当前位置:文档之家› The Large N Harmonic Oscillator as a String Theory

The Large N Harmonic Oscillator as a String Theory

a r X i v :h e p -t h /0408180v 2 2 J a n 2005hep-th/0408180

PUTP/2130

The Large N Harmonic Oscillator as a String Theory Nissan Itzhaki and John McGreevy Department of Physics,Princeton University,Princeton,NJ 08544We propose a duality between the large-N gauged harmonic oscillator and a novel string theory in two dimensions.

August,2004

1.Introduction

Since’t Hooft’s work thirty years ago[1]it is generally believed that large-N gauge theories admit a dual string theory description.Given the utility of such dualities for both sides,and the di?culty of?nding them,it is of interest to?nd more examples which are under precise control.The aim of this paper is to explore a new and remarkably simple duality of this kind.We address an old question that was resurrected recently[2]:what is the string theory dual of the large-N gauged harmonic oscillator?

A clue comes from the fact that the large N inverted harmonic oscillator is dual to a certain string theory in two dimensions(for reviews see[3,4,5]).Therefore,we should?nd the meaning in string theory of rectifying the inverted matrix potential.This is done in section4,after discussing some of the properties and symmetries of the large-N harmonic oscillator in sections2and3.The physics of the harmonic oscillator and the inverted oscillator are very di?erent.The latter has a continuous spectrum,while in the former the spectrum is discrete.This implies that,unlike in the standard2d-string/matrix model duality,there is no need to take a double scaling limit to?nd a continuum dual string description.Finite N corresponds to nonzero string coupling constant.In this sense, the duality we propose works more like the AdS/CFT duality[6]than the standard2d-string/matrix model duality.Since the matrix model is well-de?ned at?nite N,we will be able to de?ne and study interesting?nite-coupling e?ects in this bosonic string theory.

The observables of interest in the large-N harmonic oscillator are the overlap ampli-tudes between resonances.In section5we explain how the resonances come about on the string theory side.In section6we calculate these overlap amplitudes on both sides of the duality and show that the large-N limit of the harmonic oscillator exactly agrees with the relevant sphere amplitudes on the string theory side.In this section,we also make contact with a normal matrix model.In section7we show that the duality passes non-trivial tests involving the1/N corrections to the leading large-N behavior.Section8is devoted to a heuristic picture of the duality.

In addition to providing a new example of open/closed string duality,the relation we propose is interesting for a completely di?erent reason.The matrix harmonic oscillator is closely related to the quantum hall e?ect(QHE)and therefore the dual stringy description might be useful for understanding various open questions in the QHE,like what is the e?ective description of the quantum phase transition from one plateau to the next.In section9we brie?y speculate on this and other possible applications and generalizations.

2.The Matrix Model

The model we wish to study is the gauged quantum mechanics of an N ×N matrix harmonic oscillator,

S =1

2

.(2.2)Since there are N fermions the vacuum energy is

E 0=1

2+...+(2N ?1)

2.(2.3)

The Hilbert space is spanned by states labelled by N integers k n such that 0≤k 1

H |k 1,k 2,...,k N =

N 2

∞ k 1=0∞ k 2=k 1+1...∞ k N =k N ?1+1q N n =1k n .(2.5)

Performing the sums sequentially we get

[8]

Z =q N 2/2

N n =11

2+

N n =1α?n αn ,(2.7)

and we are using stringy conventions for the commutators

[αm,αn]=nδn+m.(2.8)

Later on we shall argue that this chiral boson is(up to normalization)equivalent to the target-space?eld of the string description.Note that for?nite N,the momentum modes of the chiral boson are truncated in a clean way.This is another example of the stringy exclusion principle[9,10],about which we will say more in section5.

To understand this boson description in more detail,we introduce matrix raising and lowering operators

a i j=1

2 X i j+iP i j ,a?i j=12 X i j?iP i j ,(2.9)

where P is the momentum conjugate to the matrix X.These operators satisfy

[a i j,a?k l]=δi lδk j,[H,a]=?a,[H,a?]=a?.(2.10) The vacuum is de?ned by a i j|0 =0.The states

|{m i} ≡c{m i}

r

i=1tr(a?m i)|0 ,(2.11)

with m1≥m2≥...≥m r provide a useful basis for the Hilbert space.From(2.10)we see that indeed the spectrum is evenly-spaced.Note that the stringy exclusion is the statement that

m i≤N(2.12) in order that these states be linearly independent.

An orthonormal basis of states can be constructed from(2.11)as

|R({m i}) =c{m i}χR({m i})(a?)|0 (2.13) (see e.g.[11]or[12]1)where R({m i})is the representation of U(N)corresponding to the Young tableau with columns of lengths(m1,m2,...,m r)andχR(U)is the character of U

in this representation.The bound m i≤N guarantees that this is indeed a tableau for a U(N)representation.

In terms of the free-fermion description,the wavefunction for the state(2.13)is a Slater determinant constructed as follows.Look at the tableau{m i}sideways,de?ne k n to be the row-lengths;note that there are at most N rows by(2.12).The many-fermion wavefunction is then

z1|? z2|··· z N|R({m i}) =det

n,l=1,..,N ψk

n+N?n+1

(z l)(2.14)

whereψn(z)= n|z =H n(z)e?|z|2/2are the single-particle harmonic-oscillator wave-functions.For example,for the empty tableau,this?lls the lowest N energy levels with

fermions.The state tr(a?)k|0 corresponds to exciting k fermions by one level each–it makes a hole in the fermi sea at level N?k.For m=N,the hole is at the lowest state.For

m>N,there is no such single-particle description,in accord with the stringy exclusion

principle.

This is the same Hilbert space as that of two-dimensional Yang-Mills theory on a

cylinder(see e.g.[13]).The Hamiltonian for the matrix oscillator is,however,the number

of boxes in the tableau,

(H?E0)|{m i} =

r

i=1m i|{m i} (2.15)

rather than the second Casimir C2(R).

3.Symmetries

As is well-known(see e.g.§12of[4])there are in?nitely many conserved charges associated with the harmonic oscillator.These charges generate the w∞algebra that controls much of the physics of the system,and was studied quite intensively in the case of the inverted harmonic oscillator[14]in relation with the c=1theory.Although most of our discussion can be obtained from these papers by plugging i’s in the right places,we ?nd it useful to be explicit because the harmonic oscillator physics is quite di?erent from the inverted oscillator physics.

