当前位置:文档之家› 蛋白纯化(his标签)说明书

蛋白纯化(his标签)说明书

蛋白纯化(his标签)说明书
蛋白纯化(his标签)说明书

Instruction Manual

ProBond TM Purification System

For purification of polyhistidine-containing recombinant proteins

Catalog nos. K850-01, K851-01, K852-01, K853-01, K854-01,

R801-01, R801-15

Version K

2 September2004

25-0006

ii

Table of Contents

Kit Contents and Storage (iv)

Accessory Products (vi)

Introduction (1)

Overview (1)

Methods (2)

Preparing Cell Lysates (2)

Purification Procedure—Native Conditions (7)

Purification Procedure—Denaturing Conditions (11)

Purification Procedure—Hybrid Conditions (13)

Troubleshooting (15)

Appendix (17)

Additional Protocols (17)

Recipes (18)

Frequently Asked Questions (21)

References (22)

Technical Service (23)

iii

Kit Contents and Storage

Types of Products This manual is supplied with the following products:

Product Catalog

No.

ProBond? Purification System K850-01

ProBond? Purification System with Antibody

with Anti-Xpress? Antibody K851-01

with Anti-myc-HRP Antibody K852-01

with Anti-His(C-term)-HRP Antibody K853-01

with Anti-V5-HRP Antibody K854-01

ProBond? Nickel-Chelating Resin (50 ml) R801-01

ProBond? Nickel Chelating Resin (150 ml) R801-15

ProBond?Purification System Components The ProBond? Purification System includes enough resin, reagents, and columns for six purifications. The components are listed below. See next page for resin specifications.

Component Composition Quantity ProBond? Resin 50% slurry in 20% ethanol 12 ml

5X Native

Purification Buffer

250 mM NaH2

PO4, pH 8.0

2.5 M NaCl

1 × 125 ml bottle

Guanidinium Lysis

Buffer

6 M Guanidine HCl

20 mM sodium phosphate, pH 7.8

500 mM NaCl

1 × 60 ml bottle

Denaturing

Binding Buffer

8 M Urea

20 mM sodium phosphate, pH 7.8

500 mM NaCl

2 × 125 ml bottles

Denaturing Wash

Buffer

8 M Urea

20 mM sodium phosphate, pH 6.0

500 mM NaCl

2 × 125 ml bottles

Denaturing Elution

Buffer

8 M Urea

20 mM NaH2PO4, pH 4.0

500 mM NaCl

1 × 60 ml bottle

3 M Imidazole,

20 mM sodium phosphate, pH 6.0

500 mM NaCl

1 × 8 ml bottle

Purification

Columns

10 ml columns 6

Continued on next page

iv

Kit Contents and Storage, Continued

ProBond?Purification System with Antibody The ProBond? Purification System with Antibody includes resin, reagents, and columns as described for the ProBond? Purification System (previous page) and 50 μl of the appropriate purified mouse monoclonal antibody. Sufficient reagents are included to perform six purifications and 25 Western blots with the antibody.

For more details on the antibody specificity, subclass, and protocols for using the antibody, refer to the antibody manual supplied with the system.

Storage Store ProBond? resin at +4°C. Store buffer and columns at room temperature.

Store the antibody at 4°C. Avoid repeated freezing and thawing of the

antibody as it may result in loss of activity.

The product is guaranteed for 6 months when stored properly.

All native purification buffers are prepared from the 5X Native Purification

Buffer and the 3 M Imidazole, as described on page 7.

The Denaturing Wash Buffer pH 5.3 is prepared from the Denaturing Wash

Buffer (pH 6.0), as described on page 11.

Resin and Column

Specifications

ProBond? resin is precharged with Ni2+ ions and appears blue in color. It is

provided as a 50% slurry in 20% ethanol.

ProBond? resin and purification columns have the following specifications:

? Binding capacity of ProBond? resin: 1–5 mg of protein per ml of resin

? Average bead size: 45–165 microns

? Pore size of purification columns: 30–35 microns

? Recommended flow rate: 0.5 ml/min

? Maximum flow rate: 2 ml/min

? Maximum linear flow rate: 700 cm/h

? Column material: Polypropylene

? pH stability (long term): pH 3–13

? pH stability (short term): pH 2–14

Product

Qualification

The ProBond? Purification System is qualified by purifying 2 mg of myoglobin

protein on a column and performing a Bradford assay. Protein recovery must

be 75% or higher.

v

Accessory Products

Additional

Products

The following products are also available for order from Invitrogen:

Product Quantity

Catalog

No.

ProBond? Nickel-Chelating Resin 50 ml

150 ml

R801-01

R801-15

Polypropylene columns

(empty)

50 R640-50

Ni-NTA Agarose 10 ml

25 ml R901-01 R901-15

Ni-NTA Purification System 6 purifications K950-01 Ni-NTA Purification System

with Antibody

with Anti-Xpress? Antibody with Anti-myc-HRP Antibody with Anti-His(C-term)-HRP Antibody

with Anti-V5-HRP Antibody 1 kit

1 kit

1 kit

1 kit

K951-01

K952-01

K953-01

K954-01

Anti-myc Antibody 50 μl R950-25 Anti-V5 Antibody 50 μl R960-25 Anti-Xpress? Antibody 50 μl R910-25 Anti-His(C-term) Antibody 50 μl R930-25 InVision? His-tag In-gel Stain 500 ml LC6030 InVision? His-tag In-gel

Staining Kit

1 kit LC6033

Pre-Cast Gels and Pre-made Buffers A large variety of pre-cast gels for SDS-PAGE and pre-made buffers for your convenience are available from Invitrogen. For details, visit our web site at https://www.doczj.com/doc/0111180676.html, or contact Technical Service (page 23).

vi

Introduction

Overview

Introduction The ProBond? Purification System is designed for purification of 6xHis-tagged recombinant proteins expressed in bacteria, insect, and mammalian cells. The

system is designed around the high affinity and selectivity of ProBond?

Nickel-Chelating Resin for recombinant fusion proteins containing six tandem

histidine residues.

The ProBond? Purification System is a complete system that includes

purification buffers and resin for purifying proteins under native, denaturing,

or hybrid conditions. The resulting proteins are ready for use in many target

applications.

This manual is designed to provide generic protocols that can be adapted for

your particular proteins. The optimal purification parameters will vary with

each protein being purified.

ProBond? Nickel-Chelating Resin ProBond? Nickel-Chelating Resin is used for purification of recombinant proteins expressed in bacteria, insect, and mammalian cells from any 6xHis-tagged vector. ProBond? Nickel-Chelating Resin exhibits high affinity and selectivity for 6xHis-tagged recombinant fusion proteins.

