当前位置:文档之家› 土木外文翻译--高温下钢筋混凝土中钢筋的性能

土木外文翻译--高温下钢筋混凝土中钢筋的性能

土木外文翻译--高温下钢筋混凝土中钢筋的性能
土木外文翻译--高温下钢筋混凝土中钢筋的性能

土木外文翻译--高温下钢筋混凝土中钢筋的性能

外文原文:

Research Letters in Materials Science

Volume 2008 (2008), Article ID 814137, 4 pages

doi:10.1155/2008/814137

Research Letter

Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

?lker Bekir Top?u and Cenk Karakurt

Department of Civil Engineering, Eski?ehir Osmangazi University, 26480 Eski?ehir, Turkey

Received 12 February 2008; Accepted 31 March 2008

Academic Editor: Rajiv S. Mishra

Copyright ? 2008 ?lker Bekir Top?u and Cenk Karakurt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 500, 800, and 9 5 0 ° C temperatures for 3 hours and tensile tests were carried out. Effect of temperature on mechanical behavior of S220 and S420 were determined. All mechanical properties were reduced due to the temperature increase of the steel rebars. It is seen that mechanical properties of S420 steel was influenced more than S220 steel at elevated temperatures.

Fire remains one of the serious potential risks to most buildings and structures. Since concrete is widely used in construction, research on fire resistance of concrete becomes more and more important. Many researchers all over the world have done some researches on this subject. The mechanical properties of all common building materials decrease with elevation of temperature. The behavior of a reinforced concrete structure in fire conditions is governed by the properties of the constituent materials, concrete, and steel, at high temperature. Both concrete and steel undergo considerable change in their strength, physical properties, and stiffness by the effects of heating, and some of these changes are not recoverable after subsequent cooling [1].

It is necessary to have safe, economical, and easily applicable design methods for steel members subjected to fire. However, without fire protection, steel structures may suffer serious damage or even collapse in a fire catastrophe. This is because the mechanical properties of steel deteriorate by heat during fires, and the yield strength of conventional steel at 600°C is less than 1/3 of the specified yield strength at room temperature [2]. Therefore, conventional steels normally require fire-resistant coating to be applied [3]. The temperature increase in the steel member is governed by the principles of heat transfer. Consequently, it must be recognized that the temperature of the steel member(s) will not usually be the same as the fire temperature in a compartment or in the exterior flame plume.Protected steel will experience a much slower temperature rise during a fire exposure than unprotected steel. Also, fire effect on steel member is influenced with its distance from the center of the fire, and if more ventilation occurs near the steel in a fuel-controlled condition, wherein the ventilation helps to cool the steel by dissipating heat to the surrounding environment [4].

Especially, temperature increase of steel and concrete in composite steel-concrete elements leads to a decrease of mechanical properties such as yield stress, Young's modulus, and ultimate compressive strength of concrete [5]. Thus, load bearing of steel decreases when steel or composite structure is subjected to a fire action. If the duration and the intensity of the fire are large enough, the load bearing resistance can fall to the level of the applied load resulting in the collapse of the structure. However, the failure of the World Trade Centre on 11th September 2001 and, in particular, of building WTC7 alerted the engineering profession to the possibility of connection failure under fire conditions [6]. In this study, S220 and S420 ribbed concrete steel rebars were subjected to 7 different temperatures to determine the high temperature behavior of reinforcement steels.

Experimental studies were conducted with 10 and 16?mm in diameter and 200?mm in length S220 and S420 reinforcement steel rebars. Test specimens were subjected to 20, 100, 200, 300, 500, 800, and 950°C temperatures in a high furnace for 3 hours, respectively. At the end of the curing process, steels were cooled naturally to the room temperature. Subsequently, tensile tests were applied to steel reinforcement rebars. According to EN 10002-1 tensile strength, yield strength and elongation of the steel rebars were determined for elevated temperatures [7]. The steel specimens tensile strength tests were performed with 60 tons of loading capacity universal tensile strength test machine. The loading speed of the test machine is adjusted according to TS 708 code [8].

