的促进作用和参与免疫调节作用得到学者们的广泛认同.作为一氧化氮的生成前体 左旋精氨酸能否成为改善运动能力、促进疲劳消除的营养补充剂已是学者们研究的焦点. 1 运动对左旋精氨酸代谢的影响 尿素合成的前体是左旋精氨酸和NH 3,运动过程中NH 3生成增加,使尿素的合成也增加,同时一氧化氮的生成也要增加,这必然使左旋精氨酸的消耗增加,使一氧化氮合酶的作用底物左旋精氨酸水平下降,因而一氧化氮的生成可能会减少.尽管精氨酸是人体可自身合成的一种半必需氨基酸,但人体合成的速度是否能够满足在运动中各种消耗 107

精氨酸

L-盐酸精氨酸 Cas 号: 15595-35-4 别名: L-精氨酸盐酸盐;L-精氨酸单盐酸盐;L-胍基戊氨酸盐酸盐;L-盐酸蛋白氨基酸;L-盐酸胍基戊氨酸 分子结构: 描述: 1.L-盐酸精氨酸(15595-35-4)的生产方法: 以明胶为原料,经酸性水解,再分离精制而得。 明胶[HCl,(水解)]→[116-122℃,16h]水解液[减压]→[(浓缩)]浓缩液

[NaOH(中和)]→[pH10.5-11]中和液[缩合]→[pH8]苯亚甲基精氨酸粗品[HCl(水解)]→[煮沸]水解液[活性炭(脱色)]→脱色液[303×2树脂(吸附)]→[pH7-8]滤液[HCl(酸化)]→[pH3-3.5]酸化液[浓缩、结晶]→L-精氨酸盐酸盐。 苯亚甲基精氨酸粗品的制备:将明胶和2倍量工业盐酸放入水解罐内,加热于116-122℃回流16h,得水解液。减压浓缩至1/2体积时,再加蒸馏水稀释至原体积,再浓缩,得浓缩液。冷却后,缓缓加入30%NaOH溶液,不断搅拌,并使温度在10℃以下,调节pH至10.5-11,再缓缓滴加苯甲醛,当pH为8时,苯甲醛停止滴加,搅拌反应0.5h使其反应完成,苯亚甲基精氨酸结晶析出,静置6h后过滤,取结晶并用水洗涤,滤干,粉碎,于60℃干燥,得苯亚甲基精氨酸粗品。 粗品水解,分离纯化:在苯亚甲基精氨酸粗品中,加入其量0.8倍的6mol/L 盐酸,加热煮沸50min进行酸水解,水解至40min时,加入少量活性炭脱色,过滤,滤渣用热水洗涤,再过滤,合并洗涤液,静置分层。分离出上层苯甲醛溶液待回收,下层水溶液,加入已处理好的弱碱性苯乙烯型阴离子树脂303×2,进行吸附,至pH7-8为止(约需3h),滤去树脂,收集滤液。再加6mol/LH Cl酸化收集得的滤液,使pH至3-3.5,加入适量活性炭,加热搅拌10min,过滤取滤液然后在水浴上保温80-90℃减压浓缩,至有少量结晶析出时,停止减压浓缩,冷却结晶,过滤取结晶先用70%乙醇洗涤,再用95%乙醇洗涤,滤干,于80℃干燥,得精制L-盐酸精氨酸(15595-35-4)。总收率约为4.5%。 2.用法及剂量: 治疗肝昏迷、降血氨:每次15~20g,以5%葡萄糖液1000mL稀释后于4小时内滴完;治疗碱血症:每10g精氨酸相当于48mmol盐酸;治疗男性不育症:口服每日4g,三个月为一疗程。 3.不良反应和注意事项: 健康人一次静滴本品30g或肝不全病人一日静滴30g,均可耐受,无副作用。静滴过快可引起流涎、呕吐、面部潮红等。大剂量注人可引起高氯性酸血症。无尿症或肾功能减退患者慎用或忌用。 4.贮藏: 密闭保存。 5.鉴别: (1)取本品约2mg,加水2ml使溶解,加茚三酮约2mg,加热,溶液显蓝紫色。 (2)取本品约50mg,加水1ml溶解后,加α-萘酚溶液与次溴酸钠试液各0.5ml,即显红色。 6.L-盐酸精氨酸(15595-35-4)的检查: (1)溶液的澄清度与颜色:取本品1g,加水10ml溶解后,溶液应澄清无色。 (2)硫酸盐:取本品0.5g,依法检查,如发生浑浊,与标准硫酸钾溶液1.5ml 制成的对照液比较,不得更浓(0.03%)。 (3)磷酸盐:取本品0.4g,置坩埚中,加硝酸镁0.3g与水5ml,摇匀,置水浴上蒸发至干,用小火灼烧至完全灰化,加水5ml与硫酸溶液(1→4)3ml,缓缓加热5分钟,加热水10ml,滤过,滤液置比色管中,滤渣用热水适量洗涤,洗液并入滤液中并使总液量达25ml,加钼酸铵溶液与米妥溶液各1ml,

