当前位置:文档之家› 化学动力学与化学热力学在有机化学中的应用

化学动力学与化学热力学在有机化学中的应用

化学动力学与化学热力学在有机化学中的应用
化学动力学与化学热力学在有机化学中的应用

化学热力学与动力学在有机化学中的应用

一.化学热力学:

一个反应能否自发发生及反应平衡时反应物和产物之间的相对比例是一个化学热力学问题。可以解决,一个反应的能否自发进行及反应的限度问题,是用自由能ΔG 来判断的,ΔG<0反应可以自发进行,直到平衡即ΔG=0,相反如果大于0时,反应是不能自发进行的,由平衡常数与ΔG 的关系可以知道,此时K 很小所以往往是可逆的。S T H G ?-?=?,Δ

H 反应的是反应的热效应,在反应中焓的变化反映了反应物键的断裂与生成物键的生成能量

之差(其中包括张力能,离域能等),即断裂键的键能之和减去生成键的键能之和(键能为正值)。当ΔS 可以忽略不计的时候,ΔG ≈ΔH ,当反应是放热的时候,即ΔH<0,则ΔG<0,即反应可以自发进行。ΔS 的判断:1.分子在体系中的自由度越大,她的熵值也就越大。即气>液>固。在一个反应中如果反应物都是液相的,而产物至少有一个是气相的,那么在热力

学上由于熵增大所以是有利的。2.产物的分子数目等于反应物的分子数目的反应,熵变通常是不大的,但是如果生成物的分子数增加,通常会有较大的熵值增加。所以分解,分裂的反应在热力学上是有利的。但是注意,有些时候分解反应的热焓变比较大抵消了ΔS 的增大,最终ΔG 仍>0,反应仍不自发。3.链状分子比对应的环状分子有更大的熵值,因而分子的打开是有利的,闭环意味着熵值的减少。如果弱键断裂,强健生成,则反映放热,ΔH<0,在放热反应中,焓变对G 有一个负的的贡献,所以反应易于由弱键生成强键,反之,由强键生成

弱键,会消耗能量,H>0对G 有正的贡献,不易发生。综上焓减少是反应的推动力,熵增加是反应的推动力。

化学动力学:

对反应速度的处理研究涉及到化学动力学问题。有机化学中主要应用过渡态理论。过渡态是反应途径中能量最高点时所存在的结构。它和反应物、产物或中间体不同,并不是一个化学实体,无法分离和实验观察,仅是一个有一定几何形状的和电荷分布的高度不稳定状态。 微观可逆原理::(1)一个基元反应的逆反应也必然是基元反应,即任何基元反应都是可逆的;(2)正反应与逆反应经过相同的过渡态即正逆反应途径一样,机理一样。

当我们研究一个有机反应时,最希望了解的是这一反应将向产物方向进行到什么样程度?一般来说,任何体系都有转变成它们最稳定状态的趋势(即自发的趋势都是体系自由能减小的方向,ΔG<0),因此,可以预料当产物的稳定性愈大于反应物的稳定性时,则平衡愈移向产物一侧。这句话的意思可由下式看出来。△G=-RTlnK ,当两个物质的稳定性差很大的时候,即自由能差很大,如果生成物的自由能比反应物的小,即ΔG 很负,所以K 很大,平衡常数大,说明向稳定的方向进行的趋势很大,即平衡移向产物一侧,反应进行的很完全。 要使反应发生,产物的自由能必须低于反应物的自由能,即△G 必须是负值。说白了对于一个自发反应,反应物与产物之间自由能差别越大,或者说稳定性差别越大,反应进行的趋势完全程度也越大。

过渡态理论:1.起反应的物质结合时需要通过比原始和终了的状态较高的势能,具有较高势能的状态较过渡态。即假设一个反应先达到一个过渡态,然后从过渡态以极快的速度变成产物。2.反应有几种产物时,每一种产物都从不通过过渡态过来的,主要产物是过渡态能量最低的转化而来的。3反应物与过渡态之间存在一个平衡,反应的速度(生成过渡态的速度)依赖于平衡常数,而K 又与活化自由能有关。过渡态的自由能的高低成为衡量反应速率的重要标志。

在一步反应的图中能量最高点是活化络合物,在它的左边,所有络合物都被认为同反应物处于平衡中;而在它右边,所有络合物则被认为是同产物处于平衡中。

A+B 反应物 D 产物△G

双步 反 应G ΔG 1≠ΔG 2≠ C 中间体

A+B 反应物 C 产物过渡态△G 单 步 反 应G ΔG 1≠a b

在两步反应中即有中间体生成的反应,反应物和产物之间包括具有一定寿命的中间体I,因此,它包含有两个过渡态,而且第一个过渡态的ΔG1≠比第二个过渡态的ΔG2≠高,这意味着第一步反应应该是速率控制步骤。过渡态与中间体的区别。中间体位于两个过渡态之间的能量最低点,故有一定的存活期,实际的寿命依赖于凹陷的深度。下凹浅暗示下一步的活化能低,生存期短,下凹深中间体的生存期越长;而过渡态只有一个转瞬即逝的生存期,并代表

反应途径中的能量极大值。ΔG≠越大,越小,速率就越慢,所以ΔG≠决定了反应快慢。

哈蒙特假说:对任何单一的反应步骤,其过渡态的几何形象类似于其内能与它的内能更接近的物种。即能量相近,结构相近。

a: 过渡态的结构与反应物相似,此时旧键几乎未动,新键只有很小程度的生成。b: 过渡态的能量比反应物和产物的能量都要大得多,不论是反应物或产物都不能作为过渡态结构的非常适宜的模型。c: 过渡态的结构和产物类似,这时旧键几乎全破,而新键差不多要生成。Hammond假说对于有中间体生成的反应特别有用,两个过渡态的自由能都与中间体的自由能相近,所以过渡态的几何形状,也就和中间体相似。