3. Test Results and Evaluations

3.1. Stress-Strain Relations

The average values for stress-strain relationship for specimens that were exposed to various temperatures are given in Figures 1 and 2. The curves in Figures 1and 2were drawn with the average test results of 10 and 16?mm in diameter steel specimens. The test conditions were meant to

simulate a building that had a fire so the changes in the mechanical properties of reinforcing steels used in structures exposed to high temperature could be determined. As seen from Figure 1, temperatures below 500°C have no significant effect on mechanical properties of preheated and cooled S220 steel rebars. The yield strength and splitting tensile strengths of S220 steels were similar up to this temperature. However, the yield strength and splitting tensile strength of the S220 steel rebars are reducing with the increase of temperatures over 800°C. A similar behavior can be seen from the test results of S420-ribbed steel rebars (Figure 2). All high temperature subjected steel specimens became more ductile temperatures above 800°C.

Figure 1: Stress-strain curve of S220 steel rebar.

Figure 2: Stress-strain curve of S420-ribbed steel rebar.

3.2. Yield Strength

Yield strength of both reinforcing steel rebars was affected with the elevated exposure temperatures. It can be concluded from Figure 3that there is no variation in yield strength of reinforcing steels with cover up to 300°C. Plain reinforcing steel rebars have experienced the strain hardening already for this temperature. According to Eurocode and TS EN 1993, before 400°C there is no decrease in yield strength, but after this temperature a significant yield strength loss occurs [9]. The yield strength losses of both S220 and S420 steel rebars were 46% and 84% for 800°C exposure temperature, respectively. For further increase of temperature at 950°C, yield strength decreases were 64% and 89%, respectively. According to these results, the remaining yield strength of S220 steel reinforcing rebar is higher than S420-ribbed steel rebar after high-temperature exposure.

Figure 3: Yield strength of steel rebars against temperature.

3.3. Tensile Strength

The tensile strength variation of steel reinforcement rebars exposed to elevated temperatures is given in Figure 4. On the light of these results, there was no significance reducing of tensile strength for both types of steel rebars up to 500°C temperature.The tensile strength losses of both S220 and S420 steel rebars were 51% and 85% for 800°C exposure temperature, respectively. For the highest exposure temperature at 950°C, tensile strength decreases were 60% and 90%, respectively. According to these results, the remaining tensile strength of S220 steel reinforcing rebar is higher than S420-ribbed steel rebar after high-temperature exposure. However, it should be considered that the possibility of complete strength loss of steel rebars at high temperatures when a structure is subjected to a huge fire. The remaining strengths of both reinforcing steel rebars after 500°C are lower than the design strengths of these steels. Consequently, the remaining strength of the steel rebars in structures is influenced with the exposure time and type of fire depending on the heat transfer through concrete cover to steel parts [10].

Figure 4: Tensile strength of steel rebars against temperature.

3.4. Elongation

The relation between high temperature and splitting elongation ratio can be seen from Figure 5. The figure is demonstrated that both steel rebars show a same elongation behavior under elevated temperatures. The elongation ratios of S220 steel rebars are higher than S420 rebars depending on the ductile fracture behavior of this steel. After a fire inside the reinforced concrete building, the deflections of the structural members increase with the ductile behavior of the steel reinforcement at high temperatures.

Figure 5: Elongation ratios of steel rebars against temperature.

The elongation ratios were slightly increased up to 300°C, however, above this temperature material becomes brittle with decrease of the elongation values. The elongation losses of both S220 and S420 steel rebars were 1.2% and 1.6% for 800°C exposure temperature, respectively. For further increase of temperature at 950°C, elongation ratios decreases were 1.6% and 3.3%, respectively. According to these results, the elongation capacity of S420 steel is lower than S220 steel under elevated temperatures. The S420 steel showed a brittle fracture behavior under elevated temperatures. This behavior is not sufficient for rebar steel in reinforced concrete structures.

3.5. Toughness

The energy absorbent capacity of materials used in construction should be higher against dynamic earthquake loads. The fracture energy of materials is defined with the toughness concept. The toughness values of the steel rebars used in experimental studies are given in Figure 6. According to test results, the toughness values of both types of steels were decreased after elevated temperature exposure. However, up to 300°C, the toughness values were increased due to the ductile behavior of both steels. The toughness losses of both S220 and S420 steel rebars were 16% and 35% for 800°C exposure temperature, respectively. For further increase of temperature at 950°C, toughness decreases were 82% and 88%, respectively.

Figure 6: Toughness of steel rebars against temperature.