精氨酸激酶(AK)

精氨酸激酶(AK)的表达及其纯化 报告题目藻精氨酸激酶(AK)的表达及其纯化作者姓名余姣 班级学号0801/2008114010130 指导教师汪劲松 完成时间2011年5月 生物学实验教学中心

目录 摘要........................................................................ 错误!未定义书签。引言.. (2) 1 实验材料 (2) 2 实验方法 (3) 2.1菌种活化 (3) 2.2扩大培养 (3) 2.3 IPTG诱导AK的表达 (3) 2.4 AK的提取及其纯化 (3) 2.5His-tag Ni亲和层析法纯化融合蛋白 (3) 2.6 AK的检测SDS-PAGE电泳 (4) 3 结果与分析 (4) 3.1 提取物的层析谱图与分析 (5) 3.2 提取物SDS-PAGE电泳图与分析 (6) 总结 (6) 参考资料 (7)

藻精氨酸激酶(AK)的表达及其纯化 余姣 (指导老师:汪劲松) 摘要: 精氨酸激酶(AK)(E.C.2.7.3.3)是一种磷酸原胍基化合物激酶,存在无脊椎动物中。本实验是将具有重组有AK基因的质粒的E.coli,在含有50μg/ml卡那霉素的LB液体培养基中活化和扩大培养。当菌体密度即OD值为0.6-0.8时,用0.5μg/ml IPTG异丙基硫代- -D-半乳糖诱导lac乳糖操纵子表达AK 5h。接着5000 r/m离心10分钟,弃上清液获得沉淀物重悬加裂解液后用超声波破壁至沉淀变得澄清,再12000 r/m离心,弃沉淀得到AK的粗提液。采用亲和层析法(含His-tag Ni的树脂层析柱)纯化AK,最后SDS-PAGE电泳,鉴定。 关键词:精氨酸激酶亲和层析光谱分析

L-精氨酸

L-精氨酸 中文同义词:L-精氨酸;2-氨基-5-胍基戊酸;L-蛋白氨基酸;胍基戊氨酸;精氨酸;L-2-氨基-胍基戊酸;L-胍基戊氨酸;L-精氨酸碱 英文名称: L(+)-Arginine 英文同义词: L(+)-ARGININE;L-ARGININE;L-ARGININE BASE;L-ARG;L-2-AMINO-5-GUANIDINOVALERIC ACID;ARG;ARGININE, L-;FEMA 3819 分子式 : C6H14N4O2 分子量 : 174.2 相关类别: 氨基酸和衍生物;pharmacetical;chiral;Arginine [Arg, R];Amino Acids;Amino Acids and Derivatives;for Resolution of Acids;Optical Resolution;alpha-Amino Acids;Biochemistry;Synthetic Organic Chemistry;L-Amino Acids;L-型氨基酸;Amino Acids;食品添加剂;食品和饲料添加剂;营养性添加剂;氨基酸及其衍生物;生化试剂;生物化学品;氨基酸;营养强化剂(营养增补;Nitric Oxide L-精氨酸性质 L-精氨酸用途与合成方法

L-精氨酸产品详细描述 L-Arginine(L-1-Amino-4-guanidovaleric acid) 对成人为非必需氨基酸,但体内生成速度教慢,对婴幼儿为必需氨基酸,有一定解毒作用。 天然品大量存在于鱼精蛋白等中,亦为各种蛋白质的基本组成,故存在十分广泛。 分子式:C6H14N4O2 分子量:174.20 性状:白色斜方晶系(二水物)晶体或白色结晶性粉末.熔点244℃(分解).经水重结晶后,于105 ℃失去结晶水.其水溶性呈强碱性,可从空气中吸收二氧化碳.溶于水(15%,21℃),不溶于乙醚,微溶于乙醇. 质量标准: 外观性状:白色结晶粉末