At large N,a semi-classical description exhibits most of the relevant physics in a simple way.Semi-classically,the eigenvalues form a Fermi sea in phase space.It is most convenient to parametrize the phase space by

U=(X+iP)

2

,V=U?=

(X?iP)

2

,(3.1)

which satisfy the Poisson bracket

{U,V}P B=i.(3.2) The Hamiltonian is H=UV,and thus

U(t)=e?it U(0),V(t)=e it V(0),(3.3) which implies that following charges are conserved

Q n,m=e i(n?m)t U n V m.(3.4) These charges form the w∞algebra

{Q n,m,Q n′,m′}P B=i(nm′?mn′)Q n+n′?1,m+m′?1.(3.5) The ground state is obtained by?lling states in the phase space up to the Fermi surface

UV=N,(3.6)

so that the area in units of the Poisson brackets(3.2)is equal to the number of fermions.

Excitations above the ground state can be described using area-preserving transfor-mations of the phase space.The area is preserved since it corresponds to the number of fermions.Area-preserving transformations can be described using a single scalar function h(U,V),a basis for which are

h nm=U n V m,(3.7)

n and m must be integers in order to preserve the connectivity of the fermi surface.h nm determines a vector?eld that is associated with an in?nitesimal area-preserving transfor-mation of the U-V plane,

B nm =

?h nm

?V

?U.(3.8)

The Lie brackets of the B nm’s form a w∞algebra.

The vector?eld B nm clearly depends both on n and m.However,when acting on the ground state(3.6), B nm depends only on|s|=|n?m|.Let us see how this comes about. Eq.(3.8)implies that h nm generates the following in?nitesimal deformation

δV=??U h=?nU n?1V m,δU=???V h=??mU n V m?1.(3.9)

Therefore,to leading order in?,we?nd that

(V+δV)(U+δU)=UV+?(n?m)U n V m.(3.10)

If UV is to begin with a constant(like in the ground state)then(3.10)implies that the deformation of the Fermi surface is

δ(UV)~? U

with a as in(2.9).Momentarily we shall claim that these are dual to excitations of the closed string”tachyon”.As should be clear from the semi-classical discussion above,there are other single trace operators in the theory that involve both a?and a.These are associated with the h nm with m=0.For example,consider the operator

tr(a(a?)2).(3.15)

Acting with this operator on the ground state has the same e?ect as acting with tr(a?). Namely,both take the ground state to the?rst excited state.However clearly these operators are not the same.In fact we will see that it is natural to relate these operators to discrete states in the dual stringy description.

At this point we encounter a small puzzle.At the quantum level there seem to be many more excitations than at the semi-classical level,which clearly makes no sense.To see this we note that there are many di?erent single trace operators that at the semi-classical level are associated with the same h nm.The simplest example is tr(aa?aa?)and tr(a2a?2). On the one hand,since in a non-Abelian theory the order inside the trace matters,these are di?erent operators.On the other hand semi-classically they are both associated with h2,2.The fact that the theory is gauged resolves this issue:in one dimension there is no electric or magnetic?eld and so the current that couples to A must vanish on-shell,2

j=[X,D0X]=i[a,a?]=0.(3.16)

This implies that operators which di?er by such commutators actually give the same result when acting on physical states.As a result,the inequivalent single-trace operators are in1-to-1correspondence with w∞generators.In section5we discuss further these operators at the quantum level.

Eq.(3.16)is reminiscent of a normal matrix model(for a recent discussion in relation with the c=1theory see[15]).We will elaborate on this connection in§6.

4.The dual string theory

Generally speaking it is not an easy task to?nd the stringy dual description of some large-N gauge theory.In our case a natural candidate comes from the well-studied duality between2d string theory with a Liouville direction and matrix quantum mechanics.The matrix quantum mechanics dual to2d string theory is closely related to the one that we are considering.The kinetic term is the same and the sign of the potential term is?ipped. Namely,the free fermions experience the celebrated inverted quadratic potential,rather then the harmonic oscillator potential of our case.Starting from that well-tested duality, what we have to do is?gure out what it means,on the string theory side,to?ip the potential,and see if what we get makes sense.In this section we discuss the meaning of?ipping the potential on the string theory side.In the rest of the paper we test our conjecture for the dual stringy description.

As was emphasized in[3]the curvature of the potential in the matrix model is related to the tension of the dual string theory by

U(x)=

1

α′(:?X?X:?:????:)+

Q

α′

?2?,Q=b+1/b=2.(4.3)

Adding the Liouville term,we end up with the following worldsheet action

S=1

g ??αX?αX+?α??α?+√α′ .(4.4)

According to the reasoning above,to?nd the candidate dual to the large-N harmonic oscillator we could either apply(4.2)or double Wick rotate

X→iX,?→i?.(4.5)

Either way we get a CFT whose stress tensor is

T(z)=1

4πα′ d2σ√α′R(2)Q?+μ0e i2b?/√

in the free theory,μ0=0.However,as we shall see in the next section,in the interacting theory1/μ0is the parameter that controls the genus expansion.

From(4.9)we also see that now,again unlike the usual case,we can compactify?. The allowed radii of compacti?cation seem to be

R=m/2,(4.10)

where m is an integer.However,since non-perturbatively there are D-branes and open strings e?ects in the theory,the open-string coupling constant should be well-de?ned.Since g2o=g s we?nd that m is an even number.So the smallest possible radius is1

?~?+2π.(4.11)

The dual string theory we propose to the large-N harmonic oscillator is(4.8)with this periodicity condition(4.11).

A useful way to think about the radius of the?direction is that?is dual toθof

(3.12),which has the same periodicity.The relation we are proposing between the large-N harmonic oscillator and that string theory is simple:X should be identi?ed with the quantum mechanics time and?should be identi?ed with the angular variable,θ,in phase-space.This seems to make sense since excitations in both descriptions travel at the same speed(1in our units)regardless of their energy.Note,however,that on the string theory side,at least naively,there are both left-movers and right-movers(in the target space), while on the quantum mechanics side there are only left-movers.In the next section we will see how to resolve this apparent contradiction.

5.Correlation functions

In this section we describe the map between the quantum mechanics and the string theory degrees of freedom and compare their correlation functions.This section is devoted to a more qualitative illustration of the dictionary between the two sides of the duality. More details can be found in the next section.

Let us start with the quantum mechanics side.The observables of interest are the overlaps between di?erent states

O(bra;ket)= bra|ket .(5.1)

Since the time evolution in the theory is trivial,in principle,all other gauge invariant observables are determined by these overlap amplitudes.The simplest case corresponds to what we loosely speaking call a two-point function,namely(5.1)with

bra|= 0|tr(a k1),|ket =tr((a?)k2)|0 .(5.2) By counting index lines,we see that the leading contribution in the large-N limit goes like

O(k1;k2)~δk1,k2N k1.(5.3)

As usual there are1/N corrections.What is special about this large-N theory is that here the1/N corrections are truncated after a?nite number of https://www.doczj.com/doc/094924540.html,ly,

O(k1;k2)=δk1,k2[k1/2]

l=0C l(k1)N k1?2l,(5.4)

where the C l’s depend on k1but not on https://www.doczj.com/doc/094924540.html,ter on we shall see how this comes about on the string theory side.

