当前位置:文档之家› 单片机模拟串口

单片机模拟串口

单片机模拟串口
单片机模拟串口

随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。这种情况下下,采集会需要一个串口,上报又需要另一个串口,这就要求单片机具有双串口的功能,但我们知道一般的51系列只提供一个串口,那么另一个串口只能靠程序模拟。

本文所说的模拟串口,就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于别的晶振频率大家自已去算吧。现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。

方法一:延时法

通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。

#define uchar unsigned char

sbit P1_0 = 0x90;

sbit P1_1 = 0x91;

sbit P1_2 = 0x92;

#define RXD P1_0

#define TXD P1_1

#define WRDYN 44 //写延时

#define RDDYN 43 //读延时

//往串口写一个字节

void WByte(uchar input)

{

uchar i=8;

TXD=(bit)0; //发送启始

Delay2cp(39);

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

Delay2cp(36);

input=input>>1;

}

//发送校验位(无)

TXD=(bit)1; //发送结束

Delay2cp(46);

}

//从串口读一个字节

uchar RByte(void)

{

uchar Output=0;

uchar i=8;

uchar temp=RDDYN;

//发送8位数据位

Delay2cp(RDDYN*1.5); //此处注意,等过起始位

while(i--)

{

Output >>=1;

if(RXD) Output |=0x80; //先收低位

Delay2cp(35); //(96-26)/2,循环共

占用26个指令周期

}

while(--temp) //在指定的

时间内搜寻结束位。

{

Delay2cp(1);

if(RXD)break; //收到结束位便退出

}

return Output;

}

//延时程序*

void Delay2cp(unsigned char i)

{

while(--i); //刚好两个

指令周期。

}

此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道每条语句的指令周期数。此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。

方法二:计数法

51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。这样我们就可以

通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否

发送或接收下一位。

//计数器初始化

void S2INI(void)

{

TMOD |=0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=1; //开始计数

TF0=0;

}

void WByte(uchar input)

{

//发送启始位

uchar i=8;

TR0=1;

TXD=(bit)0;

WaitTF0();

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

WaitTF0();

input=input>>1;

}

//发送校验位(无)

//发送结束位

TXD=(bit)1;

WaitTF0();

TR0=0;

}

//查询计数器溢出标志位

void WaitTF0( void )

{

while(!TF0);

TF0=0;

}

接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和发送都很准确,另外不需要计算每条语句的指令周期数。

方法三:中断法

中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中断进行初始化,同时编写中断程序。本程序使用Timer0中断。

#define TM0_FLAG P1_2 //设传输标志位

//计数器及中断初始化

void S2INI(void)

{

TMOD |=0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=0; //在发送或接收才开始使用

TF0=0;

ET0=1; //允许定时器0中断

EA=1; //中断允许总开关

}

//接收一个字符

uchar RByte()

{

uchar Output=0;

uchar i=8;

TR0=1; //启动Timer0

TL0=TH0;

WaitTF0(); //等过起始位

//发送8位数据位

while(i--)

{

Output >>=1;

if(RXD) Output |=0x80; //先收低位

WaitTF0(); //位间延时

}

while(!TM0_FLAG) if(RXD) break;

TR0=0; //停止

Timer0

return Output;

}

//中断1处理程序

void IntTimer0() interrupt 1

{

TM0_FLAG=1; //设置标志位。

}

//查询传输标志位

void WaitTF0( void )

while(!TM0_FLAG);

TM0_FLAG=0; //清标志位

}

中断法也是我推荐的方法,和计数法大同小异。发送程序参考计数法,相信是件很容易的事。

另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TX D、GND。

附:51 IO口模拟串口通讯C源程序(定时器计数法)

#i nclude

sbit BT_SND =P1^0;

sbit BT_REC =P1^1;

/**********************************************

IO 口模拟232通讯程序

使用两种方式的C程序占用定时器0

**********************************************/

#define MODE_QUICK

#define F_TM F0

#define TIMER0_ENABLE TL0=TH0; TR0=1;

#define TIMER0_DISABLE TR0=0;

sbit ACC0= ACC^0;

sbit ACC1= ACC^1;

sbit ACC2= ACC^2;

sbit ACC3= ACC^3;

sbit ACC4= ACC^4;

sbit ACC5= ACC^5;

sbit ACC6= ACC^6;

sbit ACC7= ACC^7;

void IntTimer0() interrupt 1

{

F_TM=1;

}

//发送一个字符

void PSendChar(unsigned char inch)

{

#ifdef MODE_QUICK

ACC=inch;

F_TM=0;

BT_SND=0; //start bit TIMER0_ENABLE; //启动while(!F_TM);

BT_SND=ACC0; //先送出低位F_TM=0;

while(!F_TM);

BT_SND=ACC1;

F_TM=0;

while(!F_TM);

BT_SND=ACC2;

F_TM=0;

while(!F_TM);

BT_SND=ACC3;

F_TM=0;

while(!F_TM);

BT_SND=ACC4;

F_TM=0;

while(!F_TM);

BT_SND=ACC5;

F_TM=0;

while(!F_TM);

BT_SND=ACC6;

F_TM=0;

while(!F_TM);

BT_SND=ACC7;

F_TM=0;

while(!F_TM);

BT_SND=1;

F_TM=0;

while(!F_TM);

TIMER0_DISABLE; //停止timer #else

unsigned char ii;

ii=0;

F_TM=0;

BT_SND=0; //start bit TIMER0_ENABLE; //启动

while(!F_TM);

while(ii<8)