精氨酸

精氨酸 科技名词定义 中文名称:精氨酸 英文名称:arginine;Arg 定义:学名:2-氨基-5-胍基-戊酸。一种脂肪族的碱性的含有胍基的极性α氨基酸,在生理条件下带正电荷。L-精氨酸是蛋白质合成中的编码氨基酸,哺乳动物必需氨基酸和生糖氨基酸。D-精氨酸在自然界中尚未发现。符号:R。 所属学科:生物化学与分子生物学(一级学科);氨基酸、多肽与蛋白质(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 精氨酸是一种α氨基酸,亦是20种普遍的自然氨基酸之一。在哺乳动物,精氨酸被分类为半必要或条件性必要的氨基酸,视乎生物的发育阶段及健康状况而定。一种复杂的氨基酸,在蛋白质和酶的反应点可以发现它。在幼儿生长期,精氨酸是一种必需氨基酸。 目录 简介 结构 合成 功能 来源 常见氨基酸 简介 结构 合成 功能 来源 常见氨基酸 展开 简介 天然精氨酸为L-型,从水中结晶的产物含两分子结晶水,在乙醇中结晶的是无水物。由于胍基的存在,精氨酸呈碱性,易与酸反应形成盐。

性状:白色斜方晶系(二水物)晶体或白色结晶性粉末。熔点244℃。经水重解结晶后,于己于105℃失去结晶水。其水溶液呈强碱性,可从空气中吸收二氧化碳。溶于水(15%,21℃),不溶于乙醚,微溶于乙醇。天然品大量存在于鱼精蛋白中,亦为各种蛋白质的基本组成,故存在十分广泛。 法定编号:CAS 74-79-3 分子式:C6H14N4O2分子量:174.20 熔点244oC(分解).经水重结晶后,于105oC失去结晶水.其水溶性呈强碱性,可从空气中吸收二氧化碳.溶于水(15%,21oC),不溶于乙醚,微溶于乙醇. 含量:99.0%-100.0%比旋光度:+26.9o--27.9o 透光率:≥98%氯化物:≤0.02% 硫酸盐含量:≤0.02%铁含量:≤10ppm 重金属含量:≤10ppm砷含量:≤1ppm 其他氨基酸:不得检验出。干燥失重:≤0.5% 灼烧残渣:≤0.10%PH值:10.5-12.0 产品名称:L-精氨酸 含量:99% 结构 精氨酸可以算为一种双性氨基酸,这是因与主链最接近的旁链部份是较长、有机及疏水的,而另一端的旁链则是一个胍基。这个胍基的酸度系数(pKa值)为 12.48,在中性、酸性或碱性的环境下都是带正电殛的。因为在其双键及氮孤立电子对之间的共轭体系,使得其正电殛离开原位。这个胍基能形成多重的氢键。 合成 精氨酸是由瓜氨酸透个胞质酵素精氨基琥珀酸合成酶(ASS)及精氨基琥珀酸裂解酶(ASL)合成。这个过程所要求较大的能量,这是因要将每一个分子合成精氨基需要将三磷酸腺苷(ATP)水解成一磷酸腺苷(AMP),即两个三磷酸腺苷当量。 瓜氨酸能从以下各种来源生成: 从精氨酸经由一氧化氮合酶(NOS)催成; 从鸟氨酸经由脯氨酸或谷氨酰胺/谷氨酸的分解代借催成; 从非对称性二甲基精氨酸(ADMA)经由二甲基精氨酸二甲胺水解酶(DDAH)催成。 经由精氨酸或谷氨酰胺及谷氨酸所生成的途径是双向性的,因此氨基酸的生成会容易受到细胞的种类及生长阶段所影响。 在整个身体内看,精氨酸的合成基本是发生在小肠的上皮细胞。上皮细胞会从谷氨酰胺及谷氨酸产生瓜氨酸,再经由肾脏的肾小管细胞协助下抽取出来并转化为精氨酸。所以,若小肠或肾脏受到损害,精氨酸的内生合成会因而减少,这些人的膳食质素因而要相应提高。 另外,精氨酸的合成亦会在其他细胞中发生,所合成的份量较少。若在合成的环境中加入诱导型一氧化氮合酶(iNOS),可以明显的提高合成的份量。在