The analog of a three-point function is(5.1)with

bra|= 0|tr(a k),|ket =tr((a?)k1)tr((a?)k2)|0 .(5.5)

In that case the leading contribution in the large-N limit is

O(k;k1,k2)~δk,k1+k2N k?1.(5.6)

We now turn to the string theory side.The ghost-number-two cohomology contains the tachyon vertex operator

T±k=cˉc e?ik(X±?)e i2b?,(5.7)

where the factor e i2b?is the string coupling that multiplies the tachyon wave function, and k is an integer due to the periodicity(4.11).There are four kinds of modes,with the following interpretations

T+

k>0

:incoming leftmover,T?k>0:incoming rightmover,

T+

k<0

:outgoing leftmover,T?k<0:outgoing rightmover.

Note that to make the relation with the matrix model simple,the energy in the X direction (rather than in the ?direction which is actually the time direction in this background)determines in our terminology if a wave is incoming or outgoing.

S-matrix amplitudes are constructed in the usual fashion,and take the form

A (k 1,k 2,...,k n +;k n ++1,...,k n ++n ?)= D X D ?e ?S n ++n ?

i =1 d 2σ√

n !

( d 2σ√ge ik i ?±ik i X e i 2b?,

where

S 0=1g ?αX?αX ??α??α?+iR (2)Q? .(5.10)

Eq.(5.9)now takes the form of a sum over amplitudes in the free theory with the same tachyon (or any other closed string mode)insertions plus additional insertions of the screen-ing operator, d 2σ√2(k +tot ?k ?tot )=0,(5.12)

where g is the genus and n is the number of insertions of the screening operator.This relation is the equivalent of momentum conservation in the ?direction.The last two terms need no explanation.The rest of the terms are usually called the background charge,as

they are induced by the coupling of?0to the integral of the world sheet curvature which is

χ=2?2g?h,

where h is the number of holes;in our case h corresponds to the total number of closed string https://www.doczj.com/doc/094924540.html,bining(5.12)and(5.11)we get

k?tot=?k+tot=2?2g?(n+n++n?).(5.13)

This relation implies that1/μ0is indeed the genus expansion parameter:Given a certain amplitude determined by k i,n+and n?,we see that as we increase g,we decrease n,the power ofμ0.The phases arising from the complex dilaton conspire to makeμ?10the string coupling constant.In fact,comparing(5.13)to the’t Hooft counting of powers of N,we see that we can identify

μ0~N.(5.14) Now we are ready to compare some stringy amplitudes with the quantum results mentioned at the beginning of this section.Let us start with1→1amplitudes.There are two possible ways to satisfy the energy conservation(5.11)and momentum conservation(5.12) conditions on the sphere(g=0).The?rst is to take n=0and k?tot=k+tot=0.This can be achieved by having two particles with the same chirality and opposite energy(say n+=2and n?=0).Such amplitudes vanish since they involve only two closed string insertions,which do not su?ce to saturate the ghost zero modes on the sphere.Indeed there is no dual quantum mechanical amplitude for these scattering amplitudes.

The second way to saturate(5.11),(5.12)is more interesting.We take one particle with positive chirality and energy k and another particle with the negative chirality and energy?k.So n+=1and n?=1.From(5.13)we see that n=k and so the amplitude scales like

A(k;?k)~μk0~N k.(5.15) This amplitude does not vanish since(due to the insertions of the screening operators) it involves more than two closed string insertions on the sphere.It is natural to make the following identi?cation between the closed string modes and the quantum mechanics operators

T+

k>0?tr((a?)k),T?k<0?tr(a k).(5.16)

Indeed we see that(5.15)is in agreement with the harmonic oscillator result(5.3).Notice

and T?k>0vanish.3This resolves the puzzle arising from that amplitudes that involve T+

k<0

the naive expectation that we should have twice as many stringy modes as excitations of the Fermi surface,raised at the end of the previous https://www.doczj.com/doc/094924540.html,ly,just like in the harmonic oscillator,we only see tachyon wavefunctions with p?=?i??negative.In this ’imaginary’version of Liouville theory,there is a sense in which the Seiberg bound becomes the fact that the target-space?eld is chiral.

Stringy exclusion

As usual in string theory there are corrections from higher-genus worldsheets.Since n≥0we?nd from(5.13)non-vanishing amplitudes only for

g≤ k

3In the next section we shall see how this comes about in higher point functions as well.

5.1.Discrete states

The closed-string ghost-number-two cohomology contains other states,known as dis-crete states,that are the remnants of the massive modes of the string.In the usual c=1 theory they appear as non-normalizable modes with imaginary energy(or real Euclidean energy)and imaginary Liouville momentum.In our case they become normalizable prop-agating modes that are as important as the tachyon modes discussed above.

Let us review how the discrete states come about.The simplest way to think about them is in terms of the chiral SU(2)current algebra

J±(z)=e±2iX(z),J3(z)=i?X(z).(5.19)

The highest weight?elds with respect to this algebra areΨj,j(z)=e2ijX where j= 0,1/2,1....With the help of J?0= dz

(2j++2j?)=0,(5.22)

2

and so the sphere amplitude scales like

.(5.23)

A(m?,j?;m+,j+)~δm++m?μj++j?

On the quantum mechanics side we can follow the same steps.The SU(2)generators

are

J+=1

2

tr(a2),J3=

1

The simplest way to calculate1→m overlap amplitudes

O(k;k1,k2,...k m)= 0|tr(a k)tr((a?)k1)tr((a?)k2)...tr((a?)k m)|0 ,(6.3)

in the large-N limit is to use the w∞algebra m times to move tr(a k)to the right.From (3.5)5we get

O(k;k1,k2,...k m)=δk,k1+k2+...k m k(k?1)(k?2)...(k?m+2)k1k2...k m N k?m+1.(6.4)

To match this on the string theory side,we have to compute the relevant sphere amplitudes in full detail.As explained in the previous section the relevant calculation is equivalent to scattering amplitudes in the free theory(μ0=0)with extra insertions of the screening operator.In particular,on the sphere we get for the1→m tachyon scattering amplitude

A(k;?k1,?k2,...,?k m)μ

0=

μn0

Γ(k i)

πr?2

(k?m+1)!(k?1)! μ0Γ(1)Γ(k i).(6.7) This expression contains some zeros and some in?nities that must be dealt with before comparing with the harmonic oscillator results.There are two kinds of zeros.The?rst comes from the(1/Γ(0))k?m+1and is due to the screening operators.Recall that to obtain

?nite results in the Liouville theory one needs to renormalize the cosmological constant when b→1(see e.g.[31]).To be precise we need to takeμ0→∞and b→1while keeping

μ=πμ0

Γ(b2)

Γ(0) in that equation byμ/π.A precise way to think about this procedure is the following. Take b=1+?/2and twist the boundary condition on the tachyon?eld T(?)=e2πi?T(?+ 2π).That twisting has the e?ect of lifting the tachyon zero mode to k=?so that the μ0Γ(1)/Γ(0)in(6.7)becomesμ0Γ(1+?)/Γ(?)and in the limit?→0we simply getμ/π.