{

if(inch&1)

{

BT_SND=1;

}

else

{

BT_SND=0;

}

F_TM=0;

while(!F_TM);

ii++;

inch>>=1;

}

BT_SND=1;

F_TM=0;

while(!F_TM);

#endif

TIMER0_DISABLE; //停止timer }

//接收一个字符

unsigned char PGetChar() {

#ifdef MODE_QUICK

TIMER0_ENABLE;

F_TM=0;

while(!F_TM); //等过起始位ACC0=BT_REC;

F_TM=0;

while(!F_TM);

ACC1=BT_REC;

F_TM=0;

while(!F_TM);

ACC2=BT_REC;

F_TM=0;

while(!F_TM);

ACC3=BT_REC;

F_TM=0;

while(!F_TM);

ACC4=BT_REC;

F_TM=0;

while(!F_TM);

ACC5=BT_REC;

F_TM=0;

while(!F_TM);

ACC6=BT_REC;

F_TM=0;

while(!F_TM);

ACC7=BT_REC;

F_TM=0;

while(!F_TM)

{

if(BT_REC)

{

break;

}

}

TIMER0_DISABLE; //停止timer return ACC;

#else

unsigned char rch,ii; TIMER0_ENABLE;

ii=0;

rch=0;

while(!F_TM); //等过起始位

while(ii<8)

{

rch>>=1;

if(BT_REC)

{

rch|=0x80;

}

ii++;

F_TM=0;

while(!F_TM);

}

F_TM=0;

while(!F_TM)

{

if(BT_REC)

{

break;

}

}

TIMER0_DISABLE; //停止timer

return rch;

#endif

}

//检查是不是有起始位

bit StartBitOn()

{

return (BT_REC==0);

}

void main()

{

unsigned char gch;

TMOD=0x22; /*定时器1为工作模式2(8位自动重装),0为模式2(8位自动重装) */

TR0=0; //在发送或接收才开始使用

TF0=0;

TH0=(256-96); //9600bps 就是 1000000/9600=104.167微秒执行的

timer是

//

104.167*11.0592/12= 96

TL0=TH0;

ET0=1;

EA=1;

PSendChar(0x55);

PSendChar(0xaa);

PSendChar(0x00);

PSendChar(0xff);

while(1)

{

if(StartBitOn())

{

gch=PGetChar();

PSendChar(gch);

}

}

}

51单片机模拟串口的三种方法

随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。这种情况下下,采集会需要一个串口,上报又需要另一个串口,这就要求单片机具有双串口的功能,但我们知道一般的51系列只提供一个串口,那么另一个串口只能靠程序模拟。

本文所说的模拟串口,就是利用51的两个输入输出引脚如P1.0和

P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为

1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告

诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?指令周期

s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为

96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于别的晶振频率大家自已去算吧。现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。

方法一:延时法

通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96

个指令周期。

#define uchar unsigned char

sbit P1_0 = 0x90;

sbit P1_1 = 0x91;

sbit P1_2 = 0x92;

#define RXD P1_0

#define TXD P1_1

#define WRDYN 44 //写延时

#define RDDYN 43 //读延时

//往串口写一个字节

void WByte(uchar input)

{

uchar i=8;

TXD=(bit)0; //发送启始位

Delay2cp(39);

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

Delay2cp(36);

input=input>>1;

}

//发送校验位(无)

TXD=(bit)1; //发送结束位

Delay2cp(46);

}

//从串口读一个字节

uchar RByte(void)

{

uchar Output=0;

uchar i=8;

uchar

temp=RDDYN; //发送8位数据位

Delay2cp(RDDYN*1.5); //此处注意,等过起始位

while(i--)

{

Output >>=1;

if(RXD) Output |=0x80; //先收低位

Delay2cp(35); //(96-26)/2,循环共占用26个指令周期

}

while(--temp) //在指定的时间内搜寻结束位。

{

Delay2cp(1);

if(RXD)break; //收到结束位便退出

}

return Output;

}

//延时程序*

void Delay2cp(unsigned char i)

{

while(--i); //刚好两个指令周期。

}

此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道每条语句的指令周期数。此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。

方法二:计数法

51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。这样我们就可以通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否发送或接收下一位。

//计数器初始化

void S2INI(void)

{

TMOD |=0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=1; //开始计数

TF0=0;

}

void WByte(uchar input)

{

//发送启始位

uchar i=8;

TR0=1;

TXD=(bit)0;

WaitTF0();

//发送8位数据位

while(i--)

{

TXD=(bit)(input&0x01); //先传低位

WaitTF0();

input=input>>1;

}

//发送校验位(无)

//发送结束位

TXD=(bit)1;

WaitTF0();

TR0=0;

}

//查询计数器溢出标志位

void WaitTF0( void )

{

while(!TF0);

TF0=0;

}

接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和发送都很准确,另外不需要计算每条语句的指令周期数。

方法三:中断法

中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中断进行初始化,同时编写中断程序。本程序使用Timer0中断。

#define TM0_FLAG P1_2 //设传输标志位

//计数器及中断初始化

void S2INI(void)

TMOD |=0x02; //计数器0,方式2

TH0=0xA0; //预值为256-96=140,十六进制A0

TL0=TH0;

TR0=0; //在发送或接收才开始使用

TF0=0;

ET0=1; //允许定时器0中断

EA=1; //中断允许总开关

}

//接收一个字符

uchar RByte()

{

uchar Output=0;

uchar i=8;

