当前位置:文档之家› 2012年高考数学解析几何专题攻略

2012年高考数学解析几何专题攻略

2012年高考数学解析几何专题攻略
2012年高考数学解析几何专题攻略

2011年高考数学解析几何专题攻略

一、10年高考真题精典回顾:

1.(2010浙江理数)(本题满分15分)已知m >1,直线2

:02m l x my --=,椭圆2

22:1x C y m

+=,1,2F F 分别为椭圆C 的左、右焦点.

(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;

(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数

m 的取值范围.

解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。

(Ⅰ)解:因为直线:l 202

m x my --=

经过20)F ,

22m =,

得22m =,

又因为1m >

,所以m 故直线l

的方程为02

x -

=。 (Ⅱ)解:设1122(,),(,)A x y B x y 。

由2222

2

1m x my x y m ?=+????+=??,消去x 得

22

2104

m y my ++-=

则由2

2

28(1)804

m m m ?=--=-+>,知28m <,

且有212121

,282

m m y y y y +=-=

- 。 由于12(,0),(,0),F c F c -, 故O 为12F F 的中点,

由2,2AG GO BH HO ==

可知1121(

,),(,),3333

x y x y G h 22

2

1212()()99

x x y y GH --=+

设M 是GH 的中点,则1212

(,)66

x x y y M ++, 由题意可知2,MO GH <

即22

2212121212()()4[()()]6699

x x y y x x y y ++--+<+ 即12120x x y y +<

而22

12121212()()22m m x x y y my my y y +=+++ 22

1(1

()82

m m =+-) 所以

21082

m -< 即2

4m <

又因为1m >且0?> 所以12m <<。

所以m 的取值范围是(1,2)。

2.(2010辽宁理数)(本小题满分12分)

设椭圆C :22

221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B

两点,直线l 的倾斜角为60o

,2AF FB =

.

(I) 求椭圆C 的离心率; (II) 如果|AB|=

15

4

,求椭圆C 的方程. 解:

设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.

(Ⅰ)直线l 的方程为

()y x c -

,其中c =

联立2222),

1

y x c x y a

b ?=-?

?+=??

得22224(3)30a b y cy b ++-=

解得12y y ==因为2AF FB =

,所以122y y -=.

2=得离心率 2

3

c e a =

=. ……6分

(Ⅱ)因为21AB y =-

15

4=.

23c a =

得3

b =.所以51544a =,得a=3

,b =椭圆C 的方程为22

195

x y +=. ……12分 3.(2010江西理数)(本小题满分12分)

设椭圆22

122:1(0)x y C a b a b +=>>,抛物线22

2:C x by b +=。

(1) 若2C 经过1C 的两个焦点,求1C 的离心率;

(2) 设A (0,b ),54Q ?

? ???

,,又M 、N 为1C 与2C 不在y 轴上的两个交点,若△AMN

的垂心为34B b ?? ???

0,,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程。

【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。

(1)由已知椭圆焦点(c,0)在抛物线上,可得:22

c b =,由

22

2

2

2

212,2c a b c c e a =+==?=

有。 (2)由题设可知M 、N 关于y 轴对称,设

11111(,),(,)(0)M x y N x y x ->,由AMN ?的垂心为B ,有

21113

0()()04

BM AN x y b y b ?=?-+--= 。

由点11(,)N x y 在抛物线上,2

211x by b +=,解得:11()4

b

y y b =-=或舍去

故1,(,),,)44

b b

x M N =

--,得QMN ?

重心坐标)4b .

由重心在抛物线上得:2

23,=24b b b +=所以

,11(),)22M N --,又因为M 、

N 在椭圆上得:2

163a =,椭圆方程为22

163

14

x y +=,抛物线方程为224x y +=。 4.(2010北京理数)(本小题共14分)

在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1

3

-

. (Ⅰ)求动点P 的轨迹方程;

(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

(I )解:因为点B 与A (1,1)-关于原点O 对称,所以点B 得坐标为(1,1)-. 设点P 的坐标为(,)x y 由题意得

111

113

y y x x -+=-+- 化简得 2

2

34(1)x y x +=≠±.