As described in the previous studies, steel structural members loose strength under elevated temperatures. In this study, the mechanical properties of steel rebars were investigated which exposed to high temperatures and cooled to room temperature. According to test results, the most common reinforcing steel rebar S420 showed a brittle fracture mechanism under elevated temperatures. Splitting yield strength, tensile strength, elongation, and toughness values were low for S220 steel. These results demonstrate that S220 type of steel rebar is less affected than S420 steel under elevated temperatures. The authors suggest that the protective cover thickness should be higher for increasing the fire safety of reinforced concrete members.

中文翻译:

高温下钢筋混凝土中钢筋的性能

摘要处于高温环境的钢结构,屈服强度和弹性模量这两项机械指标的恶化被认为是影响其性能的主要因素。在这项研究中,热轧钢筋s220和s420将处于高温环境下以此探究这些材料的耐火性能。它的目的是确定经受高温的钢筋剩下的力学性能。钢受到20、100、200、300、500、800和9 5 0°C温度并进行三小时的拉伸试验。得出了温度对s220和s420两种材料的影响结果。由于温度的升高,钢筋的所有机械性能都减弱了。而且能够看到s420钢材比s220钢材更容易受到温度的影响。

火是大多数建筑和结构的隐患。由于混凝土在工程中的广泛应用,关于混凝土耐火性能的研究变的越来越重要了。世界上的许多研究人员已经对该项目做出了研究。所有一般建筑材料的机械性能随着温度的升高会下降。钢筋混凝土结构在高温条件下的反应主要受构成材料,混凝土,钢筋性能控制。混凝土和钢筋受高温的影响其力学,机械性能会受到很大的影响,并且这种影响在冷却后是无法修复的。

找到一种使钢材耐高温的安全,经济,容易实施的方法是必要的。然而,钢结构在没有耐火措施的情况下在一场火灾中会遭受严重的损毁甚至瓦解。这是因为在火灾条件下受热导致钢材的机械性能恶化。在600°C高温下,普通钢筋的区服强度还不及室温下钢筋屈服强度的三分之一。因此,普通钢筋一般需要

涂膜防火。钢材中温度的升高主要受温度传递的控制。总之,必须意识到钢材的温度不会总和火焰的温度一样。耐火处理后的钢材其暴露在火焰环境下温度是上升速度会比不做耐火处理的钢材慢的多。同样的,高温对钢材的影响程度受其到火源距离的影响,在一个受控于燃料的环境下如果钢材附近有通风设备,那么通风设备会帮助冷却钢材,将热量带到其周围的环境中去。尤其是在复合钢筋混凝土原件中,钢筋和混凝土温度的升高会导致诸如屈服应力,杨氏模量,和混凝土极限抗压强度这些机械性能的下降。此外,当钢筋或复合结构承受高温时,钢筋的承载能力会下降。如果火的持续时间和强度足够大,其荷载抵抗能力会降到与外部荷载相当的水平,从而导致结构的破坏。然而,2001年911事件美国世贸大厦的倒塌尤其是WTC7楼的倒塌向工程专业发出了警告,揭示出建筑倒塌与高温条件的关联。在这个研究中,s220和s420两种钢材会经受七种不同的温度,以此来得出钢筋对于高温的反应。

实验性研究会分析直径为10mm和16mm,长200mm的s220和s420钢筋,测试试样会放在温度分别为20,100,200,300,500,800和950°C的火炉中三个小时。在固化过程的结尾,钢筋会被自然的回复到室温。随后,将对这些钢筋进行抗拉强度试验。根据EN 10002-1,钢筋在温度升高条件下的抗拉强度,屈服强度和伸长率是已经确定的。钢筋试样的抗拉强度测试由60吨一般抗拉强度测试机器进行。测试机器的荷载施加速度按照TS 708 code。

3.1应力-应变关系

实验中不同温度下样本的应力应变关系均值已表示在图形1和2中。图形1和2中的曲线是通过直径为10和16的钢筋试样的平均试验值绘制的。该实验条件旨在模仿建筑遭受火灾时的状况,所以高温环境下结构中的钢筋的机械性能也就能够确定了。就像图形1中所表示的那样,低于500°C的温度对于预热并冷却的

s220钢筋的机械性能并没有太大的影响。S220钢筋的屈服强度和劈裂抗拉强度在这些温度下是相似的。然而,当温度上升至800°C 以上时,s220钢筋的屈服强度和劈裂抗拉强度会出现下降。相似的反应同样发生在s420钢筋的实验结果中。暴露在高温下的钢筋在温度上升至800°C以上时其延性会上升。

Figure 1: Stress-strain curve of S220 steel rebar.