TR0=1; //启动Timer0

TL0=TH0;

WaitTF0(); //等过起始位

//发送8位数据位

while(i--)

{

Output >>=1;

if(RXD) Output |=0x80; //先收低位

WaitTF0(); //位间延时

}

while(!TM0_FLAG) if(RXD) break;

TR0=0; //停止Timer0

return Output;

}

//中断1处理程序

void IntTimer0() interrupt 1

{

TM0_FLAG=1; //设置标志位。

}

//查询传输标志位

void WaitTF0( void )

{

while(!TM0_FLAG);

TM0_FLAG=0; //清标志位

}

中断法也是我推荐的方法,和计数法大同小异。发送程序参考计数法,相信是件很容易的事。另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TXD、GND。

51 IO口模拟串口通讯C源程

#include

sbit BT_SND =P1^0;

sbit BT_REC =P1^1;

/********************************************** IO 口模拟232通讯程序

使用两种方式的C程序占用定时器0

**********************************************/ #define MODE_QUICK

#define F_TM F0

#define TIMER0_ENABLE TL0=TH0; TR0=1;

#define TIMER0_DISABLE TR0=0;

sbit ACC0= ACC^0;

sbit ACC1= ACC^1;

sbit ACC2= ACC^2;

sbit ACC3= ACC^3;

sbit ACC4= ACC^4;

sbit ACC5= ACC^5;

sbit ACC6= ACC^6;

sbit ACC7= ACC^7;

void IntTimer0() interrupt 1

{

F_TM=1;

}

//发送一个字符

void PSendChar(unsigned char inch)

{

#ifdef MODE_QUICK

ACC=inch;

F_TM=0;

BT_SND=0; //start bit

TIMER0_ENABLE; //启动

while(!F_TM);

BT_SND=ACC0; //先送出低位

F_TM=0;

while(!F_TM);

BT_SND=ACC1;

F_TM=0;

while(!F_TM);

BT_SND=ACC2;

F_TM=0;

while(!F_TM);

BT_SND=ACC3;

F_TM=0;

while(!F_TM);

BT_SND=ACC4;

F_TM=0;

while(!F_TM);

BT_SND=ACC5;

F_TM=0;

while(!F_TM);

BT_SND=ACC6;

F_TM=0;

while(!F_TM);

BT_SND=ACC7;

F_TM=0;

while(!F_TM);

BT_SND=1;

F_TM=0;

while(!F_TM);

TIMER0_DISABLE; //停止timer #else

unsigned char ii;

ii=0;

F_TM=0;

BT_SND=0; //start bit

TIMER0_ENABLE; //启动

while(!F_TM);

while(ii<8)

{

if(inch&1)

{

BT_SND=1;

}

else

{

BT_SND=0;

}

F_TM=0;

while(!F_TM);

ii++;

inch>>=1;

}

BT_SND=1;

F_TM=0;

while(!F_TM);

#endif

TIMER0_DISABLE; //停止timer }

//接收一个字符

unsigned char PGetChar() {

#ifdef MODE_QUICK

TIMER0_ENABLE;

F_TM=0;

while(!F_TM); //等过起始位ACC0=BT_REC;

TL0=TH0;

F_TM=0;

while(!F_TM);

ACC1=BT_REC;

F_TM=0;

while(!F_TM);

ACC2=BT_REC;

F_TM=0;

while(!F_TM);

ACC3=BT_REC;

F_TM=0;

while(!F_TM);

ACC4=BT_REC;

F_TM=0;

while(!F_TM);

ACC5=BT_REC;

F_TM=0;

while(!F_TM);

ACC6=BT_REC;

F_TM=0;

while(!F_TM);

ACC7=BT_REC;

F_TM=0;

while(!F_TM)

{

if(BT_REC)

{

break;

}

}

TIMER0_DISABLE; //停止timer return ACC;

#else

unsigned char rch,ii; TIMER0_ENABLE;

F_TM=0;

ii=0;

rch=0;

while(!F_TM); //等过起始位

while(ii<8)

{

rch>>=1;

if(BT_REC)

{

rch|=0x80;

}

ii++;

F_TM=0;

while(!F_TM);

}

F_TM=0;

while(!F_TM)

{

if(BT_REC)

{

break;

}

}

TIMER0_DISABLE; //停止timer

return rch;

#endif

}

//检查是不是有起始位

bit StartBitOn()

{

return (BT_REC==0);

}

void main()

{

unsigned char gch;

TMOD=0x22; /*定时器1为工作模式2(8位自动重装),0为模式2(8位自动重装) */

PCON=00;

TR0=0; //在发送或接收才开始使用

TF0=0;

TH0=(256-96); //9600bps 就是 1000000/9600=104.167微秒执行的timer是

//

104.167*11.0592/12= 96

TL0=TH0;

ET0=1;

EA=1;

PSendChar(0x55); PSendChar(0xaa); PSendChar(0x00); PSendChar(0xff);

while(1)