Proteins can be purified under native, denaturing, or hybrid conditions using the ProBond? Nickel-Chelating Resin. Proteins bound to the resin are eluted with low pH buffer or by competition with imidazole or histidine. The resulting proteins are ready for use in target applications.

Binding Characteristics ProBond? Nickel-Chelating Resin uses the chelating ligand iminodiacetic acid (IDA) in a highly cross-linked agarose matrix. IDA binds Ni2+ ions by three coordination sites.

The protocols provided in this manual are generic, and may not result in 100%

pure protein. These protocols should be optimized based on the binding

characteristics of your particular proteins.

Native Versus

Denaturing

Conditions

The decision to purify your 6xHis-tagged fusion proteins under native or

denaturing conditions depends on the solubility of the protein and the need to

retain biological activity for downstream applications.

? Use native conditions if your protein is soluble (in the supernatant after

lysis) and you want to preserve protein activity.

? Use denaturing conditions if the protein is insoluble (in the pellet after

lysis) or if your downstream application does not depend on protein

activity.

? Use hybrid protocol if your protein is insoluble but you want to preserve

protein activity. Using this protocol, you prepare the lysate and columns

under denaturing conditions and then use native buffers during the wash

and elution steps to refold the protein. Note that this protocol may not

restore activity for all proteins. See page 14.

1

Methods

Preparing Cell Lysates

Introduction Instructions for preparing lysates from bacteria, insect, and mammalian cells

using native or denaturing conditions are described below.

Materials Needed You will need the following items:

? Native Binding Buffer (recipe is on page 8) for preparing lysates under

native conditions

? Sonicator

? 10 μg/ml RNase and 5 μg/ml DNase I (optional)

? Guanidinium Lysis Buffer (supplied with the system) for preparing lysates

under denaturing conditions

? 18-gauge needle

? Centrifuge

? Sterile, distilled water

? SDS-PAGE sample buffer

? Lysozyme for preparing bacterial cell lysates

? Bestatin or Leupeptin, for preparing mammalian cell lysates

Processing Higher Amount of Starting Material Instructions for preparing lysates from specific amount of starting material (bacteria, insect, and mammalian cells) and purification with 2 ml resin under native or denaturing conditions are described in this manual.

If you wish to purify your protein of interest from higher amounts of starting material, you may need to optimize the lysis protocol and purification conditions (amount of resin used for binding). The optimization depends on the expected yield of your protein and amount of resin to use for purification. Perform a pilot experiment to optimize the purification conditions and then based on the pilot experiment results, scale-up accordingly.

Continued on next page

2

Preparing Bacterial Cell Lysate—Native Conditions Follow the procedure below to prepare bacterial cell lysate under native conditions. Scale up or down as necessary.

1. Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for

5 minutes in a Sorvall SS-34 rotor). Resuspend the cells in 8 ml Native

Binding Buffer (recipe on page 8).

2. Add 8 mg lysozyme and incubate on ice for 30 minutes.

3. Using a sonicator equipped with a microtip, sonicate the solution on ice

using six 10-second bursts at high intensity with a 10-second cooling

period between each burst.

Alternatively, sonicate the solution on ice using two or three 10-second

bursts at medium intensity, then flash freeze the lysate in liquid nitrogen or a methanol dry ice slurry. Quickly thaw the lysate at 37°C and

perform two more rapid sonicate-freeze-thaw cycles.

4. Optional: If the lysate is very viscous, add RNase A (10 μg/ml) and

DNase I (5 μg/ml) and incubate on ice for 10–15 minutes. Alternatively,

draw the lysate through a 18-gauge syringe needle several times.

5. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris. Transfer the supernatant to a fresh tube.

Note: Some 6xHis-tagged protein may remain insoluble in the pellet, and can be recovered by preparing a denatured lysate (page 4) followed by

the denaturing purification protocol (page 12). To recover this insoluble

protein while preserving its biological activity, you can prepare the

denatured lysate and then follow the hybrid protocol on page 14. Note

that the hybrid protocol may not restore activity in all cases, and should be tested with your particular protein.

6. Remove 5 μl of the lysate for SDS-PAGE analysis. Store the remaining

lysate on ice or freeze at -20°C. When ready to use, proceed to the

protocol on page 7.

Continued on next page

3

Preparing Bacterial Cell Lysate—Denaturing Conditions Follow the procedure below to prepare bacterial cell lysate under denaturing conditions:

1. Equilibrate the Guanidinium Lysis Buffer, pH 7.8 (supplied with the

system or see page 19 for recipe) to 37°C.

2. Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for

5 minutes in a Sorvall SS-34 rotor).

3. Resuspend the cell pellet in 8 ml Guanidinium Lysis Buffer from Step 1.

4. Slowly rock the cells for 5–10 minutes at room temperature to ensure

thorough cell lysis.

5. Sonicate the cell lysate on ice with three 5-second pulses at high intensity.

6. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris.Transfer the supernatant to a fresh tube.

7. Remove 5 μl of the lysate for SDS-PAGE analysis. Store the remaining

lysate on ice or at -20°C. When ready to use, proceed to the denaturing

protocol on page 11 or hybrid protocol on page 13.

Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCA

precipitation prior to SDS-PAGE to prevent the precipitation of SDS.

Harvesting Insect Cells For detailed protocols dealing with insect cell expression, consult the manual for your particular system. The following lysate protocols are for baculovirus-infected cells and are intended to be highly generic. They should be optimized for your cell lines.

For baculovirus-infected insect cells, when the time point of maximal expression has been determined, large scale protein expression can be carried out. Generally, the large-scale expression is performed in 1 liter flasks seeded with cells at a density of 2 × 106 cells/ml in a total volume of 500 ml and infected with high titer viral stock at an MOI of 10 pfu/cell. At the point of maximal expression, harvest cells in 50 ml aliquots. Pellet the cells by centrifugation and store at -70°C until needed. Proceed to preparing cell lysates using native or denaturing conditions as described on the next page.

Continued on next page

4

Preparing Insect Cell Lysate—Native Condition 1. Prepare 8 ml Native Binding Buffer (recipe on page 8) containing

Leupeptin (a protease inhibitor) at a concentration of 0.5 μg/ml.

2. After harvesting the cells (previous page), resuspend the cell pellet in

8 ml Native Binding Buffer containing 0.5 μg/ml Leupeptin.

3. Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dry

ice/ethanol bath and a 42°C water bath.

4. Shear DNA by passing the preparation through an 18-gauge needle four

times.

5. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris.Transfer the supernatant to a fresh tube.

6. Remove 5 μl of the lysate for SDS-PAGE analysis. Store remaining lysate

on ice or freeze at -20°C. When ready to use, proceed to the protocol on page 7.