Figure 2: Stress-strain curve of S420-ribbed steel rebar.

图1:s220钢筋的应力应变曲线

图2:s420钢筋的应力应变曲线

3.2屈服强度

两种钢筋的屈服强度都受到了外界温度升高的影响。从图形3中我们可以总结出钢筋的屈服强度在300°C以内的条件下并没有太大的变化。光圆钢筋的机械加工中已经经历过这种温度。根据Eurocode 和 TS EN 1993,在400 °C前,屈服强度没有太大的降低,但在这个温度以后,会出现一个明显的屈服强度损失。暴露在800°C温度下,s220和s420钢筋各自的屈服强度损失分别为46%和84%。当温度进一步升高到950°C时,屈服强度的损失将各自达到64%和89%。根据这些结果,在经历高温环境后s220钢筋的屈服强度会比s420钢筋的屈服强度高。

Figure 3: Yield strength of steel rebars against temperature.

图3:对应不同温度的钢筋屈服强度

3.3抗拉强度

钢筋在高温下抗拉强度的变化可通过图形4表示。通过这些数据我们会发现,温度在500°C以内时,两种类型的钢筋的抗拉强度没有明显的降低。在800°C 的高温下,s220和s420钢筋的抗拉强度损失分别为51%和85%。当温度上升至950°C 时,两种钢筋各自的抗拉强度损失为60%和90%。根据这些结果,在经历高温环境后s220钢筋的抗拉强度会比s420钢筋的屈服强度高。然而,必须考虑结构在高温环境下钢筋强度完全损失的可能性。两种钢筋在500°C高温的环境下其剩余的强度比其设计强度要低。因此,结构中钢筋的剩余强度会受到暴露时间,火

的类型。通过混凝土外壳将热传递到钢筋部分。

Figure 4: Tensile strength of steel rebars against temperature.

图4:对应不同温度的钢筋抗拉强度

3.4 伸长率

高温和伸长率的关系可以通过图形5表示出来。如图所示两种钢筋在高温条件下伸长率出现了相同的变化。S220钢筋的伸长率比s420钢筋的伸长率高。钢混结构的建筑在经历火灾后,其结构原件的变形增加,伴随着高温下钢筋的延性反应。

Figure 5: Elongation ratios of steel rebars against temperature.

图5:对应不同温度的钢筋伸长率

伸长率在300°C以内增长缓慢,然而,超过这个温度后,伴随着伸长值的下降,材料变得易碎。当温度上升至800°C时,两种钢筋各自的伸长率损失为1.2%和1.6%。当温度继续上升至950°C时,两种钢筋各自的伸长率损失为1.6%和3.3%。根据这些结果,在经历高温环境后s420钢筋的伸长率会比s220钢筋的伸长率低。S420钢筋在温度升高时表现出脆性。这种反应对于钢混结构中的钢筋而言并不充分。

3.5韧度

工程中使用材料的能量吸收能力应该比抵抗动态地震荷载能力高。材料的断裂能被定义为韧度的概念。实验中使用的钢筋韧度在图形6中已给出。根据实验结果,两种类型的钢筋在高温后韧度都降低了。然而,在300°C以内,韧度的增长取决于两种钢筋的延性反应。当温度上升至800°C时,两种钢筋各自的伸长率损失为16%和35%。当温度继续上升至950°C时,两种钢筋各自的伸长率损失为82%和88%。

Figure 6: Toughness of steel rebars against temperature.

图6:对应不同温度的钢筋韧度

正如前面的研究所描述的,在温度升高时钢结构原件会发生强度损失。在这项研究中,主要研究经历高温后恢复到室温的钢筋的机械性能。根据研究成果,最常见的s420钢筋在温度升高后表现出脆性。屈服强度,抗拉强度,伸长率,和韧度值均比s220钢筋低。这些结果表明s220钢筋与s420钢筋相比,在温度升高的条件下所受的影响更小,作者建议为了提高钢混原件的耐火性,其保护层厚度要提高。