{

if(StartBitOn()) {

gch=PGetChar(); PSendChar(gch); }

}

}

KEIL中如何用虚拟串口调试串口程序

KEIL中如何用虚拟串口调试串口程序 发表于2008/5/7 15:30:22 以前没接触过串口,一直都以为串口很复杂。最近在做一个新项目,用单片机控制GSM模块。单片机和GSM模块接口就是串口。调试完后觉得串口其实很简单。“不过如此”。这可能是工程师做完一个项目后的共同心态吧。下面详细介绍下如何用虚拟串口调试串口发送接收程序。 需要用到三个软件:KEIL,VSPD XP5(virtual serial ports driver xp5.1虚拟串口软件),串口调试助手。 1、首先在KEIL里编译写好的程序。 2、打开VSPD,界面如下图所示: 左边栏最上面的是电脑自带的物理串口。点右边的add pair,可以添加成对的串口。一对串口已经虚拟互联了,如果添加的是COM3、COM4,用COM3发送数据,COM4就可以接收数据,反过来也可以。 3、接下来的一步很关键。把KEIL和虚拟出来的串口绑定。现在把COM3和KEIL 绑定。在KEIL中进入DEBUG模式。在最下面的COMMAND命令行,输入MODE COM3 4800,0,8,1(设置串口3的波特率、奇偶校验位、数据位、停止位,打开COM3串口,注意设置的波特率和程序里设置的波特率应该一样)ASSIGN COM3 SOUT(把单片机的串口和COM3绑定到一起。因为我用的单片机是AT892051,只有一个串口,所以用SIN,SOUT,如果单片机有几个串口,可以选择S0IN,S0OUT,S1IN,S1OUT。)

4、打开串口调试助手 可以看到虚拟出来的串口COM3、COM4,选择COM4,设置为波特率4800,无校验位、8位数据位,1位停止位(和COM3、程序里的设置一样)。打开COM4。 现在就可以开始调试串口发送接收程序了。可以通过KEIL发送数据,在串口调试助手中就可以显示出来。也可以通过串口调试助手发送数据,在KEIL中接收。这种方法的好处是不用硬件就可以调试。这是网上一篇文章介绍的方法,联系我实际的使用做了整理。有用的着的人就不用继续摸索了

51单片机串口通信及波特率设置

51单片机串口通信及波特率设置 MCS-51单片机具有一个全双工的串行通信接口,能同时进行发送和接收。它可以作为UART(通用异步接收和发送器)使用,也可以作为同步的移位寄存器使用。 1. 数据缓冲寄存器SBUF SBUF是可以直接寻址的专用寄存器。物理上,它对应着两个寄存器,即一个发送寄存器一个接收寄存器,CPU写SBUF就是修改发送寄存器;读SBUF就是读接收寄存器。接收器是双缓冲的,以避免在接收下一帧数据之前,CPU未能及时的响应接收器的中断,没有把上一帧的数据读走而产生两帧数据重叠的问题。对于发送器,为了保持最大的传输速率,一般不需要双缓冲,因为发送时CPU是主动的,不会产生重叠问题。 2. 状态控制寄存器SCON SCON是一个逐位定义的8位寄存器,用于控制串行通信的方式选择、接收和发送,指示串口的状态,SCON即可以字节寻址也可以位寻址,字节地址98H,地址位为98H~9FH。它的各个位定义如下: MSB LSB SM0 SM1 SM2 REN TB8 RB8 TI RI SM0和SM1是串口的工作方式选择位,2个选择位对应4种工作方式,如下表,其中Fosc是振荡器的频率。 SM0 SM1 工作方式功能波特率 0 0 0 8位同步移位寄存器Fosc/12 0 1 1 10位UART 可变 1 0 2 11位UART Fosc/64或Fosc/32 1 1 3 11位UART 可变 SM2在工作方式2和3中是多机通信的使能位。在工作方式0中,SM2必须为0。在工作方式1中,若SM2=1且没有接收到有效的停止位,则接收中断标志位RI不会被激活。在工作方式2和3中若SM2=1且接收到的第9位数据(RB8)为0,则接收中断标志RB8不会被激活,若接收到的第9位数据(RB8)为1,则RI置位。此功能可用于多处理机通信。 REN为允许串行接收位,由软件置位或清除。置位时允许串行接收,清除时禁止串行接收。 TB8是工作方式2和3要发送的第9位数据。在许多通信协议中该位是奇偶位,可以按需要由软件置位或清除。在多处理机通信中,该位用于表示是地址帧还是数据帧。 RB8是工作方式2和3中接收到的第9位数据(例如是奇偶位或者地址/数据标识位),在工作方式1中若SM2=0,则RB8是已接收的停止位。在工作方式0中RB8不使用。 TI 为发送中断标志位,由硬件置位,软件清除。工作方式0中在发送第8位末尾由硬件置位;在其他工作方式时,在发送停止位开始时由硬件置位。TI=1时,申请中断。CPU 响应中断后,发送下一帧数据。在任何工作方式中都必须由软件清除TI。 RI为接收中断标志位,由硬件置位,软件清除。工作方式0中在接收第8位末尾由硬件置位;在其他工作方式时,在接收停止位的中间由硬件置位。RI=1时,申请中断,要求CPU取走数据。但在工作方式1中,SM2=1且未接收到有效的停止位时,不会对RI置位。在任何工作方式中都必须由软件清除RI。 系统复位时,SCON的所有位都被清除。 控制寄存器PCON也是一个逐位定义的8位寄存器,目前仅仅有几位有定义,如下所示:MSB LSB

单片机模拟串口

随着单片机的使用日益频繁,用其作前置机进行采集和通信也常见于各种应用,一般是利用前置机采集各种终端数据后进行处理、存储,再主动或被动上报给管理站。这种情况下下,采集会需要一个串口,上报又需要另一个串口,这就要求单片机具有双串口的功能,但我们知道一般的51系列只提供一个串口,那么另一个串口只能靠程序模拟。 本文所说的模拟串口,就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于别的晶振频率大家自已去算吧。现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。 方法一:延时法 通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。 #define uchar unsigned char sbit P1_0 = 0x90; sbit P1_1 = 0x91; sbit P1_2 = 0x92; #define RXD P1_0 #define TXD P1_1 #define WRDYN 44 //写延时 #define RDDYN 43 //读延时 //往串口写一个字节 void WByte(uchar input) { uchar i=8; TXD=(bit)0; //发送启始 位 Delay2cp(39); //发送8位数据位 while(i--) { TXD=(bit)(input&0x01); //先传低位 Delay2cp(36); input=input>>1; } //发送校验位(无)

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; } Love is not a maybe thing. You know when you love someone.