昆虫精氨酸激酶研究综述

甘肃农业科技Gansu Agr.Sci.and Techn.No.520192019年第5期昆虫精氨酸激酶研究综述 魏玉红1,2,袁伟宁1,2,张新瑞1,2 (1.甘肃省农业科学院植物保护研究所,甘肃兰州 730070;2.农业部天水作物有害生物 科学观测实验站,甘肃甘谷741200)收稿日期:2019-01-09 基金项目:甘肃省科技重大专项(1062NKDF021);甘肃省科技支撑计划项目(1604NKCA063);兰州市科技计划项目(2016-3-95);甘肃省农业科学院农业科技创新专项(2017GAAS23)。 作者简介:魏玉红(1976—),女,甘肃皋兰人,高级农艺师,主要从事农业昆虫与害虫防治研究工作。通信作者:张新瑞(1964—),男,甘肃武山人,研究员,博士,硕士生导师,研究方向为农业有害生物综合防治。Email :zxr@https://www.doczj.com/doc/0a1109718.html, 。摘要:治理农业害虫及其抗药性发展,探寻新的防虫杀虫靶标位点非常必要。精氨酸激酶 是昆虫能量代谢的关键酶,与飞行活动、识别寄主、消化食物和生长发育等密切相关,而且由 于其只存在于无脊椎动物体内而成为热点防虫靶标位点。本文综述了昆虫体内精氨酸激酶的分 子和晶体结构特点、分布规律与活性、环境因子影响、精氨酸激酶调节剂,及其在害虫防治中 的应用及前景。 关键词:精氨酸激酶;结构特征;抑制剂;害虫防治 中图分类号:Q555.7文献标志码:A 文章编号:1001-1463(2019)05-0069-06doi :10.3969/j.issn.1001-1463.2019.05.016 Research Summary on Arginine Kinase in Insects WEI Yuhong 1,2,YUAN Weining 1,2,ZHANG Xinrui 1, 2(1.Institute of Plant Protection ,Gansu Academy of Agricultural Sciences ,Lanzhou Gansu 730070,China ; 2.Scientific Observing and Experimental Station of Crop Pests in Tianshui ,Ministry of Agriculture ,Tianshui Gansu 741200,China ) Abstract :In order to control agricultural pests and pest resistance development ,the exploring of new insecticidal target sites is importantly necessary.Arginine kinase is a key functional enzyme relate to energy metabolism of insects ,flight activities ,identifying host ,digestion ,the growth and development ,etc ,as well ,because of its exist in invertebrates merely ,Arginine kinase becomes a famous pest control target.Thus ,This study summarized the arginine kinase molecular and crystal structure characteristics ,distribution and activity and ,influences of environmental factors ,regulator of arginine kinase ,application in pest control and the application prospect ,so as to make a steppingstone to the future study and new pesticide development with arginine kinase.Key words :Arginine Kinase ;Sstructure traits ;Inhibitors ;Pest control 精氨酸激酶(Arginine Kinase ,AK )广泛 存在于无脊椎动物体中,与肌酸激酶具有相 似功能,是昆虫体内唯一存在的磷酸源激 酶[1],1935年Lohmann [2]首次从蟹肌肉中 分离获得。不同来源的精氨酸激酶具有相同 功能,即在胍基和ADP 之间可逆的转移一 份子磷酸基团,缓冲ATP 水平[3]。昆虫体中,精氨酸激酶主要分布在代谢旺盛和能量需求大的组织中,催化如下反应:L-arginine +Mg ·ATP =N-phospho-L-arginine +Mg ·ADP [4]因此,精氨酸激酶活性和表达与昆虫飞行活动、识别寄主和生长发育等诸多方面息息相关[5-6]。由于其不存在于脊椎动物中, 69