故动点P 的轨迹方程为2

2

34(1)x y x +=≠±

(II )解法一:设点P 的坐标为00(,)x y ,点M ,N 得坐标分别为(3,)M y ,(3,)N y .

则直线AP 的方程为0011(1)1y y x x --=

++,直线BP 的方程为001

1(1)1

y y x x ++=--

令3x =得000431M y x y x +-=

+,000231

N y x y x -+=-.

于是PMN 得面积

200002

0||(3)1

||(3)2|1|

P M N M N x y x S y y x x +-=--=- 又直线AB 的方程为0x y +=

,||AB = 点P 到直线AB

的距离d =.

于是PAB 的面积 001

||||2

PAB S AB d x y ==+ 当PAB

PMN S S = 时,得2

0000020||(3)|||1|

x y x x y x +-+=

- 又00||0x y +≠,

所以20(3)x -=20|1|x -,解得05|3

x =。 因为220034x y +=

,所以09

y =±

故存在点P 使得PAB 与PMN 的面积相等,此时点P

的坐标为5(,3

9

±

. 解法二:若存在点P 使得PAB 与PMN 的面积相等,设点P 的坐标为00(,)x y

则11||||sin ||||sin 22

PA PB APB PM PN MPN ∠=∠ . 因为sin sin APB MPN ∠=∠,

所以

||||

||||

PA PN PM PB =

所以

000|1||3|

|3||1|

x x x x +-=--

即 2200(3)|1|x x -=-,解得0x 53

=

因为220034x y +=

,所以09

y =±

故存在点P S 使得PAB 与PMN 的面积相等,此时点P 的坐标

5(,)3. 5.(2010天津理数)(本小题满分12分)

已知椭圆22221(0x y a b a b +=>>)

的离心率2

e =连接椭圆的四个顶点得到的菱形的面积

为4。

(1) 求椭圆的方程;

(2) 设直线l 与椭圆相交于不同的两点,A B ,已知点A 的坐标为(,0a -),点

0(0,)Q y 在线段AB 的垂直平分线上,且4QA QB = ,求0y 的值

【解析】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力,满分12分 (1

)解:由e 2

c a ==

,得2234a c =,再由222

c a b =-,得2a b = 由题意可知,

1

224,22

a b ab ??==即 解方程组22

a b

ab =??

=? 得 a=2,b=1

所以椭圆的方程为2

214

x y += (2)解:由(1)可知A (-2,0)。设B 点的坐标为(x 1,,y 1),直线l 的斜率为k ,则直线l 的方程为y=k(x+2),

于是A,B 两点的坐标满足方程组22

(2)

14

y k x x y =+??

?+=?? 由方程组消去Y 并整理,得2

2

2

2

(14)16(164)0k x k x k +++-=

由212

164

2,14k x k --=

+得

211

22

284,,1414k k x y k k -==++从而 设线段AB 是中点为M ,则M 的坐标为222

82(,)1414k k

k k

-++ 以下分两种情况:

(1)当k=0时,点B 的坐标为(2,0)。线段AB 的垂直平分线为y 轴,于是

000(2,y ),(2,=QA QB y QA QB y →→→→

=--=-± )由4,得=(2)当K 0≠时,线段AB 的垂直平分线方程为2

22

218()1414k k Y x k k k

-=+++ 令x=0,解得02

614k

y k =

+

由0110(2,y ),(,QA QB x y y →

=--=-)

210102222

2(28)6462(()14141414k k k k QA QB x y y y k k k k

--=---++++++ )= 4222

4(16151)

4(14)

k k k +-=+=

整理得2

072,=75k k y ==±

±故

综上00==5

y y ±±

6.(2010福建文数)(本小题满分12分)

已知抛物线C :2

2(0)y px p =>过点A (1 , -2)。 (I )求抛物线C 的方程,并求其准线方程;

(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,

且直线OA 与L L 的方程;若不存在,说明理由。

7.(2010全国卷1理数) (本小题满分12分)

已知抛物线2

:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D.