The formula(6.7)also vanishes when one of the outgoing momenta,?k i,is positive. This is exactly as it should be since there are no operators on the harmonic oscillator side that correspond to T?k>0(see discussion after eq.(5.18)).

In?nities arise from theΓfunctions when k i>0.The reason for these in?nities is that the amplitudes are sitting on a resonance.Physically there is no region of interaction,the particles are always nearby and they keep interacting forever.In the harmonic oscillator side we avoided this by not propagating in time each of the operators.To realize the same e?ect on the string theory side we need to introduce leg factors.Heuristically,these can be viewed as putting back the external legs that are missing in the amputated S-matrix elements calculated by string theory amplitudes.The way to?nd the relevant leg-factors is to match the two-point function on both sides of the duality.Then one can test the duality by comparing the higher point functions.The relevant leg-factors are7

f ket(k)=?1

Γ(?k)

,(k<0)and f bra(k)=πΓ(k)Γ(k+1),(k>0).(6.9)

Putting all of this together one?nds that the relation between the string theory scattering amplitudes and the matrix model overlap amplitudes for the1→m processes is

O(k;k1,k2,...k m)=f bra(k)

m

i=1f ket(k i)A(k;?k1,?k2,...?k m)μ,(6.10)

?Γ(n+1)

+O(?0))but that would have made the relation with the matrix model a bit more clumsy.

withμ=N.This relation holds in the1→1cases by construction.The fact that it holds for the other cases(m>1),that have non-trivial dependence on the k’s(see eq.(6.4))is an encouraging consistency check of the proposed duality.

So far we did not consider the winding modes.Since?is compacti?ed,modular invariance implies that there must be winding modes in the theory.But there are no candidate dual operators for the winding modes in the quantum mechanics.8This is exactly the same puzzle we have encountered with the momentum modes with opposite chirality.In that case the resolution was that scattering amplitudes with at least one opposite-momentum mode vanish.The same is expected to happen for the winding modes. As in the case of the momentum modes with opposite chirality,we do not know how to prove this in general,but we demonstrate it here for some cases.Consider,for example, scattering amplitudes of m winding modes.The analog of(5.12)in that case is

2?2g?(n+m)=0,(6.11)

where again n is the number of insertions of the screening operator.We see that no amplitude with m>2can satisfy this relation.For m=1and m=2the relation can be satis?ed on the sphere with n=1and n=0respectively.But both cases vanish since they involve only two insertions of closed strings on the sphere.

6.1.Normal matrix models and matrix integral representation

We end this section with a discussion on a relation with normal matrix models.A normal matrix model(NMM)is an integral over complex matrices Z such that[Z,Z?]=0. The fact that Z commutes with its conjugate implies that,much like in the case of a single matrix,in many interesting cases the model can be described in terms of the eigenvalues of Z and Z?.The NMM that appears to be related to the quantum mechanics described here takes the form

Z NMM(J,J?)= [Z,Z?]=0d N2Zd N2Z?e?tr(Z?Z+ZJ?+Z?J).(6.12) The normal-matrix constraint in the path integral can be imposed with a Lagrange mul-tiplier matrix A,

δN2 i[Z,Z?] = dA e tr[Z,Z?]A,(6.13)

随机过程作业

第三章 随机过程 A 简答题: 3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。 3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。 3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系 3-4 高斯过程主要有哪些性质 3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。 3-7 窄带高斯过程的同相分量和正交分量的统计特性如何 3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布 3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。 3-10 写出带限高斯白噪声功率的计算式。 B 计算题: 一、补充习题 3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。 ①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。 ②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。 3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0 ()2 N P ω= 双,通过下图()a 所示的相干解调器。图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。 ②给出0()n t 的噪声自相关函数及其噪声功率值。 3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2 n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()y t ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。假设()c n t 及()s n t 的带宽等于低通滤波器的通频带。 求()u t 和()v t 的平均功率之比。

机场集团战略规划

XX民航机场集团有限责任公司 发展战略 二〇一一年三月 目录战略设计的总体架构

XX 机场集团公司总体战略 战略目标: 到2015年,将 XXXX 国际机场建设成为大型国际枢纽机场,将成员机场建设成为国内各层级的领先机场,将XX 机场集团公司打造成为具有国际竞争力的机场管理集团。 发展战略: XX 机场集团公司以科学发展观为统领,实施以机场管理、机场服务保障和机场建设为主业,以临空产业为辅助的发展战略。发挥XXXX 国际机场的龙头作用,着力提高机场整体 管理水平,提升机场安全和服务品质,提升机场综合保障能力,提升机场资源价值,实现全面协调可持续发展,为国民经济和社会发展服务。 XX 民航 机 场集团 公司总体战略 行 动 计

定位: XX机场集团公司是以XXXX国际机场为龙头的机场管理集团公司,是集团企业的核心,是全集团的战略中心、投融资中心、绩效管理中心和风险控制中心。 第一章机遇与挑战(外部环境) 国内宏观经济保持良好势头 改革开放30多年来,尤其是2003年以来,中国经济一直保持两位数的增长,综合国力增强,人民生活改善,改革取得重要进展,对外开放实现新突破。1979—2010年,GDP 年均实际增长%,大大高于同期世界经济年平均增长速度。 当前虽然面临经济和金融危机的冲击,但宏观调控与经济刺激政策初见成效,经济运行出现积极变化,有利条件和积极因素增多,总体形势企稳向好。国家全面建设小康社会指明了未来发展的方向,到2020年,人均GDP将比2000年翻两番,基本实现工业化。高技术、高附加值产业和现代服务业的加快发展,带来的物流、人流必然会前所未有地增加对航空运输的需求。 地区经济继续保持较快增长 近年来,XXXX宏观经济继续保持较快增长,综合经济实力跃上新台阶;地区生产总值由2005年的3905亿元,增长到2010年11620亿元,年均增长%,经济总量由全国后列进入中列。 2010年,XXXX人均GDP接近7000美元,位居全国前列。“十二五”期间,XX工业化、城镇化加快推进,消费结构加速升级,社会事业快速发展,航空运输将继续保持旺盛需求。