Preparing Insect Cell Lysate—Denaturing Condition 1. After harvesting insect cells (previous page), resuspend the cell pellet in

8 ml Guanidinium Lysis Buffer (supplied with the system or see page 19

for recipe).

2. Pass the preparation through an 18-gauge needle four times.

3. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris. Transfer the supernatant to a fresh tube.

4. Remove 5 μl of the lysate for SDS-PAGE analysis. Store remaining lysate

on ice or freeze at -20° C. When ready to use, proceed to the denaturing

protocol on page 11 or hybrid protocol on page 13.

Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCA

precipitation prior to SDS-PAGE to prevent the precipitation of SDS.

Continued on next page

5

Preparing Mammalian Cell Lysate—Native Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.

To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.

1. Resuspend the cell pellet in 8 ml of Native Binding Buffer (page 8). The

addition of protease inhibitors such as bestatin and leupeptin may be

necessary depending on the cell line and expressed protein.

2. Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dry

ice/ethanol bath and a 42°C water bath.

3. Shear the DNA by passing the preparation through an 18-gauge needle

four times.

4. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris. Transfer the supernatant to a fresh tube.

5. Remove 5 μl of the lysate for SDS-PAGE analysis. Store the remaining

lysate on ice or freeze at -20° C. When ready to use, proceed to the

protocol on page 7.

Preparing Mammalian Cell Lysates—Denaturing Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.

To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.

1. Resuspend the cell pellet in 8 ml Guanidinium Lysis Buffer (supplied

with the system or see page 19 for recipe).

2. Shear the DNA by passing the preparation through an 18-gauge needle

four times.

3. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellular

debris. Transfer the supernatant to a fresh tube.

4. Remove 5 μl of the lysate for SDS-PAGE analysis. Store the remaining

lysate on ice or freeze at -20° C until use. When ready to use, proceed to the denaturing protocol on page 11 or hybrid protocol on page 13.

Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCA

precipitation prior to SDS-PAGE to prevent the precipitation of SDS.

6

Purification Procedure—Native Conditions

Introduction In the following procedure, use the prepared Native Binding Buffer, Native

Wash Buffer, and Native Elution Buffer, columns, and cell lysate prepared

under native conditions. Be sure to check the pH of your buffers before starting.

Buffers for Native Purification All buffers for purification under native conditions are prepared from the

5X Native Purification Buffer supplied with the system. Dilute and adjust the pH of the 5X Native Purification Buffer to create 1X Native Purification Buffer (page 8). From this, you can create the following buffers:

? Native Binding Buffer

? Native Wash Buffer

? Native Elution Buffer

The recipes described in this section will create sufficient buffers to perform one native purification using one kit-supplied purification column. Scale up accordingly.

If you are preparing your own buffers, see page 18 for recipe.

Materials Needed You will need the following items:

? 5X Native Purification Buffer (supplied with the system or see page 18 for

recipe)

? 3 M Imidazole (supplied with the system or see page 18 for recipe)

? NaOH

? HCl

? Sterile distilled water

? Prepared ProBond? columns with native buffers (next page)

? Lysate prepared under native conditions (page 2)

Imidazole Concentration in Native Buffers Imidazole is included in the Native Wash and Elution Buffers to minimize the binding of untagged, contaminating proteins and increase the purity of the target protein with fewer wash steps. Note that, if your level of contaminating proteins is high, you may add imidazole to the Native Binding Buffer.

If your protein does not bind well under these conditions, you can experiment with lowering or eliminating the imidazole in the buffers and increasing the number of wash and elution steps.

Continued on next page

7

1X Native Purification Buffer To prepare 100 ml 1X Native Purification Buffer, combine:

? 80 ml of sterile distilled water

? 20 ml of 5X Native Purification Buffer (supplied with the system or see page 18 for recipe)

Mix well and adjust pH to 8.0 with NaOH or HCl.

Native Binding Buffer Without Imidazole

Use 30 ml of the 1X Native Purification Buffer (see above for recipe) for use as the Native Binding Buffer (used for column preparation, cell lysis, and binding).

With Imidazole (Optional):

You can prepare the Native Binding Buffer with imidazole to reduce the binding of contaminating proteins. (Note that some His-tagged proteins may not bind under these conditions.).

To prepare 30 ml Native Binding Buffer with 10 mM imidazole, combine: ? 30 ml of 1X Native Purification Buffer

? 100 μl of 3 M Imidazole, pH 6.0

Mix well and adjust pH to 8.0 with NaOH or HCl.

Native Wash Buffer To prepare 50 ml Native Wash Buffer with 20 mM imidazole, combine:

? 50 ml of 1X Native Purification Buffer

? 335 μl of 3 M Imidazole, pH 6.0

Mix well and adjust pH to 8.0 with NaOH or HCl.

Native Elution Buffer To prepare 15 ml Native Elution Buffer with 250 mM imidazole, combine:

? 13.75 ml of 1X Native Purification Buffer

? 1.25 ml of 3 M Imidazole, pH 6.0

Mix well and adjust pH to 8.0 with NaOH or HCl.

Continued on next page

8

Do not use strong reducing agents such as DTT with ProBond? columns. DTT

reduces the nickel ions in the resin. In addition, do not use strong chelating

agents such as EDTA or EGTA in the loading buffers or wash buffers, as these

will strip the nickel from the columns.

Be sure to check the pH of your buffers before starting.

Preparing

ProBond? Column

When preparing a column as described below, make sure that the snap-off cap

at the bottom of the column remains intact. To prepare a column:

1. Resuspend the ProBond? resin in its bottle by inverting and gently

tapping the bottle repeatedly.

2. Pipet or pour 2 ml of the resin into a 10-ml Purification Column

supplied with the kit. Allow the resin to settle completely by gravity

(5-10 minutes) or gently pellet it by low-speed centrifugation (1 minute

at 800 ×g). Gently aspirate the supernatant.

3. Add 6 ml of sterile, distilled water and resuspend the resin by

alternately inverting and gently tapping the column.

4. Allow the resin to settle using gravity or centrifugation as described in

Step 2, and gently aspirate the supernatant.

5. For purification under Native Conditions, add 6 ml Native Binding

Buffer (recipe on page 8).

6. Resuspend the resin by alternately inverting and gently tapping the

column.

7. Allow the resin to settle using gravity or centrifugation as described in

Step 2, and gently aspirate the supernatant.

8. Repeat Steps 5 through 7.

Storing Prepared

Columns

To store a column containing resin, add 0.02% azide or 20% ethanol as a

preservative and cap or parafilm the column. Store at room temperature.