精氨酸脱羧酶活性测定方法

精氨酸脱羧酶活性测定方法 一.液相色谱法: 1.实验设备 高效液相色谱,恒温水浴锅,SUMIPAX PG-ODS 07-4625(250*4.6mm)色谱柱,离心机 2.实验试剂 醋酸钠,L-精氨酸,磷酸吡哆醛,乙腈,磷酸氢二钠 3.色谱条件 色谱柱:SUMIPAX PG-ODS 07-4625(250*4.6mm);流动相:乙腈:0.03M 磷酸氢二钠(pH3.0)=30:70;柱温:40℃;流速:1.0mL/min;检测波长:210nm. 4.实验方法 将收集的细胞重悬于0.4mL 0.2M的醋酸钠缓冲液(含1% L-Arginine-HCL和0.02%磷酸吡哆醛)中,37℃孵育1h,之后离心,液相色谱分析上清中胍丁胺含量。 (难点:较难找到合适的色谱柱,且检测方法是专利中所描述的,是否切实可行,有待验证;优点:准确率高,易重复) 二.分光光度法: 1.实验设备 分光光度计,恒温水浴锅,离心机 2.实验试剂 L-精氨酸,磷酸吡哆醛,氯化钠,氢氧化钾,正丁醇,双乙酰 3. 实验方法 将10mL反应体系(0.1mM L-精氨酸,5mM Tris-HCL,50μM磷酸吡哆醛和粗酶液)置于37℃或45℃恒温水浴中孵育90min,之后离取上清2mL加入氢氧化钾的盐饱和溶液,混合,加入2mL正丁醇,搅拌1-2h后离心,取上层醇层0.5mL 加入双乙酰试剂后,在510nm下测定有色衍生物胍丁胺的吸光值。 (难点:化学测定法误差较大,不易重复,且参考文献中未给出详细实验步骤,具体实验方法需要进一步实验摸索;优点:实验设备简单易操作) 三.华勃氏呼吸仪法 1. 实验设备 华勃氏呼吸仪 2. 实验试剂 L-精氨酸,醋酸,醋酸钠 3. 实验方法 称取足量L-精氨酸配置溶液,取0.1-1mL加入1.9-1mL蒸馏水后加入0.2mL 2M醋酸-醋酸钠缓冲液置于反应小瓶中,酶液0.3mL于反应小瓶酶液侧室,置呼吸仪测定。

精氨酸在畜禽营养生理中的应用进展

精氨酸在畜禽營养生理中的应用进展 ?作者:杨荣 王华朗 宋增廷 田瑜 朱双红 ?单位:1.广东恒兴饲料实业股份有限公司;2.农业农村部华南水产与畜禽饲料重点实验室 [摘要]精氨酸在动物体内参不仅参与多种营养物质的合成分解代谢,同时通过精氨酸酶、一氧化氮两条代谢途径,参与机 体内的免疫调节。由于断奶仔猪与哺乳母猪自身不能合成足量的精氨酸以满足代谢需要,因此需要从外源摄取以满足需求;另 外,家禽体内也缺乏可以合成精氨酸的氨甲酰磷酸酶,其整个生长阶段更是需要补充外源性精氨酸。 [关键词]精氨酸;畜禽;营养生理;应用进展 [中图分类号]S816.7 [文献标识码]A [文章编号]1005-8613(2019)07-0036-04 精氨酸是新生哺乳仔猪的 必需氨基酸(Geng 等,2010)o 家 禽由于体内缺乏合成精氨酸前 体物质的甲酰磷酸酶、二氢毗咯 -5-竣酸合成酶等重要酶,不能 合成精氨酸,因此精氨酸也是家 禽的必需氨基酸。同时,当成年 哺乳动物处于快速生长、饥饿、 创伤与应激等状态时,其自身合 成的精氨酸也会难以满足需要。 因此,精氨酸更是条件性的必需 氨基酸(Wu 等,2004)。精氨酸的 生物学功能主要表现为,参与组 织细胞蛋白、肌酸、肌酹、尿素、 谷氨酰胺、一氧化氮、唬除等的 合成(Efron 等,2000)o 近些年 来,更是发现精氨酸通过NO 途 径参与着机体的营养免疫调节, [基金项目]湛江市非资助科技攻关计划项目(2016B01011);湛江市财政资金科技 专项竞争性分配项目(2017A03011);湛江市非资助科技攻关计划项目 (2017B01144);湛江市非资助科技攻关计划项目(2017B01010);湛江市非资助科 技攻关项目(2018B01006);湛江市非资助科技攻关项目(2018B01102)o [作者简介]杨荣(1985 -),女,湖北荆门人,硕士,从事畜禽营养与饲料研究。[通讯作者]王华朗(1968-),男,陕西柞水人,研究员,博士,从事动物营养与饲料 研究。因此.精氨酸的营养生理研究具 有积极的科研意义。1精氨酸的理化特性与功能精氨酸是含有弧基的碱性 氨基酸,化学名称2-氨基_5- 狐基戍酸,分子量174.2(分子结 构式如图1)。在自然界中,精氨 酸存在L-精氨酸和D-精氨酸 两种异构体,且在动物体内,仅有 L-精氨酸能被动物有效利用。 对于成年哺乳动物而言.精 氨酸是条件性必需氨基酸.对于 幼龄动物、孕期哺乳动物等而 言,更是必需氨基酸。哺乳动物 约40%的日粮精氨酸是在小肠 内被降解的,因此饲料精氨酸并 不能全部进入机体内循环被利 用。在动物的生理代谢活动中, 精氨酸可以促使体内堆积的过 多的氨生成尿素排除体外;其 次,精氨酸也是生成多胺(腐氨、 精氨以及亚精氨.是合成蛋白的 底物原料)和一氧化氮的前体物 质。最后,精氨酸还可以刺激肾 上腺、下丘脑等部位分泌激素。 精氨酸对于动物具有重要的生 理意义。 图1精氨酸的结构式2精氨酸在动物体内的合 成与代谢 2.1精氨酸在动物机体内的 合成 动物精氨酸主要由饲粮摄 入、机体蛋白周转,以及机体内 源合成(如谷氨酸、脯氨酸等的 转化)而来。饲粮是最主要的来 源方式(Wang 等,2009)o 对于成年哺乳动物而言,机 体可以利用谷氨酸、谷氨酰胺和 ? 36 ?