土木工程外文翻译.doc

项目成本控制 一、引言 项目是企业形象的窗口和效益的源泉。随着市场竞争日趋激烈,工程质量、文明施工要求不断提高,材料价格波动起伏,以及其他种种不确定因素的影响,使得项目运作处于较为严峻的环境之中。由此可见项目的成本控制是贯穿在工程建设自招投标阶段直到竣工验收的全过程,它是企业全面成本管理的重要环节,必须在组织和控制措施上给于高度的重视,以期达到提高企业经济效益的目的。 二、概述 工程施工项目成本控制,指在项目成本在成本发生和形成过程中,对生产经营所消耗的人力资源、物资资源和费用开支,进行指导、监督、调节和限制,及时预防、发现和纠正偏差从而把各项费用控制在计划成本的预定目标之内,以达到保证企业生产经营效益的目的。 三、施工企业成本控制原则 施工企业的成本控制是以施工项目成本控制为中心,施工项目成本控制原则是企业成本管理的基础和核心,施工企业项目经理部在对项目施工过程进行成本控制时,必须遵循以下基本原则。 3.1 成本最低化原则。施工项目成本控制的根本目的,在于通过成本管理的各种手段,促进不断降低施工项目成本,以达到可能实现最低的目标成本的要求。在实行成本最低化原则时,应注意降低成本的可能性和合理的成本最低化。一方面挖掘各种降低成本的能力,使可能性变为现实;另一方面要从实际出发,制定通过主观努力可能达到合理的最低成本水平。 3.2 全面成本控制原则。全面成本管理是全企业、全员和全过程的管理,亦称“三全”管理。项目成本的全员控制有一个系统的实质性内容,包括各部门、各单位的责任网络和班组经济核算等等,应防止成本控制人人有责,人人不管。项目成本的全过程控制要求成本控制工作要随着项目施工进展的各个阶段连续 进行,既不能疏漏,又不能时紧时松,应使施工项目成本自始至终置于有效的控制之下。 3.3 动态控制原则。施工项目是一次性的,成本控制应强调项目的中间控制,即动态控制。因为施工准备阶段的成本控制只是根据施工组织设计的具体内容确

土木工程外文翻译

转型衰退时期的土木工程研究 Sergios Lambropoulosa[1], John-Paris Pantouvakisb, Marina Marinellic 摘要 最近的全球经济和金融危机导致许多国家的经济陷入衰退,特别是在欧盟的周边。这些国家目前面临的民用建筑基础设施的公共投资和私人投资显著收缩,导致在民事特别是在民用建筑方向的失业。因此,在所有国家在经济衰退的专业发展对于土木工程应届毕业生来说是努力和资历的不相称的研究,因为他们很少有机会在实践中积累经验和知识,这些逐渐成为过时的经验和知识。在这种情况下,对于技术性大学在国家经济衰退的计划和实施的土木工程研究大纲的一个实质性的改革势在必行。目的是使毕业生拓宽他们的专业活动的范围,提高他们的就业能力。 在本文中,提出了土木工程研究课程的不断扩大,特别是在发展的光毕业生的潜在的项目,计划和投资组合管理。在这个方向上,一个全面的文献回顾,包括ASCE体为第二十一世纪,IPMA的能力的基础知识,建议在其他:显著增加所提供的模块和项目管理在战略管理中添加新的模块,领导行为,配送管理,组织和环境等;提供足够的专业训练五年的大学的研究;并由专业机构促进应届大学生认证。建议通过改革教学大纲为土木工程研究目前由国家技术提供了例证雅典大学。 1引言 土木工程研究(CES)蓬勃发展,是在第二次世界大战后。土木工程师的出现最初是由重建被摧毁的巨大需求所致,目的是更多和更好的社会追求。但是很快,这种演变一个长期的趋势,因为政府为了努力实现经济发展,采取了全世界的凯恩斯主义的理论,即公共基础设施投资作为动力。首先积极的结果导致公民为了更好的生活条件(住房,旅游等)和增加私人投资基础设施而创造机会。这些现象再国家的发展中尤为为明显。虽然前景并不明朗(例如,世界石油危机在70年代),在80年代领先的国家采用新自由主义经济的方法(如里根经济政策),这是最近的金融危机及金融危机造成的后果(即收缩的基础设施投资,在技术部门的高失业率),消除发展前途无限的误区。 技术教育的大学所认可的大量研究土木工程部。旧学校拓展专业并且新的学校建成,并招收许多学生。由于高的职业声望,薪酬,吸引高质量的学校的学生。在工程量的增加和科学技术的发展,导致到极强的专业性,无论是在研究还是工作当中。结构工程师,液压工程师,交通工程师等,都属于土木工程。试图在不同的国家采用专业性的权利,不同的解决方案,,从一个统一的大学学历和广泛的专业化的一般职业许可证。这个问题在许多其他行业成为关键。国际专业协会的专家和机构所确定的国家性检查机构,经过考试后,他们证明不仅是行业的新来者,而且专家通过时间来确定进展情况。尽管在很多情况下,这些证书虽然没有国家接受,他们赞赏和公认的世界。 在试图改革大学研究(不仅在土木工程)更接近市场需求的过程中,欧盟确定了1999博洛尼亚宣言,它引入了一个二能级系统。第一级度(例如,一个三年的学士)是进入