(Ⅰ)证明:点F 在直线BD 上;

(Ⅱ)设8

9

FA FB = ,求BDK ?的内切圆M 的方程 .

8.(2010山东理数)(21)(本小题满分12分)

如图,已知椭圆

22221(0)x y a b a b +=>>的离心率为

2

,以该椭圆上的点和椭圆的左、右焦

点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;

(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.

【解析】(Ⅰ)由题意知,椭圆离心率为

c a =2

,得a =,又22a c +=1),

所以可解得a =2c =,所以2

2

2

4b a c =-=,所以椭圆的标准方程为22

184

x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为

22

144

x y -=。

【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,

二、10年高考解析几何分析与预测:

解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一.直线和圆锥曲线位置关系问题是解析几何问题大题的难点问题,通常学生在解决直线和圆锥曲线问题上,往往要做三步,一就是联立方程组,二就是求判别式,并且判别符号..第三,运用韦达定理,如果这三步做完了,就是解不等式,或者求函数的值域或定义域的问题了. 具体如下:

(1)直线与圆锥曲线的位置关系(含各种对称、切线)的研究与讨论仍然是重中之重.

由于导数的介入,抛物线的切线问题将有可能进一步“升温”. (2)抛物线、椭圆与双曲线之间关系的研究与讨论也将有所体现.

(3)与平面向量的关系将进一步密切,许多问题会“披着”向量的“外衣”. (4)函数、方程与不等式与《解析几何》问题的有机结合将继续成为数学高考的“重头戏”. (5)有几何背景的圆锥曲线问题一直是命题的热点.

(6)数列与《解析几何》问题的携手是一种值得关注的动向.

求曲线方程、求弦长、求角、求面积、求特征量、求最值、证明某种关系、证明定值、求轨迹、求参数的取值范围、探索型、存在性讨论等问题仍将是常见的问题.重点题型要熟练掌握,如: (1)中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数 (2)焦点三角形问题

椭圆或双曲线上一点,与两个焦点构成的三角形问题,常用正、余弦定理搭桥. (3)直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法

(4)圆锥曲线的有关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决

<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决;

<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值 (5)求曲线的方程问题

<1>曲线的形状已知--------这类问题一般可用待定系数法解决; <2>曲线的形状未知-----求轨迹方程

(6) 存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内(当然也可以利用韦达定理并结合判别式来解决)

三、高考热点新题:

1.已知F 1,F 2是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P (1,22

)在椭圆上,线段PF 2

与y 轴的交点M 满足2PM MF =

(1)求椭圆的标准方程;

(2)过F 1作不与x 轴重合的直线l ,l 与圆2

2

2

2

x y a b +=+相交于A 、B .并与椭圆相交于C 、

D .当22F A F B λ?= ,且2

[,1]3

λ∈时,求△F 2CD 的面积S 的取值范围.

2.如图,已知直线l 与抛物线24x y =相切于点P (2,1),且与x 轴交于点A ,O 为坐标原点,定点B 的坐标为(2,0).

(1)若动点M

满足|0AB BM AM ?=

,求动点M 的轨迹C ;

(2)若过点B 的直线/l (斜率不等于零)与(I )中的轨迹C 交于不同的两点E 、F (E 在B 、F 之间),试求△OBE 与△OBF 面积之比的取值范围. 3.设椭圆

2

211

x

y m +=+的两个焦点是1(,0)F c -与2(,0)F c (0)c >,且椭圆上存在点M ,使120MF MF ?=

.

(1)求实数m 的取值范围;

(2)若直线:2y x ι=+与椭圆存在一个公共点E ,使得12||||EF EF +取得最小值,求此最小值及此时椭圆的方程;

(3)在条件(2)下的椭圆方程,是否存在斜率为(0)k k ≠的直线ι,与椭圆交于不同的两点

A 、

B ,满足AQ QB = ,且使得过点Q ,N (0,-1)两点的直线NQ 满足0NQ AB ?=

?若

存在,求出k 的取值范围;若不存在,说明理由.