这个假说在许多反应中是不适用的,因为其过渡态与反应物及产物都不相似,只有证明两个物种(过渡状态与反应物或产物)的内能是相互接近的情况下,哈蒙特假说才有意义)。Hammond假说的意义在与合一估计不能分离的过渡态的能量和结构与反应物生成物或中间体结构和能量的关系。

速率控制与平衡控制:

产物组成到达平衡点时组成是不变的,一个反应所得到的产物是由热力学平衡决定时,这个反应较热力学控制。如果反应中存在着速度不同的竞争反应,随之出现几种产物,在没有达成平衡以前,这种反应叫做速率控制反应。

R

T

P R

T

P R

T

P

a b

c

对于A 同时生成B 与C 的反应如果反应可逆,按照热力学的要求,反应平衡时,由于B 比C 稳定所以产物B 是主要产物(这决定于产物的稳定性,稳定性大的一方自由能G 变化的大,ΔG 小于0很多,所以平衡常数很大,向产物生成的趋势很大,如果有足够时间等待平衡,则B 一定是主要产物),如果在反应平衡以前就停止反应,则就为速率控制,由于生成C 的活化能小,所以A 转化为C 过渡态的速率大,所以C 为主要产物。如果两个反应都是不可逆的,则由于C 的形成较快,因此形成的量较多,这种产物我们称为动力学控制。如果反应为可逆的,则与上述情况不同,若反应在建立平衡以前能顺利地停止,则此反应为动力学控制,因而更迅速形成的产物较多。当我们令反应接近平衡,则B 将成为占优势产物或唯一的产物,在这种条件下首先形成的C 转变为A ,而稳定性较大的B 很少转变为A ,产物

为热力学控制。在许多情况中稳定性较大的产物也同时是形成较为迅速

的产物,在这种情况下动力学控制产

物也是热力学控制产物。 速率控制和平衡控制与反应条

件也有关。活化能大的反应对温度更为敏感 。当低温时两种可能进行反应的活化自由能差异大,活化自由能

小的速率大,产物以此为主,为速率

控制。高温时,两者自由能差值小,

这是速率控制的优势减小。 在有机反应中,一种反应物可以向多种产物

方向转变时,在反应未达到平衡前,利用反应快速的特点来控制产物组成比例的即为速度控制。速度控制往往是通过缩短反应时间或降低反应温度来达到目的。利用平衡到达来控制产物组成比例的反应即平衡控制,平衡控制一般是通过延长反应时间或提高反应温度使反应达到平衡点的。

控制理论对共轭二烯烃1,2加成和1,4加成的解释:

1.可见如果延长反应时间,使反应趋于平衡,由于1,4加成产物稳定,所以是1,4加成。

也可以提高反应温度使体系活化能降低E1E2差别减小速率不占优势,使1,4加成为主。

2.低温下,或者反映未达到平衡就停止,产物为1,2加成产物,因为E1

化学热力学与动力学对烯烃α-取代的解释: 当烯烃与卤素反应时,可以使亲电加成,可以发生烷基的取代,但是机理不同,一个亲电加成,一个自由基取代。

改类反应的规律,一般是低温时是亲电加成,高温时是自由基取代,并且该反应的选择性好,取代总是发生在与碳碳双键相连的烯丙位C 上,这个C 叫做α碳,所连的氢叫做α氢。 为什么α氢易被取代,从两个角度看1.按照自由基机理,取代不同的氢是由于形成了不同的烷基自由基,而不同的烷基自由基稳定性不同,越稳定的自由基能量越低由Hammond 假设,过渡态的能量也越低,活化自由能小,反应速率快活性大,以主要产物形式生成,即中间体越稳定越容易生成。而烯丙基的稳定性大于烯基的稳定性,所以易于发生α取代,即

ΔE C ΔE B ΔE B ≠ΔE C ≠

产物B 反应物A 产物C CH 2 CH CH CH 2

H Br E 1'E 2E 2'1, 2-加成1,4-加成E 11,2-加成产物1,4-加成产物1,2-加成反应进程1,4-加成反应进程

E 1,2-加成和 1,4-加成反应进程中的位能曲线图

α氢的活泼性很大。2.由于形成自由基的反应断裂碳氢键时,所需要的能量不一样,α氢的离解能小。由机理的第二步可以知道,分子数没变反应的熵变很小,所以自由能的变化约等于焓变,由于α氢的键能小所以焓变小,所以反应的自由能变化小,由Hammond假设可知,活化自由能小,速率大。

自由基稳定性:烯丙基型>3>2>1>甲基自由基≈乙烯型。

机理:

可见与烷烃的卤代机理一致。

实验室,烯丙位的溴代通常用NBS试剂,可使自由基卤代发生在较低温度下,具体方法:NBS试剂在光,或者过氧化物等自由基引发剂作用下,在惰性溶剂中生成α溴代产物。

机理如下:

NBS不溶于四氯化碳,反应在四氯化碳表面发生,反应生成的HBr不断与NBS反应生成Br,NBS就像一个Br的储存库,不断与HBr反应生成Br,直到用完。注意:P-π共轭,对于不对称烯烃,可能会产生混合物,由于共振。NBS试剂也可用于苯甲基型的溴代。本质是生成稳定的自由基(越稳定的中间体越容易生成)。

为什么有自由基存在却不发生自由基加成反应?