谐波和无功功率的产生(Generation of harmonic and reactive power)

谐波和无功功率的产生(Generation of harmonic and reactive power) Reactive power is also called ineffective power and reactive power. Take a simple example: for example, eat steamed stuffed bun, it was originally to eat 3 to eat, the first two buns is equivalent to reactive power, and the third baozi is active power. The common compensation is reactive power compensation in parallel with the power capacitor in the loop. Harmonics: periodic voltage and current signals of any frequency other than the fundamental frequency (50Hz or 60Hz) are called harmonics. In power system, the commonly used method to suppress harmonics is to adopt parallel passive filter or active filter Passive filters generally use capacitors and reactors in series to form a low impedance loop, which is used to absorb harmonics in the system, also known as passive filters According to the harmonic condition of the system, the active filter produces a harmonic source which is the same as the harmonic direction and the current is equal to counteract the harmonic produced in the system. Also known as active filter 1, when the power is connected to inductive or capacitive load, due to inductive or capacitive load is a complex, expression power is a complex, the imaginary part is called reactive power. But the perceptual load vector angle lag, capacitive load vector angle advance. In order to make the reactive power as small as possible under the condition that the apparent power

湖北机场集团公司

湖北机场集团公司 湖北机场集团公司 湖北机场集团公司成立于2004年3月,是首都机场集团公司下属的全资子公司,注册资金1.5亿元,目前下辖武汉、恩施、襄樊三个机场和宜昌航管站。 组建以来,湖北机场集团公司积极落实“中部崛起”战略,以建设武汉航空枢纽、打造城市发展制高点和临空经济亮点、促进区域经济发展为己任,以建设管理型机场样板、争创国内机场改革发展先锋为目标,始终不渝地围绕管理型机场建设,提升运营标准,完善管理模式,实施组织变革,创新市场开发,坚定不移地推进机场由经营管理型向管理型迈进。 2011年4月30日,武汉天河机场A380备降场改造工程全部施工完毕,该工程投入使用后,武汉天河机场成为中部地区唯一可备降A380飞机的大型国际机场。2012年4月,国际航站楼扩建工程顺利通过行业验收后交付使用,满足高峰小时1100人次的需求,为武汉天河机场成为重要的门户机场奠定了基础。2012年6月,武汉天河机场三期可研获批;7月,举行了武汉市天河机场三期暨交通中心开工仪式,武汉机场向着全国重要的枢纽机场又迈出了一步。2013年,集团公司将采用差异化发展举措,重点推动“国际、物流、中转”三大核心业务的发展,朝着“门户+枢纽”的战略目标,持续做好品质化经营和建设工作。 2012年,全集团完成旅客吞吐量1462.5万人次,同比增长13.9%;货邮吞吐量13.1万吨,同比增长4.8%;航班起降18.6万架次,同比增长16.6%。其中,武汉机场旅客吞吐量1398.1万人次,同比增长12.2%,国内排名继续保持第13位;货邮吞吐量12.8万吨,同比增长4.4%;航班起降13.2万架次,同比增长13.2%。 ------------最新【精品】范文

Harmonic Drive

164 Produktbeschreibung CSG-2UH Units Baureihe CSG-2UH Die Harmonic Drive AG hat die bew?hrten HFUC-2UH Units wei-terentwickelt. Durch die Optimierung der Flexspline- und Circular Spline Verzahnung und des Wave Generator Kugellagers konnte die Drehmomentkapazit?t im Vergleich zu HFUC-2UH Units um 30 % und die Lebensdauer um 40 Bei Belastung der CSG-2UH Units im Vergleich zu HFUC-2UH Units identischer Baugr??e sogar mehr als dreimal h?her. Leistung / Gewicht Power / Weight Leistung / Baul?nge Power / Axial Length Leistung / Durchmesser Power / Outer Diameter Massentr?gheitsmoment Moment of Inertia übertragungsgenauigkeit Transmission Accuracy Gewicht Weight Axiale L?nge Axial Length Lebensdauer Life

首都机场集团公司奖惩规定(修订)印发版

1.目的 1.1.为了维护首都机场集团公司(以下简称“集团公司”) 正 常的生产和工作秩序,树立良好的企业形象,鼓励员工 发挥工作积极性和创造性,提高劳动生产率和工作效率,依据有关法律法规特制定本规定。 2.适用范围 2.1.本规定适用于集团公司以及全资、控股、有实质性控制 力的参股成员企业(以下简称“各成员企业”)。 3.术语 3.1.奖励 包括全国级奖励、民航级奖励、集团公司级奖励和各成员企业级奖励,每级奖励包括综合奖项和专项奖项。 3.2.违纪行为 管理文件第 1 页共 16 页 2016年4月25日

指员工违犯国家法律法规和本企业规章制度的行为。违纪行为按轻重程度分为严重违纪行为、中度违纪行为和轻度违纪行为。 3.2.1.严重违纪行为 指性质恶劣、情节严重、给企业造成重大损失的违纪行为。 3.2.2.中度违纪行为 指性质较恶劣、情节较严重、给企业造成较大损失的违纪行为。 3.2.3.轻度违纪行为 指情节较轻和轻微违反劳动纪律、给企业造成一定损失的违纪行为。 3.3.行政处分 指企业根据国家法律法规或本企业规章制度,对犯有违纪行为的员工给予的一种制裁。行政处分的种类有:违纪解除劳动合同(或上岗协议)、留用察看、撤职、降级、记大过、记过、警告和通报批评等。 3.4.经济处罚 指企业根据国家法律或本企业规章制度,对犯有违纪行为给企业造成损失的员工给予的一种经济制裁。 4.原则 4.1.精神鼓励和物质鼓励相结合,精神鼓励为主;

4.2.思想教育和惩罚相结合,思想教育为主。 5.职责 5.1.集团公司总经理 5.1.1.审批集团公司奖惩规定。 5.1.2.审批高级管理人员及职能部门人员的奖励及处罚。 5.1.3.审批集团公司级(含)以上的奖励。 5.2.集团公司职能部门 5.2.1.人力资源部 5.2.1.1.拟订并完善集团公司奖惩规定。 5.2.1.2.指导成员企业制订本企业的奖惩规定。 5.2.1.3.组织调查高级管理人员及职能部门人员违反人事、劳 动、用工制度的行为。 5.2.2.党群工作部 5.2.2.1.组织制定和完善集团公司各类奖项的评选办法。 5.2.2.2.组织对高级管理人员及职能部门人员的奖励评比活动。 5.2.2.3.组织调查高级管理人员及职能部门人员违反党纪政纪 的行为。 5.2.2.4.受理高级管理人员及职能部门人员的申诉。 5.2.3.其他职能部门 5.2.3.1.参与相关奖项的评审、推荐工作。 5.2.3.2.配合调查本部门人员的违纪行为。