用单片机普通I_O口模拟串口的一种方法

电子报/2005年/12月/18日/第011版 单片机应用 用单片机普通I/O口模拟串口的一种方法 南昌李春玲 MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD (P3.0)和TXD(P3.1)与外设进行全双工的串行异步通信。串行端口有四种基本工作方式:方式0主要用于外接移位寄存器,以扩展单片机的I/O接口;方式1多用于双机之间或与外设的通信;方式2、方式3除有方式1的功能外,还可用作主从式多机通信,构成分布式多机系统。 在应用系统中,若需要多个串口,且各串口工作方式要求不同,如:通信波特率不一样,通常的方法是扩展一片可编程串行接口芯片,如8251或8250,但这样增加了硬件开销,且需要占用较多的I/O资源。本文介绍一种用单片机普通I/O口模拟串口的方法。 以A、B两个单片机之间的串行通信为例,电路如图1所示。使用了P1口中的3条普通I/O口,其中P1.0为串行发送端(模拟TXD),P1.1为串行接收端(模拟RXD),P1.2作为对方单片机的中断申请信号INTO的输入线(模拟内部串行口中断源RI/TI)。 串行通信信息帧的发送与接收由软件编程实现。工作过程如下(以A机发送、B机接收为例): 1.A机从P1.2口输出中断申请信号。 2.A机通过P1.0口发送一帧模拟信息。串行通信采用异步传送格式:包括1位起始位(低电平)、7或8位数据编码、1位奇偶校验位(可不要)、1位停止位(高电平)。串行通信中,如果数据传送的波特率为1200bps,则每位信息维持时间为0.833ms。 程序段TTXD完成上述发送功能。信息帧为10位(1位起始位、8位数据编码、无奇偶校验位、1位停止位)。 3.B机接收到INTO的中断申请信号后,自动进入中断服务程序,同步进行模拟异步接收。当P1.1口从高变低时,说明一帧开始,然后依次接收8位数据编码,采样数据在每一位的中间进行,故接收与发送要错开半位,最后检测到高电平后,跳出中断。一次中断完成一帧信息的接收,获得一个字节的数据。 INTO的中断服务程序段RRXD完成上述接收功能。 程序清单如下: TTXD:MOV A,#DATA;发送字节送A CLR P1.2;送中断申请信号 SETB P1.0 LCALL DELAY417

MCS-51单片机串行接口

第七章MCS-51单片机串行接口 第一节串行通信的基本概念 (一)学习要求 1.掌握串行通信的基本概念。 2. 掌握异步通信和同步通信的区别。 (二)内容提要 一:基本概念及分类 串行通信是将数据的各位一位一位地依次传送。适合于计算机之间、计算机与外部设备之间的远距离通信。 串行通信从传输方式分为: 单工方式、半双工方式、全双工方式。 从接收方式来说,串行通信有两种方式: 异步通信方式、同步通信方式。 二:串行口的功能 MCS-51单片机中的异步通信串行接口能方便地与其他计算机或传送信息的外围设备(如串行打印机、CPU终端等)实现双机、多机通信。 串行口有4种工作方式,见表7-1。方式0并不用于通信,而是通过外接移位寄存器芯片实现扩展并行I/O接口的功能。该方式又称为移位寄存器方式。方式1、方式2、方式3都是异步通信方式。方式1是8位异步通信接口。一帧信息由10位组成,其格式见图7-2a。方式1用于双机串行通信。方式2、方式3都是9位异步通信接口、一帧信息中包括9位数据,1位起始位,1位停止位,其格式见图7-2b。方式2、方式3的区别在于波特率不同,方式2、方式3主要用于多机通信,也可用于双机通信。 表7-1 (三)习题与思考题 1、什么是并行通信?什么是串行通信?各有何优缺点? 答:并行通信指数据的各位同时传输的通信方式,串行通信是指各位数据逐位顺序传输的通信方式。 2、什么是异步通信?什么是同步通信?各有何优缺点? 3、什么是波特率?某异步串行通信接口每分钟传送1800个字符,每个字符由11位组成,请计算出传送波特率。 第二节MCS-51串行接口的组成 (一)学习要求

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.doczj.com/doc/0a10293260.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

串行口的模拟仿真

10.4.6 串行口的模拟仿真 利用模拟仿真,可以模拟单片机同机发送和接收程序。 例10-7串口采用查询方式,把从片内RAM的30H单元开始的8个数据串行发送到片内RAM的40H开始的单元。 程序清单: ORG 0000H MOV SCON,#90H ;串口工作方式2,允许接收 MOV PCON,#00H ;SMOD=0 M0V R0,#30H ;源字符串首地址 MOV R1,#40H ;接收字符串首地址 MOV R2,#08H ;字符串长度 LOOP:MOV A,@R0 ;取数据 MOV SBUF,A ;发送 JNB TI,$ ;等待发送完一帧字符 CLR TI ;清发送标志位 INC R0 ;修改地址 JNB RI,$ ;等待接收完一帧字符 CLR RI ;清接收标志位 MOV A.SBUF ;接收字符 M0V @R1,A ;存数据 INC R1 DJNZ R2,LOOP ;传送8个数据 END 模拟仿真步骤如下: ①启动Medwin仿真软件,在编辑窗口中输入例10-7中的程序,单击“产生代码并装入”快捷键,编译/连接程序,打开菜单“外围部件→串行口”,把串口状态窗口调入屏幕,如图10-23 所示。