卤素自由基与烯烃加成的得到的仲碳自由基不如取代α氢得到的烯丙基自由基稳定,可

知其活化能相对较大,这两个反应是竞争的关系,所以这个反应不占优势,另外生成仲碳自由基是一个可逆的过程,存在平衡,只有减少Br的存在才能使仲碳自由基转化为烯丙基自由基。对于一个反应物生成两种产物的情况,并且一个是可逆反应一个不可逆,那么在未转化完之前,可能检测到可逆反应产物,但是完全转化后可逆产物为0。而是否可逆的变化,可以看反应的K,如果K很小即ΔG>0,而对于熵变可以忽略的变化,可以认为ΔG≈ΔH,即可以通过键能的变化来估算,是否是可逆反应。

有机化学的发展与应用

第一单元 有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH 2===CH 2+H 2O ――→催化剂 △ CH 3CH 2OH ,该反应类型是加成反应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋白质。回答下列问题: (1)属于高分子化合物的是②⑦⑧;

(2)人类食物的主要营养物质是⑥⑦⑧; (3)⑤的结构简式是,其有机物类别是芳香烃; (4)能够发生酯化反应的是③④; (5)能够发生水解反应的是①⑥⑦⑧; (6)既能与钠反应,又能与碳酸钠反应的是④。 探究点一有机化学的发展与应用 1.我国早期的化学实践活动 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前掌握了石油和天然气的开采技术。 (3)1 000多年前学会了从植物中提取染料、药物和香料等。 2.近代有机化学的形成 (1)19世纪初,瑞典化学家贝采利乌斯提出了有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 (2)1828年德国化学家维勒首次在实验室用无机盐氰酸铵(NH4CNO)合成了有机物尿素[CO(NH2)2],打破了早期科学家提出的“生命力论”。 (3)德国化学家李比希创立了有机化合物定量分析法和早期的“基团理论”。 (4)1848年~1874年间,关于碳的价键、碳原子的空间结构等理论逐渐趋于完善,之后建立了研究有机化合物的官能团体系,使有机化学成为一门较完整的学科。 3.现代有机化学的发展 (1)关于有机化学结构理论的建立和有机反应机理的研究,使人们对有机反应有了新的掌控能力。 (2)红外光谱(IR)、核磁共振谱(NMR)、质谱(MS)和X射线衍射(XRD)等物理方法的引入,使有

有机化学的发展和前景

有机化学的发展和前景 在人类多姿多彩的生活中,化学可以说是无处不在的。据统计,在工业发达国家的全部生产中,化学过程的工业占高比例,以美国为例占到30%。有机化学是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法的学科。自从1828年合成尿素以来,有机化学的发展是日新月异,其发展速度越来越快。近两个世纪来,有机化学学科的发展,揭示了构成物质世界的有机化合物分子中原子链合的本质以及有机分子转化的规律,并设计、合成了具有特定性能的有机分子;它又为相关学科(如材料科学、生命科学、环境科学等)的发展提供了理论、技术和材料。有机化学是一系列相关工业的基础,在能源、信息、材料、人口与健康、环境、国防计划的实施中,在为推动科技发展、社会进步,提高人类的生活质量,改善人类的生存环境的努力中,已经并将继续显示出它的高度开创性和解决重大问题的巨大能力。 此外有机化学还是一门极具创新性的学科。在有机化学的发展中,它的理论和方法也得到了长足的进步。建立在现代物理学(特别是量子力学)和物理化学基础上的物理有机化学,在定量的研究有机化合物的结构、反应性和反应机理等方面所取得的成果,不仅指导着有机合成化学,而且对生命科学的发展也有重大意义。有机合成化学在高选择性反应的研究,特别是不对称催化方法的发展,使得更多具有高生理活性、结构新颖分子的合成成为可能。金属有机化学和元素有机化学,为有机合成化学提供了高选择性的反应试剂和催化剂,以

及各种特殊材料及其加工方法。有机化学以它特有的分离、结构测定、合成等手段,已经成为人类认识自然、改造自然具有非凡能动性和创造力的武器。近年来,计算机技术的引入,使有机化学在结构测定、分子设计和合成设计上如虎添翼,发展得更为迅速。同时,组合化学的发展不仅为有机合成提出了一个新的研究内容,而且也使高通量的自动化合成有机化合物成为现实。 在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机化学,有机合成化学,天然产物化学,金属有机化学,化学生物学,有机分析和计算化学,农药化学,药物化学,有机材料化学等各个方面得到发展。 一、物理有机化学 物理有机化学是用物理化学的方法研究有机化学问题的科学,是一门指导有机化学其他学科发展的学科。它研究有机化合物的结构和性能、有机化学反应如何发生和为什么发生,从中找出规律,指导设计、合成新的物种,预见和发现新的有机化学现象。如有机化合物的结构与性能的关系,现代光谱、波谱和显微技术的发展为表征分子结构提供了基础。它对原有的各种反应机理和活泼中间体(协同反应、自由基反应、离子型反应、卡宾反应、激发态反应、电子转移反应等)