外文翻译---混凝土,钢筋混凝土和预应力混凝土

Concrete, Reinforced Concrete, and PrestressedConcrete Concrete is a stone like material obtained by permitting a carefully proportioned mixture of cement, sand and gravel or other aggregate, and water to harden in forms of the shape and dimensions of the desired structure. The bulk of the material consists of fine and coarse aggregate. Cement and water interact chemically to bind the aggregate particles into a solid mass. Additional water, over and above that needed for this chemical reaction, is necessary to give the mixture workability that enables it to fill the forms and surround the embedded reinforcing steel prior to hardening. Concretes with a wide range of properties can be obtained by appropriates adjustment of the proportions of the constituent materials. Special cements, special aggregates, and special curing methods permit an even wider variety of properties to be obtained. These properties depend to a very substantial degree on the proportions of the mix, on the thoroughness with which the various constituents are intermixed, and on the conditions of humidity and temperature in which the mix is maintained from the moment it is placed in the forms of humidity and hardened. The process of controlling conditions after placement is known as curing. To protect against the unintentional production of substandard concrete, a high degree of skillful control and supervision is necessary throughout the process, from the proportioning by weight of the individual components, trough mixing and placing, until the completion of curing. The factors that make concrete a universal building material are so pronounced that it has been used, in more primitive kinds and ways than at present, for thousands of years, starting with lime mortars from 12,000 to 600 B.C. in Crete, Cyprus, Greece, and the Middle East. The facility with which , while plastic, it can be deposited and made to fill forms or molds of almost any practical shape is one of these factors. Its high fire and weather resistance are evident advantages. Most of the constituent materials, with the exception of cement and additives, are usually available at low cost locally or at small distances from the construction site. Its compressive strength, like that of natural stones, is high, which makes it suitable for members primarily subject to compression, such as columns and arches. On the other hand, again as in natural stones, it is a relatively brittle material whose tensile strength is small compared with its compressive strength. This prevents its economical use in structural members that ate subject to tension either entirely or over part of their cross sections. To offset this limitation, it was found possible, in the second half of the

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

土木外文翻译--高温下钢筋混凝土中钢筋的性能

土木外文翻译--高温下钢筋混凝土中钢筋的性能

外文原文: Research Letters in Materials Science Volume 2008 (2008), Article ID 814137, 4 pages doi:10.1155/2008/814137 Research Letter Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures ?lker Bekir Top?u and Cenk Karakurt Department of Civil Engineering, Eski?ehir Osmangazi University, 26480 Eski?ehir, Turkey Received 12 February 2008; Accepted 31 March 2008 Academic Editor: Rajiv S. Mishra Copyright ? 2008 ?lker Bekir Top?u and Cenk Karakurt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 500, 800, and 9 5 0 ° C temperatures for 3 hours and tensile tests were carried out. Effect of temperature on mechanical behavior of S220 and S420 were determined. All mechanical properties were reduced due to the temperature increase of the steel rebars. It is seen that mechanical properties of S420 steel was influenced more than S220 steel at elevated temperatures.

土木工程岩土类毕业设计外文翻译

姓名: 学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处Tunnelling and Underground Space Technology 31 (2012) 107–116 学生XXX 学院XXXX 专业班级XXXXX 校内指导教师XXX 专业技术职务XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的

土木工程毕业设计外文文献翻译修订版

土木工程毕业设计外文文献翻译修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

外文文献翻译 Reinforced Concrete (来自《土木工程英语》) Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships. Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope. Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In