ADS_Harmonic_Balance

Harmonic Balance Simulation on ADS General Description of Harmonic Balance in Agilent ADS 1 Harmonic balance is a frequency-domain analysis technique for simulating nonlinear circuits and systems. It is well-suited for simulating analog RF and microwave circuits, since these are most naturally handled in the frequency domain. Circuits that are best analyzed using HB under large signal conditions are: power amplifiers frequency multipliers mixers oscillators modulators Harmonic Balance Simulation calculates the magnitude and phase of voltages or currents in a potentially nonlinear circuit. Use this technique to: Compute quantities such as P1dB, third-order intercept (TOI) points, total harmonic distortion (THD), and intermodulation distortion components Perform power amplifier load-pull contour analyses Perform nonlinear noise analysis Simulate oscillator harmonics, phase noise, and amplitude limits In contrast, S-parameter or AC simulation modes do not provide any information on nonlinearities of circuits. Transient analysis, in the case where there are harmonics and or closely-spaced frequencies, is very time and memory consuming since the minimum time step must be compatible with the highest frequency present while the simulation must be run for long enough to observe one full period of the lowest frequency present. Harmonic balance simulation makes possible the simulation of circuits with multiple input frequencies. This includes intermodulation frequencies, harmonics, and frequency conversion between harmonics. Not only can the circuit itself produce harmonics, but each signal source (stimulus) can also produce harmonics or small-signal sidebands. The stimulus can consist of up to twelve nonharmonically related sources. The total number of frequencies in the system is limited only by such practical considerations as memory, swap space, and simulation speed. The Simulation Process 1 (FYI – skip to next section if you want to get started now) The harmonic balance method is iterative. It is based on the assumption that for a given sinusoidal excitation there exists a steady-state solution that can be approximated to satisfactory accuracy by means of a finite Fourier series. Consequently, the circuit node 1 From Agilent ADS Circuit Simulation Manual, Chap. 7, Harmonic Balance.

(管理知识)黑龙江省机场管理集团有限公司

牡丹江机场分公司 2010年党建工作要点 2010年公司党建和思想政治工作的重点是:坚持以党的十七届四中全会精神为指导,深入贯彻落实科学发展观,以“四个”转化为主线,以学习型党组织建设为重点,以“四好”、“四强”、“四优”创建为抓手,围绕中心、服务大局,继续推进反腐倡廉建设和群团建设,发挥思想政治工作优势,确保公司和谐稳定,团结带领广大干部职工,为完成机场分公司2010年的各项任务,推进公司又好又快发展而努力奋斗。 一、以创建学习型党组织为抓手,认真学习贯彻党的十七届四中全会精神 认真学习贯彻党的十七届四中全会精神是机场公司一项重要的政治任务。省机场集团已经下发了《黑龙江省机场管理集团有限公司开展创建学习型党组织活动实施方案》,分公司要按照中央建立学习型党组织的目标和要求,按照省机场的要求,以建设学习型领导班子为龙头,以创新学习为有效途径,加强党的各项建设,提高各级领导班子和管理人员能力素质,全面打造学习型党组织,促进机场分公司党建工作的全面提升。 1.建设学习型领导班子。把建设“学习型领导班子”与创建“四好领导班子”活动紧密结合起来。按照“政治素质好,经

营业绩好,团结协作好,作风形象好”的目标要求,下大气力打造学习型领导团队。坚持理论中心组集中学习制度,不仅要保证时间,在学习计划、学习内容、理论指导实践等方面都要有周密安排,确保学习的质量和成效。党政一把手要充分发挥在创建学习型领导班子中的决定作用,组织带动班子成员开展学习。 2.建设学习型党组织。各支部要结合实际,把创建“学习型党组织”活动与党的建设和精神文明建设结合起来,做到相互促进,步步深入。组织动员全体党员自觉投身到创建工作中来,深刻理解和掌握创建“学习型党组织”的意义、内容、方法、步骤和要求。制定完善创建“学习型党组织”活动的工作制度,明确工作进度和工作目标,的党员的学习情况进行督导检查,促进党员学习的自觉性,做好支部、党小组学习材料准备,为党员学习创造条件。 3.建设学习型党员队伍。学习型党员队伍建设工作,是学习型党组织建设工作基础的基础。只有每一名党员都树立强烈的学习意识,并能够自觉地运用理论指导实践,学习型党组织建设就有了最为扎实的基础。要充分发挥党小组长和其他党员骨干的积极带头作用,鼓励和引导广大党员的学习和理论实践活动,形成党员热爱学习、善于思考的良好局面。 二、以建立健全长效机制为重点,做好学习实践科学发展观活动整改落实后续工作 继续深入学习中国特色社会主义理论体系,深化广大党员对科

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

首都机场集团公司发展战略纲要

首都机场集团公司发展战略纲要 为贯彻落实民航局关于集团公司战略的有关要求,进一步明确发展思路,推动战略落地,统领后续工作,促进目标实现,根据集团公司改革发展的实际和面临的新形势,制定本纲要。 第一部分:集团公司战略目标 集团公司战略目标:到2015年,将北京首都国际机场建设成为大型国际枢纽机场,将成员机场建设成为国内各层级的领先机场,将首都机场集团公司打造成为具有国际竞争力的机场管理集团。 集团公司战略目标的实现分为两个阶段: 一、第一阶段为2009~2012年 以科学发展观为指引,推进流程再造,优化资源配置,精干相关业务,形成聚焦主业、主辅互动的业务格局,集团公司成为具有自我可持续发展能力的机场管理集团。发挥首都国际机场龙头作用,提高综合管理能力,打造优秀管理团队,在机场管理、机场服务保障、机场建设等方面创新管理实践,引领机场行业管理标准发展,巩固在国内机场行业中的领先地位。 到2012年,集团公司成员机场中,首都国际机场旅客吞吐量位于全球前三名;两家干线机场成为旅客吞吐量全国前十位的