化学动力学与化学热力学在有机化学中的应用

化学热力学与动力学在有机化学中的应用 一.化学热力学: 一个反应能否自发发生及反应平衡时反应物和产物之间的相对比例是一个化学热力学问题。可以解决,一个反应的能否自发进行及反应的限度问题,是用自由能ΔG 来判断的,ΔG<0反应可以自发进行,直到平衡即ΔG=0,相反如果大于0时,反应是不能自发进行的,由平衡常数与ΔG 的关系可以知道,此时K 很小所以往往是可逆的。S T H G ?-?=?,Δ H 反应的是反应的热效应,在反应中焓的变化反映了反应物键的断裂与生成物键的生成能量 之差(其中包括张力能,离域能等),即断裂键的键能之和减去生成键的键能之和(键能为正值)。当ΔS 可以忽略不计的时候,ΔG ≈ΔH ,当反应是放热的时候,即ΔH<0,则ΔG<0,即反应可以自发进行。ΔS 的判断:1.分子在体系中的自由度越大,她的熵值也就越大。即气>液>固。在一个反应中如果反应物都是液相的,而产物至少有一个是气相的,那么在热力 学上由于熵增大所以是有利的。2.产物的分子数目等于反应物的分子数目的反应,熵变通常是不大的,但是如果生成物的分子数增加,通常会有较大的熵值增加。所以分解,分裂的反应在热力学上是有利的。但是注意,有些时候分解反应的热焓变比较大抵消了ΔS 的增大,最终ΔG 仍>0,反应仍不自发。3.链状分子比对应的环状分子有更大的熵值,因而分子的打开是有利的,闭环意味着熵值的减少。如果弱键断裂,强健生成,则反映放热,ΔH<0,在放热反应中,焓变对G 有一个负的的贡献,所以反应易于由弱键生成强键,反之,由强键生成 弱键,会消耗能量,H>0对G 有正的贡献,不易发生。综上焓减少是反应的推动力,熵增加是反应的推动力。 化学动力学: 对反应速度的处理研究涉及到化学动力学问题。有机化学中主要应用过渡态理论。过渡态是反应途径中能量最高点时所存在的结构。它和反应物、产物或中间体不同,并不是一个化学实体,无法分离和实验观察,仅是一个有一定几何形状的和电荷分布的高度不稳定状态。 微观可逆原理::(1)一个基元反应的逆反应也必然是基元反应,即任何基元反应都是可逆的;(2)正反应与逆反应经过相同的过渡态即正逆反应途径一样,机理一样。 当我们研究一个有机反应时,最希望了解的是这一反应将向产物方向进行到什么样程度?一般来说,任何体系都有转变成它们最稳定状态的趋势(即自发的趋势都是体系自由能减小的方向,ΔG<0),因此,可以预料当产物的稳定性愈大于反应物的稳定性时,则平衡愈移向产物一侧。这句话的意思可由下式看出来。△G=-RTlnK ,当两个物质的稳定性差很大的时候,即自由能差很大,如果生成物的自由能比反应物的小,即ΔG 很负,所以K 很大,平衡常数大,说明向稳定的方向进行的趋势很大,即平衡移向产物一侧,反应进行的很完全。 要使反应发生,产物的自由能必须低于反应物的自由能,即△G 必须是负值。说白了对于一个自发反应,反应物与产物之间自由能差别越大,或者说稳定性差别越大,反应进行的趋势完全程度也越大。 过渡态理论:1.起反应的物质结合时需要通过比原始和终了的状态较高的势能,具有较高势能的状态较过渡态。即假设一个反应先达到一个过渡态,然后从过渡态以极快的速度变成产物。2.反应有几种产物时,每一种产物都从不通过过渡态过来的,主要产物是过渡态能量最低的转化而来的。3反应物与过渡态之间存在一个平衡,反应的速度(生成过渡态的速度)依赖于平衡常数,而K 又与活化自由能有关。过渡态的自由能的高低成为衡量反应速率的重要标志。 在一步反应的图中能量最高点是活化络合物,在它的左边,所有络合物都被认为同反应物处于平衡中;而在它右边,所有络合物则被认为是同产物处于平衡中。 A+B 反应物 D 产物△G 双步 反 应G ΔG 1≠ΔG 2≠ C 中间体 A+B 反应物 C 产物过渡态△G 单 步 反 应G ΔG 1≠a b

有机化学发展简史

有机化学发展简史i “有机化学”这一名词于1806年首次由贝采利乌斯提出。当时是作为“无机化学”的对立物而命名的。19世纪初,许多化学家相信,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下台成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 从1858年价键学说的建立,到1916年价键的电子理论的引入,是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“-”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只

第二章 化学热力学初步

第二章化学热力学初步 1. 热力学第一定律W U- = Q ?,由于U为状态函数,所以Q和W也是状态函数,对吗?为什么? 答:不对。Q和W只有在能量交换的时候才会有具体的数值,并且随途径不同,共和热的数值都会有变化,所以不是状态函数。 2. 解释下列名词 (1) 体系与环境 (2) 热(Q) (3) 功(W) (4) 焓(H)和焓变(H ?) (5) 热力学能U (6) 恒容反应热(Q V)和恒压反应热(Q p) 答:(1) 热力学中称研究的对象为体系,称体系以外的部分为环境。 (2) 体系在变化过程中吸收的热量为Q。 (3) 体系对环境所做的功。 (4) H=U+PV 当泛指一个过程的时候,其热力学函数的改变量为焓变。 (5) 体系内一切能量的总和叫热力学能。 (6) 在恒容过程中完成的化学反应,其热效应称为恒容反应热。 在恒压过程中完成的化学反应,其热效应称为恒压反应热。 3. 什么叫状态函数?它具有何特性? 答:藉以确定体系状态的物理量称为体系的状态函数。它具有加和性。 4. 何谓热效应?测量方法有哪两种? 答:化学反应的热效应为当生成物和反应物的温度相同时,化学反应过程中的吸收或放出的热量。可以选择恒压和恒容两种条件下测量。 5. 什么叫热化学方程式?书写热化学方程式要注意哪几点? 答:表示出反应热效应的化学方程式叫做热化学方程式。书写化学方程式时要注意一下几点:(1)写热化学方式式,要注意反应的温度和压强条件,如果反应是在298K和1.013×105Pa下进行时,习惯上不予注明。(2)要注明物质的聚集状态和晶形。(3)方程式中的配平系数只是表示计量数,不表示分子数。但计量数不同时,同一反应的反应热数值也不同。 6. ①无机化学中常用的反应热有哪几种?反应热的实质是什么?什么类型的化学反应Q V=Q p?等摩尔的NaOH和NH3·H2O溶液分别与过量的HCl溶液中和所放热量是否相等?为什么? ②反应2N2(g)+O2(g)=2N2O(g)在298K时,ΔrH m?=164K J·mol-1, 求反应的ΔU? 答:①无机化学中常用的反应热有恒压反应热和恒容反应热。 反应热的实质是:当生产物与反应物的温度相同时,化学反应过程中的吸