Continued on next page

9

Purification Under Native Conditions Using the native buffers, columns and cell lysate, follow the procedure below to purify proteins under native conditions:

1. Add 8 ml of lysate prepared under native conditions to a prepared

Purification Column (page 9).

2. Bind for 30–60 minutes using gentle agitation to keep the resin

suspended in the lysate solution.

3. Settle the resin by gravity or low speed centrifugation (800 ×g), and

carefully aspirate the supernatant. Save supernatant at 4°C for

SDS-PAGE analysis.

4. Wash with 8 ml Native Wash Buffer (page 8). Settle the resin by gravity

or low speed centrifugation (800 ×g), and carefully aspirate the

supernatant. Save supernatant at 4°C for SDS-PAGE analysis.

5. Repeat Step 4 three more times.

6. Clamp the column in a vertical position and snap off the cap on the

lower end. Elute the protein with 8–12 ml Native Elution Buffer (see

page 2). Collect 1 ml fractions and analyze with SDS-PAGE.

Note: Store the eluted fractions at 4°C. If -20°C storage is required, add

glycerol to the fractions. For long term storage, add protease inhibitors to the fractions.

If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.

10

Purification Procedure—Denaturing Conditions

Introduction Instructions to perform purification using denaturing conditions with prepared

denaturing buffers, columns, and cell lysate are described below.

Materials Needed You will need the following items:

? Denaturing Binding Buffer (supplied with the system or see page 19 for

recipe)

? Denaturing Wash Buffer, pH 6.0 (supplied with the system or see page 19 for

recipe) and Denaturing Wash Buffer, pH 5.3 (see recipe below)

? Denaturing Elution Buffer (supplied with the system or see page 20 for

recipe)

? Prepared ProBond? columns with Denaturing buffers (see below)

? Lysate prepared under denaturing conditions (page 11)

Preparing the Denaturing Wash Buffer pH 5.3 Using a 10 ml aliquot of the kit-supplied Denaturing Wash Buffer (pH 6.0), mix well, and adjust the pH to 5.3 using HCl. Use this for the Denaturing Wash Buffer pH 5.3 in Step 5 next page.

Be sure to check the pH of your buffers before starting. Note that the

denaturing buffers containing urea will become more basic over time. Preparing

ProBond? Column

When preparing a column as described below, make sure that the snap-off cap

at the bottom of the column remains intact.

If you are reusing the ProBond? resin, see page 17 for recharging protocol.

To prepare a column:

1. Resuspend the ProBond? resin in its bottle by inverting and gently

tapping the bottle repeatedly.

2. Pipet or pour 2 ml of the resin into a 10-ml Purification Column

supplied with the kit. Allow the resin to settle completely by gravity

(5-10 minutes) or gently pellet it by low-speed centrifugation (1 minute

at 800 ×g). Gently aspirate the supernatant.

3. Add 6 ml of sterile, distilled water and resuspend the resin by

alternately inverting and gently tapping the column.

4. Allow the resin to settle using gravity or centrifugation as described in

Step 2, and gently aspirate the supernatant.

5. For purification under Denaturing Conditions, add 6 ml of Denaturing

Binding Buffer.

6. Resuspend the resin by alternately inverting and gently tapping the

column.

7. Allow the resin to settle using gravity or centrifugation as described in

Step 2, and gently aspirate the supernatant. Repeat Steps 5 through 7.

Continued on next page

11

Purification Procedure—Denaturing Conditions, Continued

Purification Under Denaturing Conditions Using the denaturing buffers, columns, and cell lysate, follow the procedure below to purify proteins under denaturing conditions:

1. Add 8 ml lysate prepared under denaturing conditions to a prepared

Purification Column (page 11).

2. Bind for 15–30 minutes at room temperature using gentle agitation (e.g.,

using a rotating wheel) to keep the resin suspended in the lysate

solution. Settle the resin by gravity or low speed centrifugation (800 ×g), and carefully aspirate the supernatant.

3. Wash the column with 4 ml Denaturing Binding Buffer supplied with the

kit by resuspending the resin and rocking for two minutes. Settle the

resin by gravity or low speed centrifugation (800 ×g), and carefully

aspirate the supernatant. Save supernatant at 4°C for SDS-PAGE

analysis. Repeat this step one more time.

4. Wash the column with 4 ml Denaturing Wash Buffer, pH 6.0 supplied in

the kit by resuspending the resin and rocking for two minutes. Settle the resin by gravity or low speed centrifugation (800 ×g), and carefully

aspirate the supernatant. Save supernatant at 4°C for SDS-PAGE

analysis. Repeat this step one more time.

5. Wash the column with 4 ml Denaturing Wash Buffer pH 5.3 (see recipe

on previous page) by resuspending the resin and rocking for 2 minutes.

Settle the resin by gravity or low speed centrifugation (800 ×g), and

carefully aspirate the supernatant. Save supernatant at 4°C for SDS-

PAGE analysis. Repeat this step once more for a total of two washes with Denaturing Wash Buffer pH 5.3.

6. Clamp the column in a vertical position and snap off the cap on the

lower end. Elute the protein by adding 5 ml Denaturing Elution Buffer

supplied with the kit. Collect 1 ml fractions and monitor the elution by

taking OD280readings of the fractions. Pool the fractions that contain the peak absorbance and dialyze against 10 mM Tris, pH 8.0, 0.1% Triton X-

100 overnight at 4°C to remove the urea. Concentrate the dialyzed

material by any standard method (i.e., using 10,000 MW cut-off, low-

protein binding centrifugal instruments or vacuum concentration

instruments).

If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.

12

Purification Procedure—Hybrid Conditions

Introduction For certain insoluble proteins, use the Hybrid protocol to restore protein

activity following cell lysis and binding under denaturing conditions. Note that

this procedure will not work for all proteins and should be tested using your

particular recombinant proteins.

Be sure to check the pH of your buffers before starting. Note that the

denaturing buffers containing urea will become more basic over time.

Materials Needed You will need the following items:

? Denaturing Binding Buffer (supplied with the system or see page 19 for

recipe)

? Denaturing Wash Buffer, pH 6.0 (supplied with the system or see page 19

for recipe)

? Native Wash Buffer (page 8 for recipe)

? Native Elution Buffer (page 8 for recipe)

? Prepared ProBond? Columns under denaturing conditions (page 11)

? Lysate prepared under denaturing conditions (page 2)

ProBond? Columns Prepare the ProBond? columns using Denaturing Binding Buffer as described

on page 11.

Continued on next page

13

Purification Procedure—Hybrid Conditions, Continued

Purification Under Hybrid Conditions Using the denaturing buffers, columns and cell lysate prepared under denaturing conditions, follow the purification procedure below:

1. Add 8 ml of lysate (page 2) to a prepared ProBond? Column (page 11).

2. Bind for 15–30 minutes at room temperature using gentle agitation (e.g.,

on a rotating wheel) to keep the resin suspended in the lysate solution.