图10-23 串口模式 ②打开菜单“查看→数据区Data”,调入数据区窗口,单击列数,选择存储器排列为8列,从30H单元开始,输入8个数据。 ③打开菜单“窗口→纵向平铺窗口”,使寄存器窗口、数据窗口、程序窗口纵向平铺。 ④按F8键单步运行程序,则程序运行在JNB TI,$处,等待一帧字符发送结束。可人工设定发送结束标志,即在图10-23的中断标志复选框TI前画“√”,再按F8键,程序继续运行。 ⑤程序运行在JNB RI,$处,等待接收一帧字符结束。可人工设定接收结束标志,即在图10-23的中断标志复选框RI前画“√”,再按F8键,程序继续运行,则一帧字符装入40H开始单元。 ⑥重复上述步骤,直至全部数据传送完。

单片机IO口模拟串口程序(发送+接收)

前一阵一直在做单片机的程序, 由于串口不够,需要用10 口来模拟出一个串口。 经过若干曲 折并参考了一些现有的资料,基本上完成了。现在将完整的测试程序,以及其中一些需要总 结的部分 贴出来。 程序硬件平台:11.0592M 晶振,STC 单片机(兼容51) /*************************************************************** * 在单片机上模拟了一个串口,使用 P2.1作为发送端 * 把单片机中存放的数据通过 P2.1作为串口 TXD 发送出去 ***************************************************************/ #in elude #i nclude #in clude typedef unsigned char uchar; int i; uchar code in fo[]= { 0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x5 5 }; // SCON: serail mode 1,8-bit UART // T0工作在方式1,十六位定时 // SMOD=1; 0xFE; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率为 2400bps fosc=11.0592MHz TL0 = 0x7F; II 2400bps fosc=11.0592MHz II TH0 = 0xFD; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率 为 2400bps fosc=18.432MHz II TL0 = 0x7F; II 定时器0初始值,延时417us ,目的是令模拟串口的波特率为 2400bps fosc=18.432MHz } void WaitTF0( void ) { sbit n ewTXD = P2A 1; 〃模拟串口的发送端设为 P2.1 void Uartlnit() { SCON = 0x50; TMOD |= 0x21; PCON |= 0x80; TH0 定时器0初始值,延时417us ,目的是令模拟串口的波特率为

基于51单片机的双机串行通信

机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级: xxxxxx 学号: 13xxxxxxxxx : xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计 1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下:

IO模拟串口通信

单片机IO口模拟串口实现数据通信 1设计任务与要求 本设计为单片机IO口模拟串口实现数据通信,它可以用单片机的IO口实现单片机RX和TX的功能。具体要求如下: ●用单片机的P3.4和P3.5分别模拟RX和TX的串行通信功能,能够接收 和发送数据。 ●通过PC机的键盘输入字符,并传送给单片机,由单片机接收后,发达给 PC机,由PC机加以显示。 ●单片机接收由键盘输入的数据后,如果是数字,则由数码管显示,并由 LED灯表示其ASCII码,如果是其他字符,则由仅由LED灯显示其ASCII 码。 2总体方案设计 2.1串行通信的方式设计 本设计要求用单片机的IO口来模拟串口的串行通信,因此有必要先简要介绍一下单片机的IO和通信的基本原理与串行口P3.0和P3.1。 2.1.1并行I/O口 MCS-51单片机共有4个双向的8位并行I/O端口(Port),分别记作P0-P3,共有32根口线,各口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。实际上P0-P3已被归入特殊功能寄存器之列。这四个口除了按字节寻址以外,还可以按位寻址。由于它们在结构上有一些差异,故各口的性质和功能有一些差异。 P0口是双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。P1口是8位准双向I/O口,可驱动4个LS 型负载。P2口是8位准双向I/O口,与地址总线(高8位)复用,可驱动4个LS型TTL负载。P3口是8位准双向I/O口,是双功能复用口,可驱动4个LS 型TTL负载。P1口、P2口、P3口各I/O口线片内均有固定的上拉电阻,当这3个准双向I/O口做输入口使用时,要向该口先写“1”,另外准双向I/O口无高阻的“浮空”状态,故称为双向三态I/O 口。

STC单片机虚拟串口发送程序(超简单)