随时间变化的钢筋混凝土阻力分析外文翻译

随时间变化的钢筋混凝土阻力分析外文翻译 Prepared on 24 November 2020

毕业设计(论文)外文资料翻译 系(部):建筑工程系 专业:土木工程 班级: B070704 姓名: 123 学号: 123 外文出处:Journal of Wuhan University 附件: 1. 原文; 2. 译文 2010年12月29日 附件1:原文 随时间变化的钢筋混凝土阻力分析 摘要∶对钢筋混凝土材料时间相关性的分析方法进行介绍,讨论钢筋混凝土的作用 机理,然后再研究随时间而定的钢筋混凝土抵抗力。此外,钢筋混凝土结构中的钢材腐 蚀也是需要被分析的。鉴定随时间而变的抵抗力的实际统计方法,包括物质的材料,结 构尺寸,影响计算的确定。另外,范例中估计随时间而变钢筋混凝土结构构件的抵抗力 是给的。 关键字∶不定分析;随时间变化的抵抗力;钢筋混凝土 1.介绍: 因为钢筋混凝土材料适用于很多地方,并且价格便宜,所以它在土木工程中是一种 非常有用的材料。因此,这种材料大量的被使用。然而,传统的建筑结构设计和钢筋混

凝土材料的研究很少注意到钢筋混凝土强度和时间的关系,尤其是作用在材料上的不同影响作用几乎是不予研究的。直到近年来,在建筑施工中的一些研究才涉及这个问题——关于钢筋混凝强度与时间相关性的。已做过的关于钢筋混凝土柱破坏概率的研究表明低强度的钢筋混凝土柱破坏概率低于偶然的荷载作用下的破坏概率。并且这种计算方法已经被运用到随时间而变化的破坏概率的计算上。低强度的和Liu[4] 混凝土结构耐久性上的研究认为这种作用加速了其的破坏。并且Lu [6]等已经论述钢筋腐蚀的情况。一般而言,依赖不同因素的钢筋混凝土抵抗力明显减小。在对混凝土结构安全性校核上,基础理论为钢筋混凝土耐久性分析提供了建议。研究随时间而变的钢筋混凝土结构的性质的是必要的。 2.影响钢筋混凝土机理的因素 许多因素对钢筋混凝土抵抗力都产生影响。在水区域内存在着超过50种化学腐蚀元素,水在其中工作并且起调节作用。获得一次相关钢筋混凝土模型的实际方法是一种多因素理解方法。通常,对于单一的因素,许多结果只考虑到混凝土的碳化作用,碳化的厚度可以用下面公式来表示: 可以写为:D ( t) = K t (1) 式中D ( t),K和t分别为厚度,速度系数与碳化的时间。 到目前为止,虽然有许多模型被运用到钢筋的断裂,疲劳破坏中,但是还没有大家都认可的结论存在。一般而言,能够降低钢筋混凝土的抵抗力的变量有钢筋的几何尺寸,周边环境情况以及随时间而变的抵抗力等。显而易见,钢筋混凝土抵抗力的变化是的一个随机函数过程或者说是一系列材料和结构变量的相互作用。钢筋混凝土在空气中的碳化被称之为中和反应。它是合成物与在空中的CO2以及钢筋混凝土中的碱性材料缓慢中和的过程。在空气中完全地碳化密实混凝土中的钢筋保护层需要花费几十年的时

土木工程外文翻译参考3篇

学校 毕业设计(论文)附件 外文文献翻译 学号: xxxxx 姓名: xxx 所在系别: xxxxx 专业班级: xxx 指导教师: xxxx 原文标题: Building construction concrete crack of prevention and processing 2012年月日 .

建筑施工混凝土裂缝的预防与处理1 摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 关键词:混凝土裂缝预防处理 前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 混凝土工程中常见裂缝及预防: 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产 1原文出处及作者:《加拿大土木工程学报》