Settle the resin by gravity or low speed centrifugation (800 ×g) and

carefully aspirate the supernatant.

3. Wash the column with 4 ml Denaturing Binding Buffer supplied with the

kit by resuspending the resin and rocking for two minutes. Settle the

resin by gravity or low speed centrifugation (800 ×g) and carefully

aspirate the supernatant. Save supernatant at 4°C for SDS-PAGE

analysis. Repeat this step one more time.

4. Wash the column with 4 ml Denaturing Wash Buffer, pH 6.0 supplied

with the kit by resuspending the resin and rocking for two minutes.

Settle the resin by gravity or low speed centrifugation (800 ×g) and

carefully aspirate the supernatant. Save supernatant at 4°C for

SDS-PAGE analysis. Repeat this step one more time.

5. Wash the column with 8 ml Native Wash Buffer (page 8 for recipe) by

resuspending the resin and rocking for two minutes. Settle the resin by

gravity or low speed centrifugation (800 ×g) and carefully aspirate the

supernatant. Save supernatant at 4°C for SDS-PAGE analysis. Repeat this step three more times for a total of four native washes.

6. Clamp the column in a vertical position and snap off the cap on the

lower end. Elute the protein with 8–12 ml Native Elution Buffer (see

page 8 for recipe). Collect 1 ml fractions and analyze with SDS-PAGE.

If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.

14

蛋白质的纯化方法

蛋白质纯化的方法 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

His蛋白纯化原理 方法和问题分析

组氨酸(His)标签蛋白的纯化 His-Tag融合蛋白是目前最常见的表达方式,而且很成熟,它的优点是表达方便而且基本不影响蛋白的活性,无论是表达的蛋白是可溶性的或者包涵体都可以用固定金属离子亲和色谱(IMAC)纯化。 IMAC(Immobilized Metal-ion affinity chromatography)是Porath et 年用固定IDA作为配基的填料螯合过渡金属铜、镍、钴或锌离子,可以吸附纯化表面带组氨酸、色氨酸或半胱氨酸残基的蛋白,1987年Smith et al. 发现带有几个组氨酸或色氨酸小肽和螯合金属离子的IDA-sephadex G-25作用力更强,此前在1986年他和他的合作者用Ni2+-IDA-sephadex G-25亲和纯化在氨基端带组氨酸和色氨酸的胰岛素原。同年1987年Hochuli et al.发现带有相连组氨酸的多肽和Ni2+-NTA填料作用力更强于普通的肽,1988年他第一次用这样的方法纯化了带六个组氨酸标签的多肽,无论是在天然还是变性条件下一次亲和纯化都得到很好效果,此后表达带六个组氨酸标签的蛋白配合IMAC变得非常普遍,相对而言,不带标签的蛋白纯化就非常困难,所以表达带六个组氨酸标签的蛋白配合IMAC 纯化变成最常用而且最有效的研究蛋白结构和功能的有力手段。1986年Porath et al.还发现Fe3+-IDA-sephadex G-25可以用于磷酸化蛋白的纯化,而后发现Ga3+-IDA也有同样的效果,这样螯合这两种金属离子的填料就有效用于磷酸化多肽的富集和纯化,同时IMAC也可以用于纯化各种和金属离子结合的多肽,应用非常广泛。 Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。 步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境,我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差,当然你也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。挂完之后,按理想来讲,你的蛋白在Ni柱中与Ni就结合了,杂蛋白多数在烧杯里,留下来了,当然肯定有少量杂蛋白也挂上了,这时候你要,拿咪唑和你的buffer配,一般从0 20mM 40mM。。。。100mM 这样洗脱(当你不知道你的蛋白大概在什么时候出来的时候)我指的是咪唑的终浓度。咪唑加入之后,会和蛋白争夺与Ni的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来,洗完之后,你可以用400mM咪唑洗柱子,清理一切蛋白,然后平衡几次,是否选择重生你自己定咯~然后放上20%乙醇保存柱子就可以咯~过的蛋白用不同的管子收下,然后SDS-page检测在哪个管子里。 市面常见的商品化IMAC用于带六个组氨酸标签蛋白的配基有以下几种: 一、组氨酸(His)标签蛋白的纯化步骤: 大肠杆菌的破碎方法: 1)收集培养发酵液,4度7000-8000g离心10分钟,收集沉淀的菌体(如果不是马上破碎可以放-70度冷冻,但是最好能保存成小块或者薄片,这样好用。) 2)取1-2克菌体加10ml破碎缓冲液(的50mM磷酸缓冲液含NaCl,ml溶菌酶,1mM PMSF,1mM MgCl2,ml Benzonase,其中的菌酶,1mM PMSF,ml Benzonase现加)在冰上混合45分钟,如果pH不在7-8,需要用NaOH一边搅拌一边滴加.如果溶菌酶10mg/ml混合时间可以缩短到10分钟.

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

蛋白质纯化与结晶的原理

蛋白质纯化与结晶的原理 获得蛋白质的晶体结构的第一个瓶颈,就是制备大量纯化的蛋白质(>10 mg),其浓度通常在10 mg/ml 以上,并以此为基础进行结晶条件的筛选。运用重组基因的技术,将特定基因以选殖(clone)的方式嵌入表现载体(expression vector)内,此一载体通常具有易于调控的特性。之后再将带有特定基因的载体送入可快速生长的菌体中,如大肠杆菌(Escherichia coli),在菌体快速生长的同时,也大量生产表现载体上的基因所解译出之蛋白质。一般而言纯度越高的蛋白质比较有机会形成晶体,因此纯化蛋白质的步骤就成为一个重要的决定因素。 在取得高纯度的蛋白质溶液后,接下来就是晶体的培养。蛋白质晶体与其他化合物晶体的形成类似,是在饱和溶液中慢慢产生的,每一种蛋白质养晶的条件皆有所差异,影响晶体形成的变量很多,包含化学上的变量,如酸碱度、沈淀剂种类、离子浓度、蛋白质浓度等;物理上的变数,如溶液达成过饱和状态的速率、温度等;及生化上的变数,如蛋白质所需的金属离子或抑制剂、蛋白质的聚合状态、等电点等,皆是养晶时的测试条件。截至目前为止,并无一套理论可以预测结晶的条件,所以必须不断测试各种养晶溶液的组合后,才可能得到一颗完美的单一晶体(图一) 。 蛋白质晶体的培养,通常是利用气相扩散法(Vapor Diffusion Method) 的原理来达成;也就是将含有高浓度的蛋白质(10-50 mg/ml)溶液加入适当的溶剂,慢慢降低蛋白质的溶解度,使其接近自发性的沈淀状态时,蛋白质分子将在整齐的堆栈下形成晶体。举例来说,我们将蛋白质溶于低浓度(~1.0 M) 的硫酸铵溶液中,将它放置于一密闭含有高浓度(~2.0 M)硫酸铵溶液的容器中,由气相平衡,可以缓慢提高蛋白质溶液中硫酸铵的浓度,进而达成结晶的目的(图二)。 蛋白质晶体在外观上与其他晶体并无明显不同之处,但在晶体的内部,却有很大的差异。一般而言,蛋白质晶体除了蛋白质分子外,其他的空间则充满约40 %至60 %之间的水溶液,其液态的成分不仅使晶体易碎,也容易使蛋白质分子在晶格排列上有不规则的情形出现,造成晶体处理时的困难及绕射数据上的搜集不易等缺点。但也由于高含水量的特性,让蛋白质分子在晶体内与水溶液中的状态,极为相似。所以由晶体所解出的蛋白质结构,基本上可视为自然状态下的结构。 蛋白质结构解析的方法简介 到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射和NMR。近年来还出现了一种新的方法,叫做Electron Microscopy。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,我们知道,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和缺点。 首先来说一下,这两种方法的一般的步骤和各自的优点和缺点。电子显微镜(electron microsco py)作为一种新型的技术,目前的应用还是非常少,并且比较狭窄,我可能等到最后在给它作些