热力学与动力学往年考试整理

判断题: 1.由亚稳相向稳定相转变不需要推动力。? 2.压力可以改变材料的结构,导致材料发生相变。√ 3.对于凝聚态材料,随着压力升高, 熔点提高。√ 4.热力学第三定律指出:在0 K时任何纯物质的熵值等于零。? 5.在高温下各种物质显示相同的比热。√ 6.溶体的性质主要取决于组元间的相互作用参数。√ 7.金属和合金在平衡态下都存在一定数量的空位,因此空位是热力学稳定的缺 陷。√ 8.固溶体中原子定向迁移的驱动力是浓度梯度。? 9.溶体中析出第二相初期,第二相一般与母相保持非共格以降低应变能。? 10.相变过程中如果稳定相的相变驱动力大于亚稳相,一定优先析出。? 1.根据理查德规则,所有纯固体物质具有大致相同的熔化熵。 2.合金的任何结构转变都可以通过应力驱动来实现。 3.在马氏体相变中,界面能和应变能构成正相变的阻力,但也是逆相变的驱动 力。 4.在高温下各种纯单质固体显示相同的等容热容。 5.二元溶体的混合熵只和溶体的成分有关,与组元的种类无关。 6.材料相变形核时,过冷度越大,临界核心尺寸越大。 7.二元合金在扩散时,两组元的扩散系数总是相同。 8.焓具有能量单位,但它不是能量,也不遵守能量守恒定律;但是系统的焓变 可由能量表达。 9.对于凝聚态材料,随着压力升高, 熔点提高, BCC-FCC转变温度也升高。 10.由于马氏体相变属于无扩散切变过程,因此应力可以促发形核和相变。 简答题: 1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因?(8分)

有机化学在生活中的应用

生活中的小窍门—有机化学知识的应用 摘要:有机化学在日常生活中扮演着重要的角色,我们常常会遇到一些难以解决的小麻烦,但是运用学过的有机化学知识就可以迎刃而解,比如说指甲油,油渍,圆珠笔印记等的清洗,还有冬天手皲裂可以用甘油。诸如此类的小问题却很恼人,我们能够巧妙的利用有机化学排忧解难。 关键词:酒精甘油蛋白质相似相溶原理 内容: 1.布伞和绸布伞溅上泥水以后,要张开晾干,然后用软刷子沾酒精溶液洗刷;深色布伞应用刷子蘸浓茶水或常青藤茶水洗刷,花色布伞用氨水洗刷,可保持其原有的色泽。布伞切忌用汽油、煤油、丙酮和其他有机溶剂洗刷。 2.维生素C治疗口腔溃疡。如果嘴里有溃疡,就用维生素C贴在溃疡处,等它融化,溃疡基本就好了。 3.鸡蛋清巧粘玻璃或瓷器:用棉棒蘸取少量蛋清(做菜后鸡蛋壳内剩下的就够用了),涂抹要粘和的两块玻璃的边缘,将两块玻璃用力挤压在一起,放置24小时即可粘牢。同样适用于部分摔掉的瓷器。 4.高烧患者除药物治疗外,最简易、有效、安全的降温方法就是用25%-50%酒精擦浴的降温方法。用酒精擦洗患者皮肤时,不仅可刺激高烧患者的皮肤血管扩张,增加皮肤的散热能力;还由于其具有挥发性,可吸收并带走大量的热量,

使体温下降、症状缓解。具体方法是:将纱布或柔软的小毛巾用酒精蘸湿,拧至半干轻轻擦拭患者的颈部、胸部、腋下、四肢和手脚心。擦浴用酒精浓度不可过高,否则大面积地使用高浓度的酒精可刺激皮肤,吸收表皮大量的水分 5.毛巾使用久了,会散发一种怪味而且发粘。通常人们习惯用肥皂洗涤,这种有机化学的方法是不可取的,反而越洗越粘。此时,可用浓盐水搓洗(一条毛巾可放一小勺细盐),然后用温水烫一下再搓洗,最后用清水洗净。这样,毛巾就没有怪味,也不发粘。还有,擦脸毛巾用久想恢复到柔软的样子,最好的办法是用水加洗衣粉用锅煮三十分钟即可。 6.一般洗甲水,特别是劣质洗甲水的成分就是丙酮.常涂指甲油对指甲健康不利,所以,每天晚上都要清洗指甲油,缩短它待在指甲上的时间,让指甲能透口气,以便在一定程度上减少指甲油对身体的伤害。那么,怎样能有效又安全地清洗指甲油呢?最简单的方法是使用洗甲水。当洗甲水中含有丙酮成分时,它会让指甲表面的角质层因干燥而变得粗糙及脆弱。清洗指甲油时,只要让洗甲水浸透化妆棉上一个甲面大小的地方就够了。洗甲水不能用来猛擦指甲。尤其是那些洗甲功效比较显著的产品,用它猛擦甲面,会使甲面变得黯淡、无光泽。正确的做法是,将蘸了洗甲水的化妆棉压在指甲上5秒钟,指甲油自然就脱落了。如果仍未清除,可以再做一次。