土木工程钢筋混凝土结构中英文对照外文翻译文献

中英文翻译

原文: DESIGN OF REINFORCED CONCRETE STRUCTURES 1. BASIC CONCERPTS AND CHARACERACTERISTICS OF REINFORCED CONCRETE Plain concrete is formed from hardened mixture of cement, water , fine aggregate , coarse aggregate (crushed stone or gravel ) , air and often other admixtures . The plastic mix is placed and consolidated in the formwork, then cured to accelerate of the chemical hydration of hen cement mix and results in a hardened concrete. It is generally known that concrete has high compressive strength and low resistance to tension. Its tensile strength is approximately one-tenth of its compressive strength. Consequently, tensile reinforcement in the tension zone has to be provided to supplement the tensile strength of the reinforced concrete section. For example, a plain concrete beam under a uniformly distributed load q is shown in Fig . 1.1(a), when the distributed load increases and reaches a value q=1.37KN/m , the tensile region at the mid-span will be cracked and the beam will fail suddenly . A reinforced concrete beam if the same size but has to steel reinforcing bars (2φ16) embedded at the bottom under a uniformly distributed load q is shown in Fig.1.1(b). The reinforcing bars take up the tension there after the concrete is cracked. When the load q is increased, the width of the cracks, the deflection and the stress of steel bars will increase . When the steel approaches the yielding stress ?y , the deflection and the cracked width are so large offering some warning that the compression zone . The failure load q=9.31KN/m, is approximately 6.8 times that for the plain concrete beam. Concrete and reinforcement can work together because there is a sufficiently strong bond between the two materials, there are no relative movements of the bars and the surrounding concrete cracking. The thermal expansion coefficients of the two materials are 1.2×10-5K-1 for steel and 1.0×10-5~1.5×10-5K-1 for concrete . Generally speaking, reinforced structure possess following features : Durability .With the reinforcing steel protected by the concrete , reinforced concrete

土木工程外文翻译5

PROJECTCOSTCONTROL INTRODUCTION project a corporate image window and effectiveness of the source. With increasingly fierce market competition, the quality of work and the construction of civilizations rising material prices fluctuations. uncertainties and other factors, make the project operational in a relatively tough environment. So the cost of control is through the building of the project since the bidding phase of acceptance until the completion of the entire process, It is a comprehensive enterprise cost management an important part, we must organize and control measures in height to the attention with a view to improving the economic efficiency of enterprises to achieve the purpose. 2, outlining the construction project cost control, the cost of the project refers to the cost and process of formation occurred, on the production and operation of the amount of human resources, material resources and expenses, guidance, supervision, regulation and restrictions, in a timely manner to prevent, detect and correct errors in order to control costs in all project costs within the intended target. to guarantee the production and operation of enterprises benefits. 4, the construction cost control measures cost control measures. Reduce the cost of construction projects means, we should not only increase revenue is also reducing expenditure, or both also increase savings. Cutting expenditure is not only revenue, or revenue not only to cut expenditure, it is impossible to achieve the aim of reducing costs, at least there is no ideal lower cost effective.

土木工程岩土类毕业设计外文翻译

学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目 Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处 Tunnelling and Underground Space Technology 31 (2012) 107–116 学生 XXX 学院 XXXX 专业班级 XXXXX 校内指导教师 XXX 专业技术职务 XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的几个非对称加强桩的施工过程中观察到混凝土桩沿与测得的变形的结果在常规和描述优化桩。实验证据表明,非对称地增强桩变形比观察到在常规增强那些小。两桩类型(对称和非对称)具有相同的直径,并设计为抵抗基于极限强度设计相同的弯曲力矩;离散杆的尺寸和使用的条全数字的,导致类似的名义抗弯强度。

土木工程类外文文献翻译

外文文献翻译 1 中文翻译 1.1钢筋混凝土 素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。其最终制成品具有较高的抗压强度和较低的抗拉强度。其抗拉强度约为抗压强度的十分之一。因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。 由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。这一要求是可以达到的。因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。 浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。对于梁、柱、墙等构件,当模板清理干净后应该在其上涂油,钢筋表面的锈及其他有害物质也应该被清除干净。浇筑基础前,应将坑底土夯实并用水浸湿6英寸,以免土壤从新浇的混凝土中吸收水分。一般情况下,除使用混凝土泵浇筑外,混凝土都应在水平方向分层浇筑,并使用插入式或表面式高频电动振捣器捣实。必须记住,过分的振捣将导致骨料离析和混凝土泌浆等现象,因而是有害的。 水泥的水化作用发生在有水分存在,而且气温在50°F以上的条件下。为了保证水泥的水化作用得以进行,必须具备上述条件。如果干燥过快则会出现表面裂缝,这将有损与混凝土的强度,同时也会影响到水泥水化作用的充分进行。 设计钢筋混凝土构件时显然需要处理大量的参数,诸如宽度、高度等几何尺寸,配筋的面积,钢筋的应变和混凝土的应变,钢筋的应力等等。因此,在选择混凝土截面时需要进行试算并作调整,根据施工现场条件、混凝土原材料的供应情况、业主提出的特殊要求、对建筑和净空高度的要求、所用的设计规范以及建筑物周围环

相关主题
文本预览
相关文档 最新文档