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白纯化的基本思路

蛋白质的提取和纯化-- 选择分离材料及预处理蛋白质的提取和纯化-- 选择分离材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。 蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。 蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:( 1 )得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体 含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 细胞的破碎 1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3 体积,盖紧筒盖,将调速器先拨至最慢处, 开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。 2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。 3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料, 用大肠杆菌制备各种酶,常选用50-100 毫克菌体/毫升浓度,在1KG 至10KG 频率下处理10-15 分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。 4、反复冻融法:将细胞在-20 度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破 坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。 无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物 降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以

His-Tag蛋白纯化步骤

变性条件下从大肠杆菌中纯化多聚组氨酸标签蛋白(主要以包涵体的形式表达)的样品制备 1、用1× PBS重悬细胞沉淀(约每毫升沉淀加5ml 1× PBS),并按上述方法进行超声破菌。 2、12000 rpm离心10 min收集包涵体。若有必要,用1 × PBS洗包涵体几次。 3、用Binding/Wash Buffer(约每毫升沉淀加5ml 1× PBS)溶解包涵体,并在室温下孵育30~60分钟。若使沉淀充分溶解,有必要进行机械或超声均质。 4、12000rpm离心30min,取上清至一干净管中。 His标签蛋白的重力纯化流程 1ml柱子的总体积为10ml,只需加入介质。如果样品体积大于柱子体积,可重复利用,注意不要超过树脂的结合能力。 1、平衡柱子的工作温度。应在室温或4℃下进行纯化。 2、取出底帽,倒出多余的液体,直立固定好柱子,让柱子顶部朝上。 3、用2倍树脂体积的Binding/Wash Buffer平衡柱子,以0.5~1 ml/min的流速过柱。 4、从柱子上部加入经Binding/Wash Buffer处理的大肠杆菌裂解物或蛋白提取物,收集流出液。若需要,让流出液重新过柱一次,以最大限度地提高结合力。 5、用两倍树脂体积的Binding/Wash Buffer洗涤树脂并收集流出液。重复该步骤,用一新的收集管收集流出液。直到流出液的吸光度在280 nm基线处。 6、用两倍树脂体积的Elution Buffer将His标签蛋白从树脂上洗脱下来。重复此步骤两次,并单独收集每次洗脱出来的液体。 7、用Modified Coomassie Bradford Assay Kit(No SK3041)。洗脱的蛋白可直接进行SDS-PAGE分析。 注意:洗脱获得的蛋白可用凝胶过滤(如No BSP090 gravity Desalting Column)或透析去除咪唑以便后续应用。SDS-PAGE分析前,含6M盐酸胍的样品必须用含8 M尿素的缓冲液透析。 就地清洗方案 如果背压增加或观察到树脂明显污染,通常进行完全性能恢复流程。由于所有的NI-IDA树脂的高螯合强度和低金属浸出率,就地清洗前不需要进行stripping。我们建议使用下面的方法,以清除污染物,如沉淀的蛋白、疏水结合蛋白和脂蛋白。 程序 1、用15倍树脂体积的0.5 M NaOH清洗柱子。考虑到需要30min的接触时间,因此需相应地调整流量(如用0.5 M NaOH溶液以0.5ml/min的流速洗1ml的NI-IDA柱,需要相当于15ml总体积的量)。 2、用10倍树脂体积的1 × PBS重新平衡后,树脂可马上使用。若要保存柱子,可加入20~30%乙醇或10~100mM氢氧化钠进行4℃保存。 通过洗脱(stripping)和离子重填装进行再生

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白质纯化与结晶的原理获得蛋白质的晶体结构的第一个

中国试剂网 3.15.2.19 蛋白质纯化与结晶的原理 获得蛋白质的晶体结构的第一个瓶颈,就是制备大量纯化的蛋白质(>10mg),其浓度通常在10mg/ml以上,并以此为基础进行结晶条件的筛选。运用重组基因的技术,将特定基因以选殖(clone)的方式嵌入表现载体(expression vector)内,此一载体通常具有易于调控的特性。之后再将带有特定基因的载体送入可快速生长的菌体中,如大肠杆菌(Escherichia coli),在菌体快速生长的同时,也大量生产表现载体上的基因所解译出之蛋白质。一般而言纯度越高的蛋白质比较有机会形成晶体,因此纯化蛋白质的步骤就成为一个重要的决定因素。 在取得高纯度的蛋白质溶液后,接下来就是晶体的培养。蛋白质晶体与其他化合物晶体的形成类似,是在饱和溶液中慢慢产生的,每一种蛋白质养晶的条件皆有所差异,影响晶体形成的变量很多,包含化学上的变量,如酸碱度、沉淀剂种类、离子浓度、蛋白质浓度等;物理上的变数,如溶液达成过饱和状态的速率、温度等;及生化上的变数,如蛋白质所需的金属离子或抑制剂、蛋白质的聚合状态、等电点等,皆是养晶时的测试条件。截至目前为止,并无一套理论可以预测结晶的条件,所以必须不断测试各种养晶溶液的组合后,才可能得到一颗完美的单一晶体。 蛋白质晶体的培养,通常是利用气相扩散法(Vapor Diffusion Method)的原理来达成;也就是将含有高浓度的蛋白质(10~50mg/ml)溶液加入适当的溶剂,慢慢降低蛋白质的溶解度,使其接近自发性的沈淀状态时,蛋白质分子将在整齐的堆栈下形成晶体。举例来说,我们将蛋白质溶于低浓度(~1.0M)的硫酸铵溶液中,将它放置于一密闭含有高浓度(~2.0M)硫酸铵溶液的容器中,由气相平衡,可以缓慢提高蛋白质溶液中硫酸铵的浓度,进而达成结晶的目的。 蛋白质晶体在外观上与其他晶体并无明显不同之处,但在晶体的内部,却有很大的差异。一般而言,蛋白质晶体除了蛋白质分子外,其他的空间则充满约40%至60%之间的水溶液,其液态的成分不仅使晶体易碎,也容易使蛋白质分子在晶格排列上有不规则的情形出现,造成晶体处理时的困难及绕射数据上的搜集不易等缺点。但也由于高含水量的特性,让蛋白质分子在晶体内与水溶液中的状态,极为相似。所以由晶体所解出的蛋白质结构,基本上可视为自然状态下的结构。