4.设椭圆:C )0(12222>>=+b a b

y a x 的离心率为e =22

,点A 是椭圆上的一点,且点A 到椭

圆C 两焦点的距离之和为4. (1)求椭圆C 的方程;

(2)若椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围.

答案:

1.解:(1):∵2PM MF =

∴M 是线段PF 2的中点.

∴OM 是△PF 1F 2的中位线.又OM⊥F 1F 2.∴PF 1⊥F 1F 2.

∴22

111

12c a b =???+=?? 解得2222,1,1a b c ===.

∴椭圆方程为2

212

x y +=. (2)设l 方程为1x ty =-, 1122(,),(,)A x y B x y

由22

13x ty x y =-??+=? 得22(1)220t y ty +--= 2211221212(1,)(1,)(2)(2)F A F B x y x y ty ty y y ?=-?-=--+

21212(1)2()4t y y t y y =+-++2

4

21

t =

-+ 由222[,1]3F A F B ?∈ 得2

11[,]32

t ∈.

由22

112

x ty x y =-???+=?? 得22(2)210t y ty +--= 设3344(,),(,)C x y D x y .

则2

1234341||||||2F CD

S F F y y y y ?=-=-=设2

1m t =+,

则43

[,]32S m =

=∈

S 关于m 在43[,]32

上是减函数.所以S ∈

2.解:(I )由22144x y y x ==得, 1

.2

y x '∴=∴直线l 的斜率为2|1x y ='=,

故l 的方程为1y x =-,∴点A 坐标为(1,0)

设(,)M x y 则(1,0),(2,),(1,)AB BM x y AM x y ==-=-

由|0AB BM AM ?=

(2)00.x y -+?=

整理,得2

2 1.2

x y += ∴动点M 的轨迹C 为以原点为中心,焦点在x 轴上,

长轴长为短轴长为2的椭圆 …… 5分

(II )如图,由题意知直线l 的斜率存在且不为零,设l 方程为y=k (x -2)(k ≠0)①

将①代入2

212

x y +=,整理,得 2222(21)8(82)0k x k x k +-?+-=,

由△>0得0

.

设E (x 1,y 1),F (x 2,y 2),则21222

1228,21

82.21k x x k k x x k ?+=??+?-?=?+?

② 令||,||OBE OBF S BE S BF λλ??==则,

由此可得1

22

,,0 1.2

x BE BF x λλλ-=?=<<- 且 由②知1224

(2)(2),21

x x k --+-=

+

121212222

22

22

22)(2)2()4.

21

2141,.10(1)8(1)21411

0,0,2(1)22

3301,x x x x x x k k k k λλλλλλλλ-?-=-++=

++∴==-++<<∴<-<+-<+<< (即分解得

31λ∴-<.

∴△OBE 与△OBF 面积之比的取值范围是(3-

,1)

3.解:(1

)由椭圆定义可得12MF MF +=,由120,MF MF ?=

可得

2

2

124MF MF m +=,而2

22

1212

(),42(1).2

MF MF MF MF m m ++≥∴≥+

解得 1m ≥

(2)由22

211

y x x y m =+???+=?

+?,得2

(2)4(1)3(1)0m m x m +++++=, 216(1)12(2)(1)4(1)(2)0m m m m m ?=+-++=+-≥

解得2m ≥或1m ≤-(舍去) 2m ∴≥

此时12EF EF +=≥当且仅当2m =时,12EF EF +

得最小值

此时椭圆方程为2

213

x y += (3)由AQ QB =

知点Q 是AB 的中点

设A,B 两点的坐标分别为1122(,),(,)A x y B x y ,中点Q 的坐标为(,)x y

则22

112

222

13

1

3

x y x y ?+=????+=??,两式相减得1

2121212()()()()03x x x x y y y y +-++-= 211221123()