2化学热力学初步

第二章 化学热力学初步 1.计算系统热力学能的变化 (1)系统吸收了100J 的热量,并且系统对环境做了540J 功。 解:根据热力学第一定律,U Q W ?=+∴100J (540J)440J U ?=+-=- (2)系统放出100J 的热量,并且环境对系统做了635J 功。 解:根据热力学第一定律,U Q W ?=+∴100J+635J=535J U ?=- 4.已知: (1) C(s) + O 2(g) = CO 2(g) 11393.5r H kJ mol -?=-?θ (2) H 2(g) +12O 2(g) = CO 2(g) 12285.9r H kJ mol -?=-?θ (3) CH 4(g) +2O 2(g) = CO 2(g) + 2H 2O(l) 13 890.0r H kJ mol -?=-?θ 试求反应(4) C(s) + 2H 2(g) = CH 4(g) 的4r H ?θ 解:根据盖斯定律和已知条件可见,(4)=(1) + 2(2) - (3) r 4r 1r 2r 2H H H H ∴?=?+??-?θ θ θθ 5.利用附录二的数据,计算下列反应在298K 的r m H ?θ (1) 223PbS(s)+O ()=PbO(s)+SO (g)2 g 查表f m H ?θ:-100 0 -219 -297 kJ.mol -1 -1r m (215297)(0100)412kJ mol H ?=----=-?θ (2) 3224NH (g)+5O ()=4NO(g)+6H O(l)g 查表f m H ?θ:-46.11 0 90.4 -285.8 kJ.mol -1 -1r m (490.46285.8)(0446.11)1169kJ mol H ?=?-?--?=-?θ 9.预言下列过程系统的△S 符号: (1) 水变成水蒸气; (因为吸热,体积增大,混乱度增大) (2) 气体等温膨胀; (因为吸热,体积增大,混乱度增大) 0>?S 0>?S -1 393.52285.9890.075.3kJ mol =--?+=-?

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

有机化学发展及应用

有机化学发展及应用 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.1828年,填平无机物与有机物间鸿沟的科学巨匠维勒将一种无机盐直接转变为有机物尿素[CO(NH2)2],维勒使用的无机盐是() A.NH4NO3B.(NH4)2CO3C.CH3COONH4D.NH4CNO 2.下列关于有机物性质的叙述不正确的是() A.大多数有机物难溶于水,易溶于有机溶剂 B.有机物参加的反应比较复杂,一般情况下反应较慢 C.有机物一般硬度大、熔点高 D.绝大多数有机物容易燃烧 3.下列物质中属于有机物的是() A.氯化钾B.二氧化碳C.碳酸钠D.乙烷 4.古丝绸之路贸易中的下列商品,主要成分属于无机物的是() A.瓷器B.丝绸C.茶叶 D.中草药 5.下列化合物中不是有机物的是() A.CO2B.C2H6C.HCHO D.CH3OH 6.氰酸铵(NH4OCN)与尿素[CO(NH2)2]() A.都是共价化合物B.都是离子化合物 C.互为同分异构体D.互为同素异形体 7.中国女药学家屠呦呦因发现青蒿素对疟疾的治疗作用而成为2015年诺贝尔生理医学奖获得者之一。下列说法不正确的是() A.从青蒿中提取青蒿素的方法是以萃取原理为基础,萃取是一种化学变化 B.青蒿素的分子式为C15H22O5,它属于有机物 C.人工合成青蒿素经过了长期的实验研究,实验是化学研究的重要手段 D.现代化学分析测试中,可用元素分析仪确定青蒿素中的C、H、O元素

8.大多数有机化合物不具有的性质是() A.熔、沸点高B.易燃烧C.热稳定性差D.反应慢且副反应多 9.下列有关有机化合物的说法中正确的是( ) A.有机化合物都易燃烧 B.凡是含有碳元素的化合物都是有机化合物 C.易溶于汽油、酒精、苯等有机溶剂的物质一定是有机化合物 D.含碳原子数比丙烷多的烷烃都有同分异构体 10.2005年1月14日,成功登陆“土卫六”的“惠更斯”号探测器发回了350张照片和大量数据。分析指出,土卫六“酷似地球经常下雨”,不过“雨”的成份是液态甲烷。下列关于土卫六的说法中,不正确的是() A.土卫六上存在有机分子B.地表温度极高 C.地貌形成与液态甲烷冲刷有关D.土卫六上形成了甲烷的气液循环系统

热力学与动力学的关系

热力学与动力学的关系 黄金金 指导教师:陶中东 摘要:反应趋势与反应速率之间的关系是化学研究中的一个十分重要的问题,本文根据物理化学的基本原理,建立了热力学判据和动力学判据相结合的普适判据,并根据普适判据,从理论上阐述了反应趋势和反应速率二者之间的内在联系,同时论述了化学热力学与化学动力学的紧密联系,有助于从物质的本性、微观结构去进一步认识化学反应的实质。 关键词:化学热力学,化学动力学,普适判据,反应进度,反应速率,活化能,活化熵,化学亲和势 The Relationship between Chemical Kinetics and Thermodynamics Abstract: According to the principle of physical chemistry, a general criterion, which includes thermodynamic criterion of reaction trend and kinetic criterion of reaction rate, has been proposed suggested in this paper. The internal relations between reaction trend and reaction rate have been elaborated based on the general criterion. Meanwhile the paper expounded the close relationship between chemical kinetics and thermodynamics it is instrumental to us in further cognizing chemical reaction essence from material nature and structure. Key words: general criterion; chemical thermodynamics; chemical kinetics; reaction extent; reaction rate; activated energy; activated entropy; chemical affinity 对于一个指定反应条件和反应物种的化学反应来说,研究者普遍关心的问题是该化学反应的趋势与速率。有许多实例表明化学反应的趋势与速率二者之间存在正相关性,即反应的趋势大且反应的速率快。“化学动力学与化学热力学是相辅相成的,动力学的研究必须以热力学的结果(肯定反应有可能发生)为前提条件,而热力学只有与动力学相结合才能全面解决化学反应的实际问题”。“我们用以控制化学过程的方法主要是改变:(1)温度,(2)压力,(3)反应物的比例,(4)催