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

GST标签蛋白纯化原理

G S T标签蛋白纯化原理 SANY GROUP system office room 【SANYUA16H-

在实验中有过被高等教育的教授骂过:别人让你吃屎,你就去吃屎么?或者稍微高级点的问候声:你有脑子么? 请稍微忽视当事人的失落、自尊心碎一地的感受,苦难不是一种财富,对苦难的反思才是一种财富。在实验时,或许着急按照步骤一步一步的做下来,而没有肯定的问自己:为什么要这样做?为什么要加这样的试剂?所以忽视了一些看似无关紧要的细节,坏结果便发生了。 回归原理部分,回归解决若干个为什么的问题,让我们的实验更加规范化。所以在接下来若干个专题阐述GST 标签蛋白纯化的实验时,生物日记实验室部落首先搞清楚GST 蛋白纯化的原理。 ——当别人问为什么时,你知道为什么么 GST 标签蛋白纯化原理 重组标签蛋白纯化利用谷胱甘肽的结构能够和GST (谷胱甘肽S-转移酶)的结合位点互补,谷胱甘肽通过SH 基团与琼脂糖介质上的环氧乙烷基团通过环氧激活特异性偶联在琼脂糖介质上,带有GST 标签蛋白纯化原理 Justwhywhywhy

GST的标签蛋白与琼脂糖介质上交联的谷胱甘肽配体互补性结合,这种可逆性的结合在温和、非变性的条件下通过加入还原型谷胱甘肽洗脱下来,杂质通过结合缓冲液被洗脱去除,从而分离目的蛋白。如果需要将GST标签从目的蛋白上除去,则可将蛋白酶结合到柱子上,在标签蛋白与谷胱甘肽结合时使用蛋白酶位点特异性切割,也可在洗脱之后再酶切。另外,蛋白质的性质、载体的选择、宿主菌、表达和纯化的条件不同都能使最终标签蛋白的产量有很大的差别。 目的基因的表达在选择合适的表达载体时,应该注意载体的克隆位点、蛋白酶切位点、标签的位置、编码框等多种因素。 载体的选择 pGEX载体可用于构建可诱导、高水平表达目的基因片段,带有GST标签蛋白通过特定的目的基因或者基因片段插入到pGEX的多克隆位点,在pGEX载体上带有laclp基因,该基因表达产物作为抑制剂结合在tac启动子的操纵子区,而在乳糖类似物IPTG的诱导下,目的基因能够在tac启动子的调控下表达目的蛋白。 宿主菌的选择 在选择宿主菌时,大部分大肠杆菌都能够克隆和表达pGEX载体,如果要获得全长的标签蛋白,一些特殊的工程菌即蛋白酶Lon、OmpT等缺失的菌种能够保护目的蛋白不被宿主菌降解,获得全长的标签蛋白,并且产量也可能更高。

蛋白质纯化试题整理

名词解释 1. 截留分子量(molecular weight cut-off, MWCO):不能通过膜的最小分子量 2. 超滤:选择合适孔径的超滤膜,在离心力或较高压力下,使水分子和其他小分子物质通过超滤膜,而目标蛋白样品分子被截留不能通过超滤膜,从而增加蛋白样品浓度,达到浓缩效果的方法 3、陶南效应:离子交换剂表面pH与溶液pH是不一致的。在阳IE表面的微环境中,H+被吸引而OH-被排斥,交换剂表面pH比周围低1个pH单位;而阴IE表面的微环境中,H+被排斥,交换剂表面pH比周围高1个pH单位 4、离子交换剂的有效(实际)交换容量:指在一定的实验条件下,每克干介质或每毫升湿胶吸附蛋白质的实际容量 5. 聚沉(coagulation)是指在聚沉剂的作用下,溶液中的蛋白质相互聚集为较大在聚沉物(>1mm)的过程 ?常见的聚沉剂:无机盐类(如氯化锌、氯化铁、氯化铝、硫酸锌、硫酸铝),聚合无机盐(聚合铝、聚合铁等) ?聚沉条件:-20℃以下,pH3~6,较高离子强度,高多价金属离子(Fe3+、Al3+) 6. 絮凝(flocculation)是指在絮凝剂的作用下,通过吸附、交联、网捕,把蛋白质聚结为大絮体沉降的过程 ?常见的絮凝剂:淀粉、树脂、单宁、离子交换树脂及纤维素衍生物 ?絮凝作用一般在聚沉作用之后使用;絮凝剂的选择应根据成本、毒性等具体情况考虑;应通过试验筛选获得最适合的絮凝剂类型、用量及作用条件 7、盐溶:蛋白质在稀盐溶液中,溶解度会随着盐浓度的增高而上升 8、盐析:但当盐浓度增高到一定数值时,其溶解度又逐渐下降,直至蛋白质析出 9、透析:利用小分子能通过,而大分子不能透过半透膜的原理,把不同性质的物质彼此分开的一种方法。对于蛋白质样品,透析过程中因蛋白质分子体积很大,不能透过半透膜,而溶液中的无机盐小分子则能透过半透膜进入水中,因此不断更换透析用水即可将蛋白质与无机盐小分子物质完全分开。蛋白的分离纯化过程中常用此法脱去无机盐(如硫酸铵) 10、排阻极限:指不能进入凝胶颗粒内部网孔的最小蛋白的分子量 11、凝胶颗粒的分级范围:指能进入凝胶颗粒内部网孔的最大分子和最小分子的分子量范围 12、过滤:利用多孔介质(滤纸、滤膜等)阻截大的颗粒物质,而使小于孔隙的物质通过的一种的分离方法。主要用于悬浮液的分离,最简单、最常用 13、离子交换剂的电荷密度:指IE介质颗粒单位表面积的功能基团数量,它决定着离子交换剂的总交换容量 14、离子交换剂膨胀度(吸水值):指干态的离子交换剂在水溶液中吸水后造成的体积膨胀程度。用每克干离子交换剂吸水膨胀后的体积表示(ml/g) 15、梯度洗脱:进行梯度洗脱时,洗脱缓冲液的pH或离子强度是连续发生变化的,洗脱剂的洗脱能力也是连续增加的 16、阶段洗脱:指在一个时间段内用一固定pH或I的条件进行洗脱,而在下一个时间段内用另一固定pH或I的条件进行洗脱的分段式洗脱方式 也分为pH阶段洗脱和I阶段洗脱 17、亲和层析:利用蛋白质与其专一性配体之间的特异性生物学亲和力作用,对蛋白质进行分离纯化的层析技术。 18、等电聚焦电泳:利用不同蛋白质的等电点的不同而使其在pH梯度中相互分离的一