y y x x

x x y y -+∴

=--+ ∴AB 的中点Q 的轨迹为直线13y x k =-①

且在椭圆内的部分

又由0NQ AB ?= 可知NQ AB ⊥,所以直线NQ 的斜率为1

k

-,

方程为1

1y x k

=--②

①②两式联立可求得点Q 的坐标为31(,)22

k -

点Q 必在椭圆内 2

23()1

2()132

k -∴+< 解得21k <

又k o ≠ (1,0)(0,1)k ∴∈-

4.解:(1)依题意知,24, 2.a a =∴= ∵2

2

=

=

a c e ,2,222=-==c a

b

c . ∴所求椭圆C 的方程为12

42

2=+y x . (2)∵ 点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,

∴ ???????+?=+-=?--.222

,1210101

01

0x x y y x x y y

解得:001435y x x -=

,00

1345

y x y +=. ∴011543x y x -=-.

∵ 点P ()00,y x 在椭圆C :12

42

2=+y x 上,∴220≤≤-x , 则105100≤-≤-x . ∴1143y x -的取值范围为[]10,10-.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2012年高考数学解析几何专题攻略

2011年高考数学解析几何专题攻略 一、10年高考真题精典回顾: 1.(2010浙江理数)(本题满分15分)已知m >1,直线2 :02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程; (Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数 m 的取值范围. 解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。 (Ⅰ)解:因为直线:l 202 m x my --= 经过20)F , 22m =, 得22m =, 又因为1m > ,所以m 故直线l 的方程为02 x - =。 (Ⅱ)解:设1122(,),(,)A x y B x y 。 由2222 2 1m x my x y m ?=+????+=??,消去x 得 22 2104 m y my ++-= 则由2 2 28(1)804 m m m ?=--=-+>,知28m <,

且有212121 ,282 m m y y y y +=-= - 。 由于12(,0),(,0),F c F c -, 故O 为12F F 的中点, 由2,2AG GO BH HO == , 可知1121( ,),(,),3333 x y x y G h 22 2 1212()()99 x x y y GH --=+ 设M 是GH 的中点,则1212 (,)66 x x y y M ++, 由题意可知2,MO GH < 即22 2212121212()()4[()()]6699 x x y y x x y y ++--+<+ 即12120x x y y +< 而22 12121212()()22m m x x y y my my y y +=+++ 22 1(1 ()82 m m =+-) 所以 21082 m -< 即2 4m < 又因为1m >且0?> 所以12m <<。 所以m 的取值范围是(1,2)。 2.(2010辽宁理数)(本小题满分12分) 设椭圆C :22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB = .

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

近五年解析几何全国新课标2卷高考题

近五年解析几何全国新课标2卷高考题 1.2010理科(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为 (A) 22136x y -= (B) 22145x y -= (C) 22 163x y -= (D) 22 154 x y -= 2. 2011(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 (A (B (C )2 (D )3 3. 2011(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离 心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 。 4. 2012(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上 一点, ?21F PF 是底角为30 的等腰三角形,则 E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 5. 2012(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162 =的准线交 于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 6. 2013.11、设抛物线)0(22 ≥=p px y 的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) (A )x y 42 = 或x y 82 = (B )x y 22 = 或x y 82 = (C )x y 42 = 或x y 162 = (D )x y 22 = 或x y 162 = 7. 2014.10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

(完整)十年真题_解析几何_全国高考理科数学.doc

十年真题 _解析几何 _全国高考理科数学 真题 2008-21 .(12 分) 双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1 uuur uuur uuur uuur uuur 的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向. AB OB (Ⅰ)求双曲线的离心率; (Ⅱ)设 AB 被双曲线所截得的线段的长为 4 ,求双曲线的方程. 2009-21 .(12 分) 如图,已知抛物线 E : y 2 x 与圆 M : ( x 4)2 y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个 点。 (I )求 r 的取值范围: (II)当四边形 ABCD 的面积最大时,求对角线 A 、 B 、 C 、 D 的交点 p 的坐标。 2010-21 (12 分 ) 已知抛物线 C : y 2 4x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点, 点 A 关于 x 轴的对称点为 D . (Ⅰ)证明:点 F 在直线 BD 上; uuur uuur 8 (Ⅱ)设 FAgFB BDK 的内切圆 M 的方程 . ,求 9 1 / 13