STC单片机(STC12C5A32S)虚拟串口发送程序 //虚拟串口发送子函数 void Uart(uint8 a) { ACC=a; //TXD3是已经定义的任意的发送端口 TR1=1; TXD3=0; //发送起始位 while(TF1==0); TF1=0; //TF1必须清零,因为只有启用T1中断才会自动清零 TXD3=ACC0; //发送8个位也可以用移位来发送,ACC0-ACC7也必须先定义 while(TF1==0); //表示ACC的8个位,如果用移位发送,就不用这样定义。 TF1=0; TXD3=ACC1; while(TF1==0); TF1=0; TXD3=ACC2; while(TF1==0); TF1=0; TXD3=ACC3; while(TF1==0); TF1=0; TXD3=ACC4; while(TF1==0); TF1=0; TXD3=ACC5; while(TF1==0); TF1=0; TXD3=ACC6; while(TF1==0); TF1=0; TXD3=ACC7; while(TF1==0); TF1=0; TXD3=1; //发送停止位 while(TF1==0); TF1=0; TR1=0; } 该子函数使用T1定时器,T0也可以。采用8位自动重装,重装值为A0 Main() { TMOD = 0x21; //T0:模式1,16位定时器。T1:模式2,8位定时器,自动重装AUXR &= 0x3f; //定时器0和定时器1与普通8051定时器一样(不同的单片机设置可能

不同) TL1 = 0xa0; //虚拟串口波特率:9600 TH1 = 0xa0; ET0 = 1; ET1 = 0; //T1中断一定不要使用,要不接收会错误 TR0 = 1; TR1 = 0; Uart(0xaa); //0xaa是发送的数据,如果接收有误,在发送一个字节后可加点延时//延时 While(1); //具体程序此处省略 } 注:因本人实验的硬件不需要模拟串口来接收数据,故没给出虚拟串口接收程序。 以上程序已验证成功。

51单片机串口通信的原理与应用流程解析

51单片机串口通信的原理与应用流程解析 一、原理简介 51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。 与之前一样,首先我们来了解单片机串口相关的寄存器。 SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。 串行口控制寄存器SCON(见表1)。 表1 SCON寄存器 表中各位(从左至右为从高位到低位)含义如下。 SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。 表2 串行口工作方式控制位 其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。 SM2 :多机通信控制位。该仅用于方式2 和方式3 的多机通信。其中发送机SM2 = 1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。工作于方式0 时,SM2 必须为0。

51单片机IO口模拟串口通讯C源程序

51单片机IO口模拟串口通讯C源程序 #include sbit BT_SND =P1^0; sbit BT_REC =P1^1; /********************************************** IO 口模拟232通讯程序 使用两种方式的C程序占用定时器0 **********************************************/ #define MODE_QUICK #define F_TM F0 #define TIMER0_ENABLE TL0=TH0; TR0=1; #define TIMER0_DISABLE TR0=0; sbit ACC0= ACC^0; sbit ACC1= ACC^1; sbit ACC2= ACC^2; sbit ACC3= ACC^3; sbit ACC4= ACC^4; sbit ACC5= ACC^5; sbit ACC6= ACC^6; sbit ACC7= ACC^7; void IntTimer0() interrupt 1 { F_TM=1; } //发送一个字符 void PSendChar(unsigned char inch) { #ifdef MODE_QUICK ACC=inch; F_TM=0; BT_SND=0; //start bit TIMER0_ENABLE; //启动 while(!F_TM); BT_SND=ACC0; //先送出低位

F_TM=0; while(!F_TM); BT_SND=ACC1; F_TM=0; while(!F_TM); BT_SND=ACC2; F_TM=0; while(!F_TM); BT_SND=ACC3; F_TM=0; while(!F_TM); BT_SND=ACC4; F_TM=0; while(!F_TM); BT_SND=ACC5; F_TM=0; while(!F_TM); BT_SND=ACC6; F_TM=0; while(!F_TM); BT_SND=ACC7; F_TM=0; while(!F_TM); BT_SND=1; F_TM=0; while(!F_TM); TIMER0_DISABLE; //停止timer #else unsigned char ii; ii=0; F_TM=0; BT_SND=0; //start bit

51单片机模拟spi串行接口程序

51单片机模拟spi串行接口程序 51单片机模拟spi串行接口程序,在keilc51下编写 sbit CS=P3^5; sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; }sbit CLK= P1^5; sbit DataI=P1^7;

sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开 unsigned char SPI_TransferByte(unsigned char val) { unsigned char BitCounter; for(BitCounter=8; BiCounter!=0; BitCounter--) { CLK=0; DataI=0; // write if(val&0x80) DataI=1; val<<=1; CLK=1; if(DataO)val|=1; // read } CLK=0; return val; } sbit CLK= P1^5; sbit DataI=P1^7; sbit DataO=P1^6; #define SD_Disable() CS=1 //片选关 #define SD_Enable() CS=0 //片选开

51单片机串口通信

一、串口通信原理 串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。串口通信的工作原理请同学们参看教科书。 以下对串口通信中一些需要同学们注意的地方作一点说明: 1、波特率选择 波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。MSC-51串行端口在四种工作模式下有不同的波特率计算方法。其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。 在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1)) 其中,SMOD——寄存器PCON的第7位,称为波特率倍增位; TH1——定时器的重载值。 在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。这要根据系统的运作特点,确定通信的频率范围。然后考虑通信时钟误差。使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。 下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。则TH1=256-62500/波特率 根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。列计数器重载值,通信误差如下表: 因此,在通信中,最好选用波特率为1200,2400,4800中的一个。 2、通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。当单片机接收到0xA1时,读取P0端口数据,并将读取数据返回PC机;当单片机接收到0xA2时,单片机等待从PC机接收一段控制数据;当PC机接收到0xA3时,就表明单片机操作已经成功。 3、硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如计算机的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和计算机的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