区域门户机场,并进入全球前百位;六家机场成为全国重要干线机场;同时以干带支,形成六个支线机场群。集团公司成为拥有一批领先机场,临空产业格局基本形成的大型机场管理集团。 2012年各项主要指标为: ——发展指标:集团公司航空主营指标复合增长率超过行业平均水平5个百分点。集团公司年旅客吞吐总量超过1.7亿人次、货邮吞吐总量超过300万吨。其中首都国际机场旅客吞吐量超过8500万人次,货邮吞吐量超过200万吨。 ——机场安全服务指标:集团公司所属成员机场不安全事件万架次率总计不超过0.1;成员机场ACI旅客满意度总平均值达到4.4①,最低值不低于4.2。其中首都国际机场不安全事件万架次率不超过0.09,ACI旅客满意度达到4.8。 ——效率指标:集团公司劳动生产率②比2009年增长4%;总资产周转率③达到18%;单位产出能耗比2009年降低10%。 ——效益指标:集团公司总收入达到250亿元,利润总额达到20亿元,资产负债率不超过65%;机场管理业务年均净资产收益率超过行业平均水平20%;其它业务(金融、地产、建设、商业等)年均净资产收益率不低于12%。 二、第二阶段为2013~2015年 全面落实科学发展要求,发挥规模优势,推进管理创新,推

首都机场集团公司宪章

首都机场集团公司宪章 首都机场集团公司 二?一?年四月二十日 首都机场集团公司宪章 目录 第一章总则 ............................................ 1 第一条制订《宪章》的目的...................................... 1 第二条《宪章》的地位 (1) 第二章集团体制 ........................................ 1 第三条集团公司性质............................................ 2 第四条集团构成................................................ 2 第五条母子公司权责定位........................................ 2 第六条母子公司管理原则. (3) 第七条集团公司管控模式 (4) 第八条分类管理................................................ 4 第九条组织机构 (5) 第三章集团文化 ........................................ 6 第十条文化主旨................................................ 6 第十一条核心理念. (6) 第十二条行为准则 (6) 第十三条集团标识.............................................. 6 第十四条文化传播用语.......................................... 7 第十五条企业文化管理 (8)

XX机场集团公司企业文化宣讲材料

XX机场集团公司企业文化宣讲材料 第一部分:企业概况 (一)XX机场集团基本情况 员工对集团的认知,是员工对集团企业文化认知认同的基 础,也是凝聚力的基础。我们在进行企业文化宣讲时,首先要对 集团作一个整体性的介绍。 1、集团规模 XX机场集团是一家以机场管理、机场服务保障和机场建设 为主业,以临空产业为辅助的跨地域大型国有企业集团。于2002年12月28日由北京XX机场集团公司、天津滨海国际机场、中 国XX机场建设总公司、金飞XX经济发展中心、中国XX工程咨询公司共同组建成立,隶属于中国XX局。经过多年较快发展,集团目前管理资产达1270亿元,员工51000余人。 (1)集团全资控股和托管了北京XX机场、天津滨海机场、南昌昌北机场、武汉天河机场、重庆江北机场、贵阳龙洞堡机场、长春龙嘉机场、呼和浩特白塔机场、哈尔滨太平机场等37个境内机场。其中,有许多是历史悠久、业绩优良、在业界具有广泛 影响的机场。 其中,北京XX国际机场是集团的龙头,是中国地理位置最

重要、规模最大、运输生产最繁忙的大型国际航空港。北京XX 国际机场股份有限公司于1999年10月15日正式注册成立,2000年在香港联交所上市交易,成为中国内地首家在香港联交所上市 交易的机场公司。 XX机场自1958年投入运行以来,始终保持着良好的安全运 营记录,保障了中外首脑和政要的专包机以及重大国际活动等任 务的万无一失。奥运会期间,北京XX国际机场圆满完成了中国XX有史以来规模最大、历时最长、涉面最广、流程最复杂、资 源投入最多、社会关注度最高、运行效果最佳、历史影响最深远 的重大航空运输保障任务,创造了中国XX重大运输保障史上的多项历史记录,也创下了“零事件、零事故、零投诉”的最高服 务保障水准。同时,XX机场也是世界最繁忙的机场之一,2009年旅客吞吐量达到6537万人次,世界机场排名第3位。 重庆江北机场、武汉天河机场均为年吞吐量千万级的机场。 (2)以打造管理型机场为方向,近年来,集团着力提升机 场服务保障能力,努力探索专业化发展之路。先后注册成立的机场安全服务保障企业有:北京XX机场旅业总公司、XX空港贵宾服务管理有限公司、北京XX机场商贸有限公司、北京XX机场广告有限公司、北京XX机场餐饮发展有限公司、北京博维航空设 施管理有限公司、北京空港航空地面服务有限公司、北京空港配餐有限公司、北京XX机场物业管理有限公司、北京XX机场动力能源有限公司、北京XX机场航空安保有限公司。

医学超声谐波成像技术研究进展

第36卷 第5期2004年5月  哈 尔 滨 工 业 大 学 学 报 JOURNA L OF H ARBI N I NSTIT UTE OF TECH NO LOGY   V ol 136N o 15M ay ,2004 医学超声谐波成像技术研究进展 刘贵栋,沈 毅,王 艳 (哈尔滨工业大学航天学院,黑龙江哈尔滨,150001,E 2mail :gtomasd @https://www.doczj.com/doc/094924540.html, ) 摘 要:对目前所采用的谐波成像技术作了简要的叙述,并探讨了应用前景.由于在组织和造影剂成像中利用了谐波频率,明显地改善了超声图像质量.超声中的谐波是由组织和造影剂产生.造影谐波来源于所注入的造影剂对超声的反射,与组织的反射无关.当不使用造影剂时,谐波是由非线性传播产生的.组织和造影剂的谐波成像在图像分辨力和对比度之间的折衷使得非线性信号大打折扣.关键词:医学超声;对比谐波成像;组织谐波成像;脉冲反相谐波成像中图分类号:R312 文献标识码:A 文章编号:0367-6234(2004)05-0599-04 The technical progress of medical ultrasonic harmonic imaging LI U G ui 2dong ,SHE N Y i ,W ANG Y an (S ch ool o f As tr onautics ,H arbin Ins titute o f T echn ology ,H arbin 150001,China ,E 2m ail :g tom asd @https://www.doczj.com/doc/094924540.html, ) Abstract :Medical ultras ound scanners are widely used in hospitals all over the w orld for diagnostic purposes.While many technological im provements have been achieved over the years that resulted in better images ,a large number of patients are still difficult to image due to inhom ogeneous skin layers and limited penetration.In recent years ,harm on 2ic frenquency is adopted in tissue imaging and contrast agents imaging ,which im proves the image quality.Harm onics in ultras ound are generated by tissue or by contrast agents.C ontrast 2agent harm onics are generated by reflections from the injected contrast agent and not from reflections from tissue.When no contrast is em ployed ,harm onics are generated by tissue itself as a result of nonlinear propagation.Harm onic imaging of tissues or contrast agent forces an inherent com promise between image res olution and contrast that limits its sensitivity to nonlinear signals.This paper describes the technical progress of harm onic imaging briefly.Its clinical application prospect has been discussed al 2s o. K ey w ords :medical ultras ound ;contast harm onic imaging ;tT issue harm onic imaging ;pulse inversion harm onic imaging 收稿日期:2003-05-29. 基金项目:跨世纪优秀人才培养计划资助项目;高等学校骨干教 师资助计划资助项目;哈尔滨工业大学校基金资助项目(HIT.2002.11). 作者简介:刘贵栋(1976-),男,博士研究生; 沈 毅(1965-),男,博士,教授,博士生导师. 医学超声在医学诊断中起着十分重要的作用.但是,医学超声所包含的诊断技术,无论是B 型成 像还是血流检测,都沿用了线性声学的规律.但是线性是相对的、局部的,非线性是绝对的、全面的.实际上医学超声中存在着非线性现象[1].过去它处 于次要地位而被忽略,但是,随着人们对超声研究的深入,研究医学超声中非线性现象将有助于人们 进一步提高现有的诊断水平.近年来产生的谐波成像技术就是非线性声学在超声诊断中的一项卓有成效的新技术.传统的超声影像设备是接收和发射频率相同的回波信号成像,称为基波成像(funda 2mental imaging ).实际上回波信号受到人体组织的非线性调制后产生基波的二次三次等高次谐波,其中二次谐波幅值最强,为此利用人体回声的二次等高次谐波构成人体器官的图像,可提高图像清晰分辨率.这种用回波的二次等高次谐波成像的方法叫