2011-20 (12 分) 在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满 足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。 2012-20 (12 分) 设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , A C , 已知以 F 为圆心, FA 为半径的圆 F 交 l 于 B, D 两点; (1)若 BFD 90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A, B, F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点, 求坐标原点到 m, n 距离的比值。 2013-21 (12 分 ) 2 2 已知双曲线 C : x 2 y 2 =1 (a > 0, b >0)的左、右焦点分别为 F 1, F 2,离心率为 3,直线 y a b =2 与 C 的两个交点间的距离为6 . (1)求 a , b ; (2)设过 F 的直线 l 与 C 的左、右两支分别交于 A , B 两点,且 | AF | =| BF | ,证明: | AF | , 2 1 1 2 | AB| , | BF 2| 成等比数列. 2014-20 已知点 A(0,- 2),椭圆 E : x 2 2 3 , F 是椭圆 E 的右焦点, 2 y 2 =1 (a>b>0) 的离心率为 a b 2 直线 AF 的斜率为 2 3 , O 为坐标原点 . 3 2 / 13

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2012届高考数学压轴题预测:3、解析几何

2012届高考数学压轴题预测 专题3 解析几何 考点一 曲线(轨迹)方程的求法 1. 设)0(1),(),,(2 22 22211>>=+ b a b x x y y x B y x A 是椭圆 上的两点, 满足0),( ),( 2 2 1 1 =?a y b x a y b x ,椭圆的离心率,23 = e 短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 解析:本例(1 )通过2 e = ,22b =,及,,a b c 之间的关系可得椭圆的方程;(2) 从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与 一般的关系,分直线的斜率存在与不存在讨论。 答案:(1 )2 2.1, 2.2 c b b e a e a a === = = ?==椭圆的方程为 14 2 2 =+x y (2)设AB 的方程为3+ =kx y 由41,4320132)4(143 2212212 22 2+-=+-=+=-++?? ????=++=k x x k k x x kx x k x y kx y 由已知 4 3)(4 3)4 1()3)(3(41021212 21212 212 21+ ++ + =+++=+= x x k x x k kx kx x x a y y b x x ±=++-? + +- += k k k k k k 解得,4 34 324 3)41 (4 42 2 2 2 (3)当A 为顶点时,B 必为顶点.S △AOB =1 当A ,B 不为顶点时,设AB 的方程为y=kx+b 42042)4(14 2212 222 2+-=+=-+++?? ????=++=k kb x x b kbx x k x y b kx y 得到 44 2 2 21+-= k b x x :04 ) )((0421212121代入整理得 =+++?==b kx b kx x x y y x x 4 22 2 =+k b 4 1644|||4)(| |2 1||||2 12 2 2212 2121++-= -+= -- =k b k b x x x x b x x b S

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

2011年—2017年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何 【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知 24=AB ,52=DE ,则C 的焦点到准线的距离为 (A )2 (B )4 (C )6 (D )8 【2016,5】已知方程1322 22=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的 取值范围是( ) (A ))3,1(- (B ))3,1(- (C ))3,0( (D ))3,0( 【2015,5】已知00(,)M x y 是双曲线C :2 212 x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )( (B )( (C )( (D )( 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m 【2014,10】已知抛物线C :2 8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( ) A .72 B .52 C .3 D .2 【2013,4】已知双曲线C :22 22=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12 x ± D .y =±x 【2013,10)已知椭圆E :22 22=1x y a b +(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ). A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22 =1189 x y + 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32 a x =上一点,

相关主题
文本预览
相关文档 最新文档