有机化学的发展与应用教案

专题一认识有机化合物 第一单元有机化学的发展与应用 【学习任务】 1、了解有机化学的发展与应用,并能通过计算求得有机物的分子式。 2、了解利用基团理论、光谱分析等确定有机物结构的方法。 【学习准备】 在日常生活中,我们接触到各种各样的物质,你能说出哪些是有机化合物吗?它们在生活中有哪些应用呢? 【学习思考】 一、有机物的概述 1.概念:含有________的化合物。 2.组成元素:除碳外,通常还有氢、_____、_____,_____、_____及卤素等。 二、有机化学的发展 1.我国早期有机化学 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前就掌握了_____和_____的开采技术。 (3)从植物中提取_____ 等物质已经有上千年的历史。 2.有机化学的形成 (1)19世纪初,瑞典化学家_____ 提出了有机化学概念。 (2)19世纪中叶以前,科学家提出“_____ ”,认为有机物只能由动 物或植物产生,不可能通过人工的方法将无机物转变为有机物。 (3)1828年,德国化学家维勒利用无机物合成了第一种有机物尿素,冲破了“生命力 论”学说的束缚,打破了_____ 的界限。 3.现代有机化学 (1)_____ 得到广泛应用,成为人类赖以生存的重要物质基础。 (2)与其他学科融合形成了、以及等多个新型学科。 (3)1965年,我国科学家在世界上第一次用人工方法合成_____ ,标 志着人类合成蛋白质时代的开始。 三、有机化学的应用 糖类油脂蛋白质 石油天然气天然橡胶 2.具有特殊功能的有机物的合成和使用,改变了人们的生活习惯,提高了人类的生活质量。 3.有机物在维持生命活动的过程中发挥着重要作用。 4.利用药物(大多数是有机物)治疗疾病已经成为人类文明进步的重要标志。 思考讨论:含碳元素的化合物一定是有机物吗? 提示:含碳元素的化合物不一定是有机物,如碳的氧化物、碳酸、碳酸(氢)盐、KSCN、

有机化学的发展简史

有机化学的发展简史 “有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。 从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。 1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。

电子效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 一?引言 在有机化学的学习中我们应该都碰到了这样或那样的问题 ,有些问题的答案需要我们死记 硬背,但有些问题的解答则有章可循 ?比如亲电加成的方向性,芳香族化合物的酸性,消去反应 的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用 ,那么这类问题便 迎刃而解了 ?那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢 ? 二?电子效应与位阻效应的简介 电子效应 是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱 导效应和共轭效应两种类型。 诱导效应 1?诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导 效应,用—I (Inductive effect )表示; 导效应就很弱,可忽略不计了。例如 H 3C —CH 2—— CH 2 CH 2——CH 2—Cl ,其中 3表示微 小,3 3表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是 这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向 如何,b 键仍是b 键,n 键仍是n 键。 3?诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 + + 吸电子基团:带正电荷的基团,女口: — OR2、— N R 3 ;卤素原子,如:—F 、— Cl 、— Br 、— I ; —O -、一 S -、一 C00-;饱和脂肪族烃基,如: —CR 3、一 CHR 2^ — CH ?R 、一 CH 3 共轭效应 1?共轭效应的定义 体系中各个b 键都在同一个平面上,参加共轭的 P 轨道互相平行而发生重叠,形成分子轨 带氧原子或氮原子的基团,如: N02、> C 0、 C00H 、 OR 、 OH 、 NR2 .芳香族或 —C 6 H 5' — C M R 、 CR = CR 2 X —CR 3 H-CR 3 —I 效应 标准 Y ——A CR 3 +I 效应 2?诱导效应的特点 诱导效应是沿b 键传递的,离吸 (或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 不饱和烃基,如: 斥电子基团:带负电荷的基团,如:

1.1有机化学的发展与应用

1.1有机化学的发展与应用D

第一单元有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH2===CH2 CH3CH2OH,该反应类型是加成反+H2O――→ 催化剂 △ 应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋

(3)德国化学家李比希创立了有机化合物定量分析法和早期的“基团理论”。 (4)1848年~1874年间,关于碳的价键、碳原子的空间结构等理论逐渐趋于完善,之后建立了研究有机化合物的官能团体系,使有机化学成为一门较完整的学科。 3.现代有机化学的发展 (1)关于有机化学结构理论的建立和有机反应机理的研究,使人们对有机反应有了新的掌控能力。 (2)红外光谱(IR)、核磁共振谱(NMR)、质谱(MS)和X射线衍射(XRD)等物理方法的引入,使有机分析达到了微量、高效、准确的程度。 (3)逆推法合成设计思想的诞生,使有机合成路线的设计实现了程序化并进入计算机设计时代,大大提高了新化合物的合成速度。 (4)有机化学还能破译并合成蛋白质,认识并改造遗传分子,第一次从分子水平上揭示生命的奥秘。1965年,我国科学家在实验室中成功利用无机物合成了具有生命活性的蛋白质——结晶牛胰岛素。 4.有机化学的应用 (1)人类衣食住行用到的天然有机化合物有糖类、油脂、蛋白质、石油、天然气、天然橡胶等。(2)合成的有机物也广泛应用于生活中,如合成纤维、塑料、合成橡胶、合成药物等。