2.西部机场集团企业文化理念

西部机场集团企业文化理念 架构新的丝绸之路,促进西部空港大发展。——曾庆红 ● 企业宗旨——“两谋”原则 为企业谋发展为员工谋利益 ● 工作方针——“五个统一”方针 做大与做强的统一 安全、服务、效益的统一 加强管理与转换机制、企业文化建设、思想政治工作的统一内部资源与社会资源的统一 提高员工素质与提升企业品质的统一 ● 工作思路 以改革创新为动力,以航空市场为主战场,以安全服务为两翼,以效益为中心,以企业文化为支撑,促进集团又好又快发展。 ● 管理标准 与现代企业制度接轨与市场接轨与国际标准接轨 ● 核心价值观 为员工创造事业 为客户创造满意 为所有者创造财富 为社会创造文明

● 管理人员评价标准 看状态 看思路 看结果 ●管理人员道德标准 志向要高远情趣要高雅行为要高洁 ● 党委书记工作要求 把关定向 造势育人 排忧解难 拾遗补阙 ● 员工忠诚企业要求 认真履行岗位职责 主动适应改革变化 自觉维护企业形象 关心企业发展建设 与企业荣辱与共 ● 管理理念 ◆集团化管理 宏观控制微观放活独立运行共谋发展 充分发挥集团公司、成员企业和各级政府的积极性 ◆支线机场管理

积极扶持因地制宜自力更生自我发展 ◆机场建设管理 功能完善流程合理节约资源控制投资 特色突出方便旅客绿色环保 ◆辅业公司管理 政策给足改革到位支持到边断其后路不生就死 ◆环境形象建设 环境和形象也是生产力也是凝聚力也会出效益 ◆ 安全管理 第一,安全是机场生存和发展的根基和基本前提,是永恒的主题和永远需要解决的矛盾。因此,在任何时候,安全第一的思想不能动摇,安全第一的责任不能淡化,安全第一的工作不能松懈。 第二,安全是一个运动的过程,是一个系统工程,是由各方面的因素决定的。因此,安全是相对的,不是绝对的。安全工作只有起点、没有终点,永远要从零开始。 第三,安全是相对的,并不等于说我们的工作就是消极被动的。恰恰相反,安全工作是有规律的,而规律是可以认识和把握的,只要工作到位,安全是有保证的。 第四,安全是反映机场工作的综合指标。既是服务工作的基本内容,也是效益的重要保证;既是企业生存的本质要求,也是企业品牌的基本要素。因此,有了安全不一定就有一切,但没有

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

上海机场集团有限公司

上海机场(集团)有限公司车辆采购项目招标文件 上海机场(集团)有限公司 二O一五年八月

招标文件目录 第一部分投标须知 第二部分资格证明材料 第三部分项目需求 第四部分附件

第一部分投标须知 1、总则 1.1项目名称:上海机场(集团)有限公司车辆采购项目。 1.2项目需求范围:上海机场(集团)有限公司及其相关直属单位、控股公司。 1.3本标书是上海机场(集团)有限公司车辆采购项目招标过程中的规范性文件,是各投标单位编制标书的依据,也是招标单位与中标单位签订协议供货合同的依据,并将作为合同的附件之一,具有法律效力。 1.4投标单位必须按招标文件内容及条款按顺序逐条应答,并提供充分的、详实的数据和资料,按要求编制投标书,如不符合此条款要求,则投标单位将承担被废标的风险。 1.5本项目采用公开招标方式,以排序法选择中标单位。 2、招标文件 2.1招标文件的澄清 1)投标人对招标文件如有疑问,可在投标截止时间3日前,以书面形式(传真或信函)将要求答疑的资料送至招标人; 2)招标人将在收到投标人书面要求答疑资料后的合理时间内,以书面方式向所有投标人回复有关澄清内容。 2.2招标文件的修改 1)投标截止期满前,招标人有权对全部或部分招标文件予以修改。

修改内容将以书面形式通知所有投标人; 2)根据招标文件修改的内容及性质,考虑使投标人有足够时间准备相应投标文件,招标机构可酌情推迟投标截止期,并将以书面方式通知所有投标人。 3)投标人在收到招标文件修改内容或推迟提交投标文件截止时间的通知后,应在一个工作日之内以书面方式向招标人确认。 2.3招标文件的澄清和修改均为招标文件不可分割的部分,对投标人具有约束力。 3、投标原则 3.1投标人应仔细阅读招标文件的所有内容,对招标文件的要求做出实质性响应,按招标文件的要求提供投标文件,并保证所提供全部资料的真实性,否则将予废标。 3.2本次招标的车辆采购标段共划分为2个标段,主要数量如下: 第一标段:商务用车数量:10 第二标段:生产用车数量:23 3.3投标报价: 1)投标报价币种为人民币。 2) 投标人必须对全部标段进行投标,否则投标文件无效。 3)投标报价为上海市范围内任何地点的交货价,招标人不再支付其他费用。 4)投标人要按车辆数量、价格表(统一格式)的内容填写单价、

相关主题
文本预览
相关文档 最新文档