51单片机汇编模拟串口通信程序

51单片机汇编模拟串口通信程序 T2作为波特率控制UART_RXD 是硬中断0或1口,如果能进入中断,说明该线有一个起始位产生,进入中断后调 用下面的接收程序。退出硬中断之前还需要将硬中断标志重新复位。 UART_TXD是任何其它IO即可。 UART_SEND: PUSH IE PUSH DPH PUSH DPL PUSH PSW PUSH 00H PUSH ACC CLR EA SETB UART_TXD ;START BIT MOV R0,A CLR TR2 ;TR2置1,计数器2启动,时间计数启动。 MOV A,RCAP2L;计数器2重新装载值 MOV TL2,A ;置计数器2初值;T2需要重新装载 MOV A,DPH MOV A,RCAP2H MOV TH2,A MOV A,R0 SETB TR2 ;TR2置1,计数器 JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 CLR UART_TXD ;START BIT JNB TF2,$

CLR TF2 JNB TF2,$ CLR TF2 MOV R0,#08H UART_SEND_LOOP: RRC A MOV UART_TXD,C ;8 BIT JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 DJNZ R0,UART_SEND_LOOP SETB UART_TXD ;END BIT JNB TF2,$ CLR TF2 JNB TF2,$ CLR TF2 POP ACC POP 00H POP PSW POP DPL POP DPH POP IE RET ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; UART_REC: PUSH IE PUSH DPH PUSH DPL CLR EA

用定时器 T0 或 T1 模拟串行口程序

/************************************************************************* 用定时器T0 或T1 模拟串行口程序。 最高波特率(12 clock): 本程序收、发波特率相同。 11.059MHz -- 最高波特率收: 9600, 最低波特率:300 30.000MHz -- 最高波特率收: 28800 最低波特率:300 40.000MHz -- 最高波特率收: 38400 最低波特率:300 ... 使用说明: 1. 本程序使用一个定时器和任意2 个I/O 口模拟一个串行口。 2. 1位起始位,8位数据位,1位停止位。发数据位时先发低位。 3. 支持半双工通讯。收、发波特率相同。 4. 应把定时器中断优先级设置为最高级。 5. 本程序每接收一个字节后就把它放到一个队列缓冲区中(也可使用环行缓冲区), 待缓冲区满后,将缓冲区中的内容原样发回。这是为了测试多字节连续收发的 能力和简化程序。实际应用中应防止缓冲区溢出。 6. 由接收转换到发送时要先调用soft_send_enable (); 由发送转换到接收时要先调用 soft_receive_enable ()。 7. 发送最后一个字节后如果要立刻转为接收,必须等待最后一个字节后发送完毕 w hile ( rs_f_TI == 0) ; // 等待最后一个字节发送完毕 ************************************************************************** 编程说明: ---------------- 发送: 由接收转换到发送时要先调用soft_send_enable (), 它为发送做初始化的工作。 以后就可以调用rs_send_byte () 启动发送一个字节的过程。 发送口平时为高电平,rs_send_byte ()函数使发送口变为低电平开始发送起始位; 同时设置和启动定时器,为发送数据位在预定的时刻产生定时器中断。发送数据位和停止位都在定时器的中断服务程序中进行。 中断服务程序中处理4 种情况:发送数据位、发送停止位、发送完毕、处理错误。---------------- 接收: 由发送转换到接收时要先调用soft_receive_enable (), 它为接收做初始化的工 作。定时器以3 到4 倍波特率的频率产生中断(参见rs_TE ST0 的定义)检测P C 机发送的起始位。一旦检测到起始位,立刻把定时器产生中断的频率调整到与波特率相同,准备在下一个定时器中断中接收第1 个数据位。 中断服务程序中处理以下情况: 1. 收到的是P C 机发送的起始位: 调整定时器产生中断的频率与波特率相同。 2. 收到第8 位数据位: 存储接收到的字节。 3. 收到第1--7 位数据位: 存储到收、发移位暂存器。 4. 收到停止位: 调用soft_recei v e_enable(),检测PC 机发出的下一个起始位。 5. 处理出错的情况。 **************************************************************************/

利用VIRTUAL TERMINAL模拟单片机串口收发实验

利用VIRTUAL TERMINAL模拟单片机串口收发实验 程序 #include //包含头文件 //毫秒级延时函数 void delay(unsigned int x) { unsigned char i; while(x--) { for(i=0;i<120;i++); } } //字符发送函数 void putchar(unsigned char data1) { SBUF=data1; //将待发送的字符送入发送缓冲器 while(TI==0); //等待发送完成 TI=0; //发送中断标志请0 } //字符串发送函数 void putstring(unsigned char *dat) { while(*dat!='\0') //判断字符串是否发送完毕 { putchar(*dat); //发送单个字符 dat++; //字符地址加1,指向先下一个字符 delay(5); } } //主函数 void main(void) { unsigned char c=0; SCON=0x50; //串口方式1 ,允许接收 TMOD=0x20; //T1工作于方式2 PCON=0x00; //波特率不倍增 TL1=0xfd; //波特率设置 TH1=0xfd; //

EA=1; //开总中断 ES=1; //开串口接收中断 //TI = 0; TR1=1; //定时器开启 delay(200); putstring("abc\r\n"); //串口向终端发送字符串,结尾处回车换行putstring("----------------------\r\n"); delay(50); while(1) { } } // void revdata(void) interrupt 4 { unsigned char temp; if(RI==0) return; //如果没有接收中断标志,返回 ES=0; //关闭串口中断 RI=0; //清串行中断标志位 temp=SBUF; //接收缓冲器中的字符 putchar(temp); //将接收的字符发送出去 ES=1; //开启串口中断 }

相关主题
文本预览
相关文档 最新文档