精氨酸

精氨酸 精氨酸Arginine 测试项目和合格值 精氨酸是一种复杂的氨基酸,在蛋白质和酶的反应点可以发现它。在幼儿生长期,精氨酸是一种必需氨基酸。 分子式: C 6 H 14 N 4 O 2 分子量:174.20 天然精氨酸为L-型,从水中结晶的产物含两分子结晶水,在乙醇中结晶的是无水物。 由于胍基的存在,精氨酸呈碱性,易与酸反应形成盐。 性状: 白色斜方晶系(二水物)晶体或白色结晶性粉末。熔点244℃。经水重解结晶后,于己于105 ℃失去结晶水。其水溶液呈强碱性,可从空气中吸收二氧化碳。溶于水(15%,21 ℃),不溶于乙醚,微溶于乙醇。天然品大量存在于鱼精蛋白中,亦为各种蛋白质的基本组成,故存在十分广泛。 用途:

营养增补剂;调味剂。对成人为非必需氨基酸,但体内生成速度较慢,对婴幼儿为必需氨基酸,有一定的解毒作用。与糖加热反应可获得特殊的香味物质。氨基酸输液及氨基酸制剂的重要成分。GB2760-2001规定为允许使用的食品用香料。 精氨酸是鸟氨酸循环中的一个组成成分,具有极其重要的生理功能。多吃精氨酸,可以增加肝脏中精氨酸酶的活性,有助于将血液中的氨转变为尿素而排泄出去。所以,精氨酸对高氨血症、肝脏机能障碍等疾病颇有效果。 精氨酸是一种双基氨基酸,对成人来说虽然不是必需氨基酸,但在有些情况如机体发育不成熟或在严重应激条件下,如果缺乏精氨酸,机体便不能维持正氮平衡与正常的生理功能。病人若缺乏精氨酸会导致血氨过高,甚至昏迷。婴儿若先天性缺乏尿素循环的某些酶,精氨酸对其也是必需的,否则不能维持其正常的生长与发育。 精氨酸的重要功能之一是促进伤口的愈合作用,它可促进胶原组织的合成,故能修复伤口。在伤口分泌液中可观察到精氨酸酶活性的升高,这也表明伤口附近的精氨酸需要量大增。精氨酸能促进伤口周围的微循环而促使伤口早日痊愈。 精氨酸的免疫调节功能,可防止胸腺的退化(尤其是受伤后的退化),补充精氨酸能增加胸腺的重量,促进胸腺中淋巴细胞的生长。 补充精氨酸还能减少患肿瘤动物的体积,降低肿瘤的转移率,提高动物的活存时间与存活率。 在免疫系统中,除淋巴细胞外,吞噬细胞的活力也与精氨酸有关。加入精氨酸后,可活化其酶系统,使之更能杀死肿瘤细胞或细菌等靶细胞。 精氨酸与谷氨酰胺一样,人体处于巨大压力之下时才需要。像健美运动员就经常处于此状态中,故需补充精氨酸。临睡前补充10~20克,可提高体内生长激素的水平。 通用名称:精氨酸

相关主题
文本预览
相关文档 最新文档