苏教版有机化学专题1第一单元《有机化学的发展与应用》教案

第一单元《有机化学的发展与应用》 1、有机化学的发展与应用 教学目的要求: 1、了解有机化学的发展简史,知道人类对客观事物的认识是循序渐进、螺旋上升的过程。 2、通过对有机化学于日常生活、工农业生产、生命科学等结合较紧密的内容的交流与讨论,使学生认识到人类生活离不开有机物,有机化学与其它学科的交叉渗透日益增多,是许多新诞生领域的研究基础。 3、通过调查研究、查阅资料等探究活动,了解有机化学的发展现状,进一步培养学生学习和研究化学的志向。 教学重点难点:对有机化学与有机物的认识 教学过程: 一、有机化学的发展。 1、我国早期的有机化学: 我们的祖先在3000多年前用煤作燃料,2000多年前掌握石油和天然气的开采,从植物中提取染料和香料等物质已经有上千年的历史。 2、有机化学的形成: 19世纪初,瑞典化学家贝采利乌斯提出有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 3、现代有机化学: 21世纪的今天,各种合成有机物已经渗透到各个领域;有机化学已经与其它学科融合形成了多个新型学科,应用前景十分广阔。 介绍:德国化学家维勒 1828年,贝采利乌斯的学生、德国年轻的化学家维勒,在实验室中加热无机物氰酸铵时无意中得到了尿素。NH4CNO CO(NH2)2 第一次用无机物合成有机物。 有机物的生成不必借助于所谓生命力的作用。 二、有机化学的应用 1、人类的衣食住行离不开有机物: 天然有机物:如糖类、油脂、蛋白质、石油、天然气、天然橡胶等。 合成有机物:塑料、合成纤维、合成橡胶、合成药物等。 2、具有特殊功能有机物的合成和使用改变了人们的生活习惯,提高了人类的生活质量。 3、有机物在维持生命活动的过程中发挥着重要作用。 生命体中许多物质都是有机物,如细胞中存在的糖类、脂肪、氨基酸、蛋白质和核酸等,都是有机物。 4、药物中大多数是有机化合物,在帮助人们战胜疾病,延长寿命的过程中发挥着重要的作用。 5、1965年,世界上第一次用人工方法合成的蛋白质——结晶牛胰岛素在中国诞生。 课堂小结: 一、有机化学的发展。

1.1有机化学的发展与应用

1.1有机化学的发展与应用

第一单元有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH2===CH2 CH3CH2OH,该反应类型是加成反+H2O――→ 催化剂 △ 应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋

白质。回答下列问题: (1)属于高分子化合物的是②⑦⑧; (2)人类食物的主要营养物质是⑥⑦⑧; (3)⑤的结构简式是,其有机物类别是芳香烃; (4)能够发生酯化反应的是③④; (5)能够发生水解反应的是①⑥⑦⑧; (6)既能与钠反应,又能与碳酸钠反应的是④。 探究点一有机化学的发展与应用 1.我国早期的化学实践活动 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前掌握了石油和天然气的开采技术。 (3)1 000多年前学会了从植物中提取染料、药物和香料等。 2.近代有机化学的形成 (1)19世纪初,瑞典化学家贝采利乌斯提出了有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 (2)1828年德国化学家维勒首次在实验室用无机盐氰酸铵(NH4CNO)合成了有机物尿素[CO(NH2)2],打破了早期科学家提出的“生命力论”。

化学热力学基础习题

第6章化学热力学初步习题目录 第一部分化学热力学基础、热化学 一判断题;二选择题;三填空题;四计算题 第二部分熵、吉氏函数与化学反应方向 一判断题;二选择题;三填空题;四计算题 第一部分化学热力学基础、热化学 一判断题 1气体的标准状况与物质的标准态是同一含义。() 2在恒温恒压下,某化学反应的热效应Q p=△H=H2-H1,因为H是状态函数,故Q p也是状态函数。() 3系统状态一定,状态函数就有确定的值。() 4在恒温恒压条件下,反应热只取决于反应的始态和终态,而与过程的途径无关。()5功和热是系统与环境间能量传递的两种形式。() 6气体膨胀或被压缩所做的体积功是状态函数。() 7由环境中吸收热量,系统的热力学能增加。() 8环境对系统做功,系统的热力学能增加。() 9系统的焓等于系统的热量。() 10系统的焓等于恒压反应热。() 11系统的焓变等于恒压反应热。() 12反应的热效应就是该反应的焓变。() 13由于CaCO3的分解是吸热的,故它的生成焓为负值。() Cl2(g)→NaCl(s)的△r H=-411.1kJ·mol-1,即该温度下NaCl(s)的14298K时反应Na(s)+1 2 标准摩尔生成焓为-411.1kJ·mol-1。()

15298.15K时由于Na+(g)+Cl-(g)→NaCl(s)的△r H=-770.8kJ·mol-1,则NaCl(s)的标准摩尔生成焓是-770.8kJ·mol-1。() 16298K时,反应CO(g)+Cl2(g)→COCl2(g)的△r H=-108kJ·mol-1,则△f H(COCl2,g)=-108kJ·mol-1。.() 17所有气体单质的标准摩尔生成焓都为零。() 18△f H(Br2,g)=0kJ·mol-1。() 19298K时石墨的标准摩尔生成焓为零。() 20在密闭容器中盛有等物质的量的N2(g)和O2(g),使其反应生成NO(g),保持反应在等温下进行,则该反应的焓变一定等于△f H(NO,g)。.() 21已知在某温度和标准态下,反应2KClO3(s)→2KCl(s)+3O2(g)进行时,有2.0molKClO3分解,放出89.5kJ的热量,则在此温度下该反应的△r H=-89.5kJ·mol-1。() 22反应H2(g)+Br2(g)→2HBr(g)的△r H与反应H2(g)+Br2(l)→2HBr(g)的△r H相同。() 23298K、标准态时,NH3(g)与O2(g)反应生成NO(g)和H2O(g),每氧化1molNH3(g)放 出226.2kJ热量,则其热化学方程式为NH3(g)+5 4O2(g)→NO(g)+3 2 H2O(g),△ r H=-226.2kJ。() 24反应N2(g)+3H2(g)→2NH3(g)的△r H与反应1 2N2(g)+3 2 H2(g)→NH3(g)的△r H相 同。() 25相同质量的石墨和金刚石,在相同条件下燃烧时放出的热量相等。....() 二选择题 1下列各物理量中,为状态函数的是()。 (A)△H;(B)Q;(C)H;(D)△U。 2下列各物理量中,为状态函数的是()。

相关主题
文本预览
相关文档 最新文档