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

蛋白质的纯化方法

蛋白质的纯化方法 蛋白质在外加电场作用下,带电的蛋白质颗的纯粒在电场中移动的速度(v)取决于化电场强度E,所带的净电荷q,蛋方白质的分子量、分子形状以及与介质法的摩擦系数f。几种常用的电泳纸电泳醋酸纤维薄膜电泳聚丙烯酰胺凝胶电泳(PAGE 可分为圆盘电泳和垂直平板电泳) 琼脂糖凝胶电泳 SDS-聚丙烯酰胺凝胶电泳等电聚焦IEF 双向电泳聚丙烯酰胺凝胶电泳法电影聚丙烯酰胺凝胶电泳(PAGE是利用聚丙烯酰胺凝胶作为支持物的电泳蛋法,聚丙烯酰胺凝胶是由单体丙稀酰白质胺和交联剂甲叉双丙稀酰胺交联而成的的多孔网状凝胶。纯不连续PAGE有分离胶、浓缩胶和样品化胶。方法 PAGE分辨率很高。电泳过程 SDS-聚丙烯酰胺凝胶电泳法 SDS(十二烷基磺酸钠)是一种阴离子型表面活性剂,它能够与蛋白质多肽蛋链中的氨基酸残基按大约1 比例白结合。质每一个蛋白质分子都因为结合了许多的的SDS而带有大量的负电荷,而蛋白质纯化分子原有的电荷则可以忽略。该法主方要利用了蛋白质分子量大小不同而分法离蛋白质。用已知分子量的蛋白质作为标准,则可以估算出不同蛋白质的分子量。等电聚焦将两性电解质eg:pH3-9,pH5-7同蛋白质样品一起加入到已经灌好的蛋凝胶中,在电场下,两性电解质首白质先达到它的等电点而平衡,蛋白质的样品根据它自身的等电点分别向两纯化极移动,最后也达到平衡。方等电聚焦:这种按等电点的大小,生物法分子在pH梯度的某一相应位置上进行聚焦的行为称等电聚焦。等电聚焦的特点就在于它利用了一种称为两性电解质载体的物质在电场中构成连续的pH梯度,使蛋白质或其他具有两性电解质性质的样品进行聚焦,从而达到分离、测定和鉴定的目的。蛋白质双向电泳银染结果考马斯亮染色为蓝色连续电泳几种常用的层析法吸附层析分配层析离子交换层析凝胶过滤层析亲和层析柱层析离子交换层析法此法是利用离子交换树脂作为柱层析支持物,将带有不同电荷的蛋白质进行分离的方法。蛋离子交换树脂可以分为阳离子交换纤维素白质如羧甲基纤维素CM纤维素)等,阴离子交的换纤维素如二乙基氨基乙基纤维素(DEAE纯纤维素)等。化带正电荷多的蛋白质与纤维素结合较强,而方带正电荷少的蛋白质与纤维素结合则较弱。法用不同浓度的阳离子洗脱液,如NaCl溶液进行梯度洗脱,通过Na的离子交换作用,可以将带有不同正电荷的蛋白质进行分离。离子交换层析法蛋白质的纯化方法凝胶过滤法此法又称为分子筛层析。凝胶过滤所用的介质是由交联葡萄糖、琼脂糖或蛋聚丙烯酰胺形成的凝胶珠。凝胶珠的白内部是多孔的网状结构。质的 Sephadex G10-G200葡聚糖凝胶纯

蛋白过镍柱纯化的原理和步骤

蛋白过镍柱纯化的原理和步骤是什么 ** Ni柱中的氯化镍可以与有HIs(组蛋白)标签的蛋白结合,也可以与咪唑结合。 步骤是:过柱子前可以选择Ni柱重生,也就是往柱子里倒氯化镍,一个柱长体积就行了,然后平衡柱子,拿你自己的buffer,给蛋白提供最适的环境。我一般平衡4个柱长,然后蛋白上样,你可以让他自己挂,这样挂柱子的效果好一些,如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差,当然你也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。 挂完之后,按理想来讲,你的蛋白在Ni柱中与Ni就结合了,杂蛋白多数在烧杯里,留下来了,当然肯定有少量杂蛋白也挂上了。这时候你要梯度洗脱,拿咪唑和你的buffer配,一般从0、20mM、40mM......100mM这样洗脱(当你不知道你的蛋白大概在什么时候出来的时候)我指的是咪唑的终浓度。咪唑加入之后,会和蛋白争夺与Ni的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来,洗完之后,你可以用200mM咪唑洗柱子,清理一切蛋白,然后平衡几次(怎么平衡?),是否选择重生你自己定咯~然后放上20%乙醇保存柱子就可以咯~ 过的蛋白用不同的管子收下,然后SDS-page检测在哪个管子里。

**楼上说的基本对,但基本上里面填料时硫酸镍,因此柱子可以和碱性蛋白结合,组蛋白标签一般是6个组氨酸(碱性氨基酸)。在蛋白上样后,带有组氨酸标签的蛋白特异性结合到柱子里,其他的杂蛋白流出。这时候再用咪唑洗脱,梯度洗脱,咪唑竞争性结合到硫酸镍上,目的蛋白就被洗脱了,这时候收集浸出液,那么里面就是你要的目的蛋白,然后透析掉咪唑就行了。现在的柱子大多是预装柱,也就是不用自己填柱,就是装好镍的傻瓜柱,也不贵,上样,洗脱,基本两个步骤就结束了。剩下的看你怎么处理了。可以参考楼上的。不会再问。

相关主题
文本预览
相关文档 最新文档